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Abstract

Fidge introduced a logical clock mechanism for maintaining the partial ordering of events in
distributed systems. However, the mechanism handles events in a rather ad hoc way and its
comparison rule is not quite simple. In this paper, two major improvements on the mechanism are
presented. Firstly, general maintenance rules are developed to handle various kinds of interprocess
events. Secondly, the comparison rule is simplified by maintaining the clocks with a new technique
called two-phase update. These improvements make the logical clock mechanism more general and
efficient for supporting distributed system development.

1 Introduction

Event ordering is a very important tool for researchers to study, analysis and control the behaviour of
a distributed program. In the paper {Lam78], Lamport defined the “happened-before” relation (—)
to determine the order of distributed events and introduced a logical clock mechanism to timestamp
events according to the happened-before relation. However, his logical clock mechanism can be used
to construct only an interleaved total ordering on the events. This basically gives a simple view of
distributed computations and does not provide precise information of the happened-before relation
between events.

Therefore, in the last decade, many people attempted to improve and extend Lamport clocks to
solve problems in distributed system development. A common feature of these extensions is the use
of time vectors, instead of an integer value, to represent logical time. For example, Gorden developed
a time vector mechanism to keep trace of message passing events, and used the vector to detect
misordered messages [Gor85, Section 2.2]. Choi et al. proposed an algorithm with two time vectors
to determine the precedence ordering of events for analyzing concurrent events [CMN88, Section
6]. However, most of the proposed mechanisms are rather ad hoc and complicated. In 1989, Fidge
introduced a more general logical clock mechanism to maintain the precise partial ordering of events
[Fid88). He further improved the mechanism to support distributed programs with dynamic process
creation and termination and to unify the two comparison rules for asynchronous and synchronous
communications into one [Fid91]. A brief review of logical clocks for distributed systems is given in
[Ray92].

In this paper, two major improvements on Fidge clocks are presented. The first improvement is
to generalize interprocess events into two generic classes in order to avoid specifying individual clock
maintenance rules for each kind of events. This not only reduces the number of maintenance rules

0-7803-0849-2/92 $3.00 © 1992 IEEE
136



significantly, but also facilitates the support of a wide range of communication paradigms. The second
improvement is to simplify the comparison rule of determining the happened-before relation. To
achieve this, a new technique called two-phase update is used to timestamp events. This improvement
is particularly helpful in manipulating a large amount of event timestamps, such as tracing events,
computing program concurrency, studying and debugging concurrent behaviour. In Section 2, we
highlight the two improvements on the Fidge logical clock mechanism. In Section 3, the detailed
maintenance and comparison rules of the improved logical clocks are described. Finally, we conclude
the discussion in Section 4.

2 The Two Improvements

Event Generalization. The development of the Fidge clock mechanism is based on the CSP
model, and the interprocess events handled by it are restricted to only asynchronous and synchronous
message passing and nested process creation and termination. However, for a truely general logical
clock system, it should easily be incorporated or extended to different kinds of interprocess events and
various interprocess communication paradigms.

The first improvement is to generalize all interprocess events into two major classes: asynchronous
and synchronous interprocess events. This generalization is based on the following arguments:

¢ From many surveys of communication paradigms, asynchronous and asynchronous message pass-
ing primitives are the most common and basic ones. Other communication paradigms can be
built on top of either one of them or both.

o Shared memory accesses with explicit synchronization tools (e.g., semaphores) can be treated
as synchronous events among processes and shared memory objects, as demonstrated in the
development of Instant Replay {LMC87].

Process events such as process creation and merged termination can be viewed as some kinds
of “virtual” interprocess events, since they implicitly introduce causal relationship between the
parent process and child process. In the case of process creation, the operation is as if a virtual
asynchronous control message were sent from the creator to the created process to instruct the
latter to execute. In most systems, a process termination event is a local event. However, for
systems with process fork creation and merged termination operations (e.g., CSP processes), the
creator has to synchronize with the termination of its created processes. Hence, such a process
termination event is basically an interprocess event.

The support of multiple levels of communication abstraction is also an important reason to do
event generalization. For examples, remote procedure call (RPC) can be modeled as a pair of
asynchronous message interactions: one for procedure call and one for return status. Moreover,
from the user’s viewpoint, a remote message passing interaction just involves two events: send
and receive. However, from the OS designer’s viewpoint, the interaction actually involves several
asynchronous packet exchanges between two remote kernels. Indeed, all high-level communica-
tion paradigms are built on basic network asynchronous or synchronous communications. The
maintenance rules in the improved clock mechanism are general enough to facilitate its setup to
support various levels of communication abstraction.

In summary, in the improved mechanism, all interprocess events are generalized into two classes:
asynchronous event sets and synchronous event sets. For a pair of asynchronous events e and frifeis
a trigger event (e.g., send event) and f is a response event (e.g., receive event), then e — f. For a pair



of synchronous events e and f, if there is an event g such that e — g, then f — g. Also, if there is an
event h such that A — e, then 2 — f. Note that each event set may involve more than two interprocess
events. This allows the clock mechanism to support broadcast and multicast communications.

Comparison Rule Simplification. In his first paper [Fid88], Fidge presented two individual
comparison rules for synchronous and asynchronous message passing events. In the most recent paper
[Fid91], he unifies the two comparison rules into one. The unified rule requires to compare two pairs
of time values to determine the happened-before relation. In more detail, assume that a partially-
ordered clock reading for an event of a process p; is represented by a set of pairs {(4,n),...,({,n)}.
Here, the first element of each pair represents a process identifier j and the second element represents
a numerical clock value of p; as perceived by p;. If a process identifier is not in the set, its default clock
value is zero. Then, given two timestamps t.; and t;; for event ¢; and f;, Fidge gives the following
comparison rule:

e; — fj Aod (tﬂi(i) < t],(i)) A (tei(j) < tf;(j))

The second improvement is to simplify the comparison rule so that the checking involves only one
pair of time values. More precisely, the improved comparison rule is:

ei — fi & te,(4) < ty,(4)

To achieve this, the maintenance rules are slightly modified. A new technique called two-phase update
is used to maintain the logical clocks for interprocess events. The basic idea is to divide the clock
update operation into two phases. In the first phase, the clock is updated to timestamp the current
interprocess event. After the timestamp operation, the clock is adjusted in the second phase to prepare
for the next event. The extra overhead is just one addition operation for each involved process in
the event set. In return, we eliminate one logical-and and one timestamp comparison operation.
The resulting comparison rule is simpler for users to interpret and use, and it speeds up timestamp
comparison operations.

3 The Maintenance Rules of The Improved Mechanism

To maintain a partially-ordered logical clocks in a distributed program, each process instance p; must
maintain a set variable ¢; to keep the current partially-ordered time as perceived by itself. When
the process begins execution, ¢; is initialized to the empty set. The value of ¢; is then updated in a
monotonