Timestamps for Programs Using Messages and Shared Variables

Alessio Bechini

Dipartimento di Ingegneria dell’Informazione
Facolta di Ingegneria-Universita di Pisa
via Diotisalvi, 2 56100 Pisa, Italy

alessio@picall3.iet.unipi.it

Abstract

Algorithms for vector timestamps have been developed
to determine the “happened before” relations between
events of an execution of a message-passing program.
Many message-passing programs contain variables
shared by multiple processes (including threads). Such
programs need to have vector timestamps for send, re-
ceive, read and write events. In this paper, we define
two “happened before” relations, called strong hap-
pened-before (SHB) and weak happened-before (WHB),
between events of an execution involving send, receive,
read and write statements. We then present two time-
stamp assignment algorithms, one for SHB and the
other for WHB, and show how to use such timestamps to
determine the SHB or WHB relation between any two
events of an execution involving send, receive, read and
write statements. For a program containing n proc-
esses, the size of a vector timestamp for SHB or WHB is
n, regardless of the number of shared variables in the
program. Finally, we show how to apply WHB time-
stamps to perform race analysis for programs using
messages and shared variables.

1. Introduction

Traditionally, processes in a distributed program
communicate with each other through message-passing,
and processes in a parallel program through shared vari-
ables. Due to the use of threads and/or shared distributed
memory, many distributed programs contain variables

This work was performed when the first author was a visi-
tor at NCSU, supported by a fellowship from the University
of Pisa; the work was supported in part by MURST, Italy.
This work was supported in part by NSF grant CCR-
9320992

0-8186-8292-2/98 $10.00 © 1998 IEEE

266

Kuo-Chung Tai

Department of Computer Science
North Carolina State University
Raleigh, North Carolina 27695-7534, USA

kct@csc.ncesu.edu

shared by multiple processes (including threads). On the
other hand, many parallel programs use message passing
for communication and synchronization. Thus, programs
using both messages and shared variables are becoming
popular. One example is that a program runs on multiple
sites, with processes in each site communicating with
each other through shared variables. A more general ex-
ample is that processes in a program communicate with
each other through both messages and shared variables,
regardless of the locations of processes and shared vari-
ables.

Lamport defined the “happened before” relation for
events of an execution involving send and receive
statements [5]. Vector timestamps have been used to
determine the “happened before” relations between
events of an execution involving send and receive
statements [3, 6, 9]. For programs using both messages
and shared variables, if all accesses to shared variables
are synchronized by using messages, then the “happened
before” relations between read and write accesses for
shared variables can be determined by the “happened
before” relations between their corresponding send and
receive events.

In this paper, we consider concurrent programs that
use both messages and shared variables and do not nec-
essarily synchronize all accesses to shared variables by
using messages. We show how to extend the classical
“happened before” relation to define two “happened be-
fore” relations for events of an execution. These two
“happened before” relations have different applications
for analysis, testing and debugging of concurrent pro-
grams. We also show how to assign vector timestamps
to send, receive, read and write events and how to use
these timestamps to determine event ordering.

The paper is organized as follows. Section 2 re-
views previous work on timestamps. Section 3 defines



two “happened before” relations for send, receive, read
and write events. Section 4 shows the assignment of
vector timestamps for send, receive, read and write
events and the use of vector timestamps to determine
event ordering. Section 5 describes how to apply WHB
timestamps to perform race analysis for programs using
messages and shared variables. Section 6 concludes this

paper.
3. Previous works on timestamps

Lamport proposed the assignment of integer time-
stamps to events of an execution involving send and re-
ceive statements [5]. Integer timestamps can be used to
produce totally ordered sequences of events of an exe-
cution involving send and receive statements such that
these sequences do not violate the “happened before”
relations among events of the execution (i.e. if event e
“happened before” event f, then e appears before fin any
of these totally ordered sequences). However, integer
timestamps cannot be used to determine the “happened
before” relation between two events of the same execu-
tion. To solve this problem requires the use of vector
timestamps, each consisting of n values, where n is the
number of processes involved in an execution. How to
assign vector timestamps for events of an execution in-
volving asynchronous communication (i.e. non-blocking
send and blocking receive) is shown in [6]. The assign-
ment of vector timestamps for events of an execution
involving asynchronous and/or synchronous communi-
cation is described in [3]. A technique for improving the
implementation of vector timestamps for message-
passing programs was proposed in [10]. Netzer consid-
ered optimal tracing and replay of parallel programs that
contain accesses to shared variables, but do not contain
messages [7]. He presented an algorithm that uses vector
timestamps for read and write events on shared variables
in a parallel program.

During an execution of a parallel program, the
number of parallel threads is usually not a constant. A
number of timestamp techniques for a parallel program
avoid the use of vector timestamps with their size being
the total number of parallel threads in the program. Din-
ning and Schonberg considered parallel programs that
use doall-endall statements for parallelism and some co-
ordination statements for synchronizing accesses to
shared variables [2]. A block of a parallel program is
defined as an instruction sequence, executed by a single
thread, that does not include doall, endall, or any coor-
dination statements. A technique, called rask recycling,
assigns a vector timestamp to a block, where the size of
this vector timestamp is the maximum number of paral-
lel threads in the outermost doall-endall statement that
contains the block. Audenaert considered parallel pro-

267

grams that use fork and join statements for parallelism
and send and receive statements for synchronizing ac-
cesses to shared variables [1]. He described a technique
that assigns a clock tree, which is a tree of vector time-
stamps, to a fork, join, send or receive event. The aver-
age size of a clock tree is much smaller than the size of a
vector timestamp based on task recycling.

The above two timestamp techniques for parallel
programs assume that all accesses to shared variables
are synchronized by message-passing and other state-
ments. Therefore, they do not consider read and write
events in the derivation of timestamps. Such timestamp
techniques can be applied to detect the existence of race
conditions for shared variables in a parallel program
satisfying the above-mentioned assumption. However,
such timestamp techniques cannot be applied to solve
the problem addressed in this paper. In this paper we
combine Fidge’s assignment of vector timestamps to
send and receive events and Netzer’s assignment of
timestamps to read and write events.

3. “Happened before” relations for send,
receive, read and write events

In this section, we define two “happened before”
relations, called strong happened-before (SHB) and
weak happened-before (WHB), for send, receive, read
and write events. In the following discussion, we con-
sider a concurrent program containing processes that
communicate with each other by using messages and
shared variables. A send statement is either blocking or
non-blocking, and a receive statement is blocking.
Asynchronous message-passing refers to the passing of a
message from a non-blocking send to a receive, and
synchronous message-passing refers to the passing of a
message from a blocking send to a receive. A read or
write operation is assumed to be atomic. If shared dis-
tributed memory is used, strict or sequential consistency
for the shared memory is assumed [14]. Thus, the se-
quence of read and write events on a shared variable
during an execution is a totally ordered sequence. For
two read/write events ¢ and f on a shared variable V,
e—*Y ¢ denotes that e occurs before fon V.

Fig. 1 shows a graphical representation of a se-
quence of read and write events on shared variable V by
processes P;, P>, P; and P,. In fig. 1, each process or
shared variable is denoted by a vertical line. A read
event on V by a process is denoted by a horizontal line
from the vertical line for V to the vertical line for the
process. A write event on V by a process is denoted by a
horizontal line from the vertical line for the process to
the vertical line for V.



3.1 Strong happened-before

Below are the rules for defining the strong hap-
pened-before relation (SHB or —3S— ) for events of an
execution involving send, receive, read and write state-
ments.

SHB.1 If e and f are events on the same process such
that e occurs before f, then ¢—f.

SHB.2 If event e is a non-blocking send and event f is
the corresponding receive, then e——f.

SHB.3 If events e and f form a synchronous message-
passing (i.e. one of them is a blocking send and the
other is the corresponding receive), then for event g
such that ¢—5g, we have f—25g, and for

event h such that 4—Sf , we have h—25e.
SHB.4 For two different events ¢ and f on shared vari-
able V such that at least one of them is a write
event, if ¢~ f then e~ f.
SHB.5 For events e, fand g, if e~25f and f25¢,
then ¢ —=— g-

To simplify our notation, in the following we will use —
for —5 5, if there is no ambiguity. Rules SHB.I,
SHB.2, SHB.3 and SHB.5 are used in classical
“happened before” [3], while rule SHB.4 is added to
explicitly deal with read and write events. Notice that
the new rule does not affect other rules. In [3] additional
rules are used for process creation and termination. For
the sake of simplicity, these rules are not mentioned
here.

For events e and f of an execution, if neither e — f
and nor f — e, then e and f are said to be concurrent,
indicated by e ll . Thus, for two read events e and f in
different processes on the same variable V, if no write
event on V occurs between e and f and no “happened-
before” relation between e and f exists due to messages
or accesses to other variables, then e Il f.

For the events in fig. 1, according to SHB, blic,
a—b,a—>c, a—dand b — e. Notice that a — d does
not imply that event a in P; causally affects event d in
P;, since there is no flow of information from P; after
event a to P, before event d. Similarly, b — e does not
imply that event b in P, causally affects event ¢ in Ps.
According to the classical happened-before relation for
send and receive events, event u happens before event v
if and only if u causally affects v. However, this is not
true for SHB, which covers send, receive, read and write
events. Below there are two major considerations for
defining a happened-before relation:

e Causality: the ability to determine the set of events
that causally affects a given event.

268

v
. a e
]

b < f

C ’Q——rﬁ\

de— W
e o< r

Y Y Y Y Y

Fig. 1- Representation of a sequence of read and write
events on the shared variable V.

¢ Reproducibility: the ability to repeat a previous
execution and thus produce the same results.

A happened-before relation is said to support causality
if, for any event e in an execution, the set of events hap-
pening before ¢ in this execution is exactly the set of
events causally affecting e in this execution. A hap-
pened-before relation is said to support reproducibility if
repeating the happened-before relations for all events in
an execution guarantees repeating this execution. The
classical happened-before relation supports both causal-
ity and reproducibility for programs using messages.
SHB supports reproducibility, but not causality, for pro-
grams using both messages and shared variables. Below
we define a different happened-before relation that sup-
ports causality, but not reproducibility, for programs
using both messages and shared variables.

3.2 Weak happened-before

As mentioned earlier, the sequence of read and
write events on a shared variable during an execution is
a totally ordered sequence. Thus, the version number of
a shared variable V during an execution can be defined
as follows. Initially, the version number of V is zero. A
write event on V increases the version number of V by
one, while a read event on V keeps the version number
of V intact. Let v(V,e) denote the version number of V
immediately after event e on V. According to SHB, the
following two properties hold:

3.2.1 For a write event ¢ and a read event f on variable
Vsuch thatv(V,e) =v(V,f) ,e = f.

3.2.2 For events e¢ and f on variable V such that
vVie) <v((Vf),e—>f.

Property 3.2.1 is needed for supporting causality, but
property 3.2.2 is not. Below are the rules for defining
the weak happened-before relation (WHB or —¥ ) for



events of an execution involving send, receive, read and
write statements.

WHB.1-3: same as SHB.1-3, except that —£— is re-
placed by —¥ .

WHB.4 For a write event ¢ and a read event f on vari-
able V such that v(V,e) = v(V,f) , e—2f.

WHB.5: same as SHB.5, except that —5— is replaced
by —¥—.

WHB.4 is equivalent to the following rule, which does
not use version numbers of events:

WHB.4" For a write event e and a read event f on vari-
able V such that ¢—#Y ¢ if there is no write

event w on V such that ¢—#%_y 2 5 ¢ then
eL>f.

In the following, we will use the symbol — for either
WHB or SHB, if what it represents is clear from the
context. For the events in fig. 1, according to WHB,
bllc,a—>b,a—c, alldand b | e. The set of events
happening before event ¢, according to SHB, is {a, b, c,
d}, and the set of events happening before event ¢, ac-
cording to WHB, is {d}. According to WHB, event e
happens before event fif and only if e causally affects f.
Thus, WHB supports causality for programs using both
messages and shared variables. For the execution shown
in fig. 1, repeating the WHB relations for all events in
this execution does not guarantee that the final value of
V be the value written by event d. Therefore, WHB does
not support reproducibility for programs using both
messages and shared variables.

4. Vector timestamps for SHB and WHB

In section 4.1, we show how to assign vector time-
stamps to send, receive, read and write events for SHB
and WHB respectively. The assignment of timestamps is
done on-the-fly (i.e. during the execution of these
events). In section 4.2, we discuss how to use such time-
stamps to determine the existence of a SHB or WHB
relation between two events. In the following discussion,
we consider a concurrent program P containing proc-
esses P;, P,, ..., P,, which communicate with each
other by using messages and shared variables.

4.1 Timestamp assignment algorithms
for SHB and WHB

For a send, receive, read, or write event e, let T{e) con-
tain n elements T(e)[1], T(e)[2]. ... , T(e)ln]. For a mes-
sage m, let T{m) be the vector timestamp associated with
m. For each process P;, 1 <i <n, we maintain C; as the

269

vector clock of P;. Each C;, 1 £i<n, has a vector of
zeros as its initial value. For each shared variable V, we
keep two vector timestamps T _LastWrite(V) and
T_Curr(V), which are defined as follows:

o T LastWrite(V) contains the vector timestamp of
the last write event on V.

e T Curr(V) is the vector clock of V, which contains
the up-to-date information for V.

Each of T_LastWrite(V) and T_Curr(V) has a vector of
zeros as initial value. For two vector timestamps T
and 77, T = max(T, T’) is defined as
T'li] = max(T1i],T’[i]) for 1 S i< n.

Algorithm SHB_VTS

This algorithm assigns vector timestamps for SHB.
When process P;, 1 £i<n, is to execute an event e, it
performs the following operations:

Glil=Ghl+1

T(e) = Ci;

Moreover, depending on the type of e, P; performs the
following operations:

1. Ifeis an internal event, P; performs event e.

2. If e is a non-blocking send, P; performs the send by
sending a message and C;, with C; as the timestamp
for the message.

3. If e is a receive with the receipt of a message m
from a non-blocking send, P; performs the follow-
ing operations after event e:

3.1. Ci=max(C;, T(m));
3.2. T(e)=C;;

4. If e is a blocking send with the corresponding re-
ceive in process P;, P; performs the send by sending
a message and C;, with C; as the timestamp for the
message. Then P; performs the following opera-
tions:

4.1. receive C;from P;;
42. Ci=max(C;, C;);
4.3. T(e)=C;;

5. If e is a receive with the receipt of a message m
from a blocking send in process P;, P; performs the
following operations after event e:

5.1. send Cjto Pj;
5.2. Ci=max(C;,T(m));
5.3. Tle)=C;;

6. If e is a write on shared variable V, P; performs the

following operations after event e:

6.1. Ci=max(C;,T_Curr(V}));
6.2. T(e)=C;;

6.3. T_LastWrite(V)=C;;
6.4. T Curr=C;;



P, P, P, V [ sHBVTS J[ weBvrs ]
L\ [}Lastvﬂrite‘”‘z‘_mrr] r T_LastWrite —I
= [0,1,0] {o,1,11
(an [0,1,0) (0,1,1]
a w [0,1,2} [0,1,23 {0,1,2)
0,1,2]
[0,1,2})
b geq r (0,2,2]
£0,2,21
(0,2,2]
[1,3,2]1 11,3,2]
[1.3,2} {1,3,2] '
€ [2,3,2]
12,3,21 d w
(2.3,2} —=> [2,4,2] 2,4,2 1,4,
12,4,2] [ ] {1,4,21
[1,4,2]
[2,5,2]
11,5,2)
3,5,21
[3,5,2]
e L 4,5,21
[4,5,21
{4,5,2} e e |
[2,6,3} [2,6,3]
(1,6,3] {1,6,31 r
g T 14,6, 41
[2,6,4]
[1,6,4) r
g e1— {4,7,4]
[2,7,3]
h 1.7.3) W*{> 15,7,4] [5,7.4}1 {5,5,2}
[5,7,4]
(5,5.2]
16,7,41
16,5,2] \
[6,7,5}
6,6,5
1=t : ! r [5,8,4]
[5,8,4] . r
(5.8,3) J 16,8,6]
16,7,6)
16.6,6]

Fig. 2 - An example of SHB and WHB vector timestamp assignment.

7. If e is a read on shared variable V, P; performs the
following operations after event e:
7.1. Ci=max(C;, T_LastWrite(V)) ,
72. T(e)=Cy;
1.3. T_Curr(V) = max(C;, T_Curr(V));

Rules 2 through 5 are equivalent to the rules in [3] for
assigning vector timestamps to send and receive events.
Rules 6 and 7 are equivalent to the rules used in [7] for
assigning timestamps to read and write events. These
two sets of rules can be combined without creating any
conflicts.

For a write event (in rule 6), C; i1s set to
max(C;, T_Curr(V)). For a read event (in rule 7), C; is set
to max(C;,T_LastWrite(V)). The reason for the differ-
ence is the following. A write event on V happens be-
fore all following read and write events on V. A read
event on V is concurrent with other read events on V
that happens after the most recent write event on V and
before the next write event on V, if there are no hap-
pened-before relations between these read events due to
messages or accesses to other shared variables.

270

Algorithm WHB_VTS

This algorithm assigns vector timestamps for WHB.
In WHB, a write event on a shared variable V happens
before all following read events on V before the next
write event on V. However, a write event on V is con-
current with other write events on V, if there are no hap-
pened-before relations between these events due to mes-
sages or accesses to other shared variables. Therefore,
T_Curr(V) is not needed for V. Algorithm WHB_VTS is
the same as algorithm SHB_VTS except that rules 6 and
7 are changed as follows:

6. If e is a write on shared variable V, P; performs the
following operations after event e:
6.1. T_LastWrite(V) = C;;

7. If eis aread on shared variable V, P; performs the
following operations after event e:
7.1, Ci=max(C;, T_LastWrite(V)) ;
72, T(e)=C;;



Fig. 1 shows vector timestamps, according to algorithms
SHB_VTS and WHB_VTS, for events in an execution
involving asynchronous and synchronous message-
passing and accesses to shared variable V. In fig. 2, an
arrow with one black head denotes an asynchronous
message-passing, a horizontal arrow with one white
head on each side denotes a synchronous message-
passing, and a horizontal arrow with one white head de-
notes a read or write operation on a shared variable.
Each event in fig.2 has two vector timestamps based on
SHB and WHB respectively, with the SHB-based time-
stamp in boldface. Values of T7_LastWrite(V) and
T_Curr(V) for each read or write event on V are also
shown in fig. 2.

For a concurrent program P with n processes and s
shared variables, the size of a vector timestamp for an
event in P is n. Algorithm SHB_VTS requires the use of
a vector clock for each process and two vector time-
stamps for each shared variable. Assume that the time-
stamps for events of an execution are logged into a file,
not save in memory. For an execution of P, the space
complexity of algorithm SHB_VTS is n(n+2s). In
contrast, the space complexity of algorithm WHB_VTS
is n (n + 5). Algorithms SHB_VTS and WHB_VTS as-
sign timestamps on-the-fly, and they can be modified to
assign timestamps in post-mortem fashion (i.e. after the
collection of events).

4.2 Use of SHB and WHB timestamps
for event ordering

Below we summarize the results of using vector
timestamps to determine the classical happened-before
relation between two events of an execution involving
asynchronous and synchronous message-passing [3, 6].
We claim that the same results hold for using vector
timestamps to determine the SHB or WHB relation be-
tween two events of an execution involving asynchro-
nous and synchronous message-passing and accesses to
shared variables. The proofs for our claim are omitted in
this paper.

Definition 4.1 For vector timestamps u« and v of dimen-
sion n,

o u<viffulkl<vlk]forke[l,...,n]

o u<viffu<vandu#v

o yliviff—(u<v)and —(v < u)

Observation 4.1 For events e and f of the same execu-
tion, T(e)=T(f) iff e =f or e and f are involved in the
same synchronous message-passing.

Theorem 4.1 Assume that ¢ and f are events of the same
execution.

271

a) e fiff T{e) < T(f)

e li fiff T(e) 1 T(f)

If e and f are events of processes P; and P; respec-
tively,

e — fiff T(e)l1] < T(Hi] and T{e)[j] < T(HIj]

If e and f are events of processes P; and P; respec-
tively such that i # j and e and f are not involved in
the same synchronous message-passing,

e — fiff T(e)[i] < Tl

b)

€)

Applications of SHB and WHB
timestamps

Vector timestamps based on the classical happened-
before relation have been used in many techniques for
analysis, testing and debugging of message-passing pro-
grams. Examples of such techniques are message-race
detection [8], data-race detection [2], detection of global
predicates [4], execution replay [8], deterministic testing
[11], and reachability testing [13]. (See [1, 9] for more
references). SHB and WHB vector timestamps can be
used in similar techniques for analysis, testing and de-
bugging of programs using either shared variables only
or both messages and shared variables. However, for an
analysis, testing or debugging technique, we may choose
the use of SHB or WHB vector timestamps according to
whether causality or reproducibility is needed. (This
problem does not exist for message-passing programs
since the classical happened-before relation supports
both causality and reproducibility). For example, a de-
bugging technique may use SHB timestamps to perform
execution replay, and it may use WHB timestamps to
determine the set of events that causally affect the value
of a shared variable.

In section 5.1, we briefly describe an analysis tech-
nique, called race analysis, for message-passing pro-
grams. In section 5.2, we show how to extend this tech-
nique to programs using messages and shared variables
by using WHB timestamps.

5.1 Race analysis for message-passing
programs

Let P be a message-passing program containing
processes P;, P, ..., P,, n> 1. A (partially-ordered)
trace of P contains one totally-ordered sequence of
events for each process in P. Let Q be the trace of an
execution of P with input X. Q = (Q;, Q,, ..., Qu),
where Q;, 1 £/ < n, is a sequence of send events with P;
as the sender and receive events with P; as the receiver.
The race set for a receive event r¢ in Q is the set of mes-
sages in Q that could be received at rc during an execu-
tion of P that repeats all events causally affecting rc in



Q. The race sets for receive events in Q are useful for
testing and debugging P. Below are some examples:

e  An execution of P with input X is deterministic (i.e.
no message race) if and only if the race set for each
receive event in Q is empty.

e For areceive event in Q, determine whether its race
set contains unintended messages.

¢ The race sets for receive events in Q can be used to
construct prefixes of other possible traces of P with
input X. Such prefixes can be used for testing P [11,
13].

Race analysis of a trace of send and receive events refers
to analysis of the trace in order to determine the race set
for each receive event in the trace. A race analysis algo-
rithm was given for a trace of send and receive events
involving asynchronous message-passing [12]. Two ad-
ditional race analysis algorithms were also given for
traces based on two special types of asynchronous mes-
sage-passing [12]. These algorithms use vector time-
stamps based on the classical happened-before relation.

5.2 Race analysis for programs using messages
and shared variables

Let P be a program using messages and shared vari-
ables. Assume that P contains processes P;, P,, ..., P,,
n> 1. Let Q be the trace of an execution of P with input
X Q=0Q,Q, ..., Qy), where Q;, 1 <i<n, is a se-
quence of send events with P; as the sender, receive
events with P; as the receiver, and read and write events
as P; as the executing process. The race set of a read
event rd in Q is the set of write events such that their
values could be read by rd during an execution of P that
repeats all events causally affecting rd in Q. The race set
for a receive event in Q is the same as that given in sec-
tion 5.1. An execution of P with input X is deterministic
(i.e. no message or data race) if and only if the race set
for each read or receive event in Q is empty.

For a read event rd on shared variable V in Q, let
race(Q,rdy denote the race set for rd and let w be the
corresponding write event in Q, ie. v(V,rd)=v(V,w).
During an execution of P that repeats all events causally
affecting rd in Q, consider a write event w’ on V in Q,
where w’ # w, for the following two cases:

(a) w’1is concurrent with rd in Q according to WHB. In
this case, the value of w’ could be read by rd during
this execution.

(b) w is not concurrent with rd in Q according to WHB.
In this case, the value of w’ can never be read by rd
during this execution.

Thus we have the following theorem.

272

Theorem 5.1 Let Q be the trace of an execution of a
program using messages and shared variables. For a
read event rd in Q on shared variable V,

race(Q,rd) = {write events w on V in Q such that w Il rd
according to WHB}.

According to Theorem 5.1, we need to use WHB time-
stamps to construct the race set for a read or receive
event. Below we show an algorithm for determining the
race sets for read events in a trace of a program using
messages and shared variables. This algorithm can be
combined with the algorithms in [12] to determine the
race sets for all read and receive events in a trace.

For an even ¢ in Q, let T{e) denote the WHB vector
timestamp for e. Let Q[1,j] refer to the j® event of Q;. In
the following algorithm, for a read event Q[i,j], we
search for write events in Q,, where | <k <n, and k# i,
that write on V and are concurrent with Q[i,j]. For such
a write event Q[k,s],
=(Qrk,s] = Q[1,j1) and —~(Q[1,j] = Q[k,s]).

According to Theorem 4.1 ¢},

T(Q[k.sDIKI>T(QI1,jDIk] and T(Q[LjDII>T(QLk,sDIi]).
Therefore, for events in Qy, we check event Q[k,s] with
s = TQ[i,yDIk]+1, TQ[i,jDik]+2, ..., until  either
T(Qlk,sDI1] = T(Q[i,jDIi] or the end of Qy is reached. If
a checked event is a write on V, then this write event is
added to the race set for Q[i,j].

Algorithm Race_Read

<for each read event r in Q> {race(Q,r)=<empty set>;}

for (i=1; i<= n; i++) {
for (j=1; j<=length{Qi); j++) {
if ( <Q(1,3] is a read event on V> ) ¢{
for (k=1; k<=n; k+=(k!=i-1}71:2 )} {

s:=T(Qli,31) [k]1+1;
while (T(QIi,31) [i]1>T(Qlk,s]) [i]
&& s<length(Qk)) {
if { <Qlk,s] is a write on V> ) then {
<add Qlik.s] to race(Q.Qli.3l)>;
;++:
}Yor oyl

Let Ne and Ne(i) be the numbers of events in Q and
Q,, respectively. Similarly, let Nr and Nr(i) be the num-
bers of read events in Q and Q;, respectively. The time
complexity of this algorithm is
0(2 [Ne(i) +NHi)Y, Ne(k)]j

i=1 kAl
According to algorithm Race_Read, the race sets for
some read events in fig.3 are given below:
race(Q,c) = {d}, race(Q,e) = {}, race(Q,f) = {h}.

One idea for reducing the time complexity of algo-
rithm Race_Read is to keep all write events on the same
shared variable as a list in the order of accesses to the
shared variable. Let such a list for shared variable V be



referred to WList(V). Such lists can be constructed by
modifying rule 6 in algorithm WHB_VTS as follows.

6. If e is a write on shared variable V, P; performs the
following operations after event e:
6.1. T_LastWrite(V)=C;;
6.2. add (i,Ci[1]) to the end of WList(V) ;

Below we present a revised version of algorithm
Race_Read, called Race_Read_WList, by using the lists
of write events for shared variables.

Algorithm Race_Read WList

<for each read event r in Q> {race(Q,r)=<empty set>;}
for (i=1; i<= n; i++) {
for (j=1; j<=length(Qi); j++) {
if ( <Q[i,Jj] is a read event on V> ) {
for (k=1; k<=length(WList(V)) {
<let the kth element in WList (V) be (u,v)>
if(u =1 && T(Qu,v])(ul > T(Q[i,j])[ul
&& T(Q[i,31)[i} > T(QIu,v])I[i]l )
<add [u,v] to race(Q,Qfi,jl).
Y ry oy

The time complexity of algorithm Race_Read_WList is
O(Ne-max(length(WList(V)) for each shared variable V))

6. Conclusions

In this paper we have extended the classical hap-
pened-before to define two happened-before relations,
called strong happened-before (SHB) and weak hap-
pened-before (WHB), for programs using messages and
shared variables. SHB and WHB differ in that the for-
mer supports reproducibility, but not causality, and the
latter supports causality, but not reproducibility. We
have presented timestamp assignment algorithms for
SHB and WHB, and shown the use of SHB and WHB
timestamps to determine event ordering. In addition, we
have described how to apply WHB timestamps to per-
form race analysis for programs using messages and
shared variables. We are investigating other applications
of SHB and WHB timestamps to solve problems in
analysis, testing and debugging of programs using mes-
sages and shared variables.

Acknowledgments

The authors are grateful to the anonymous reviewers for
their helpful comments on the previous version of this

paper.

273

References

[1] K. Audenaert, “Clock Trees: Logical Clocks for Pro-

grams with Nested Parallelism,” IEEE Trans. On Soft-

ware Eng., Vol. 23, No. 10, Oct. 1997

A. Dinning and E. Schonberg, “An Empirical Compari-

son of Monitoring Algorithms for Access Anomaly De-

tection,” ACM Symp. on Principles and Practice of Par-

allel Programming, March 1990, pp. 1-10

C. J. Fidge, “Logical Time in Distributed Computing

Systems,” IEEE Computer, Aug. 1991, pp. 28-33

V. K. Garg and B. Waldecker, “Detection of Strong Un-

stable Predicates in Distributed Programs,” IEEE Trans.

On Parallel and Distributed Systems, Vol. 7, No. 12,

Dec. 1996, pp. 1323-1333

L. Lamport, “Time, Clocks, and the Ordering of Events

in a Distributed System,” Comm. ACM, July 1978, pp.

558-565

F. Mattern, “Virtual Time and Global States of Distrib-

uted Systems,” Parallel and Distributed Algorithms (M.

Cosnard et al. Eds.), Elsevier Science, North Holland,

1989, pp. 215-226

R. H. B. Netzer, “Optimal Tracing and Replay for De-

bugging Shared-Memory Parallel Programs,” 3rd

ACM/ONR Workshop on Parallel and Distributed De-

bugging, May 1993

R. H. B. Netzer and B. P. Miller, “Optimal Tracing and

Replay for Debugging Message-Passing Parallel Pro-

grams,” The Journal of Supercomputing, Vol. 8, No. 4,

1994, pp. 371-388

R. Schwarz and F. Mattern, “Detecting Causal Relation-

ships in Distributed Computations: in Search of the Holy

Grail,” Distributed Computing (1994) 7, pp. 149-174 52

[10] M. Singhal-and A. Kshemkalyani, “An efficient imple-
mentation of vector clocks,” Information Processing
Letters, Vol. 43, 1992, pp. 47-52

[11] K. C. Tai and R. H. Carver, “Testing of Distributed Pro-
grams,” chapter 33 of Handbook of Parallel and Distrib-
uted Computing, ed. A. Zomaya, McGrow-Hill, 1996, pp.
955-978

[12] K. C. Tai, “Race Analysis of Traces of Asynchronous
Message-Passing Programs,” Proc. of IEEE 17th Intern.
Conf. on Distributed Computing System, May 1997, pp.
261-268

[13] K. C. Tai, “Reachability Testing of Asynchronous Mes-
sage-Passing Programs,” Proc. IEEE Int. Workshop on
Software Engineering for Parallel and Distributed Sys-
tems, May 1997, pp. 50-61

[14] A.S. Tanenbaum, Distributed Operating Systems, Pren-
tice-Hall, 1995

2]

3]
(4]

{5]

(6]

|

(8]

(91



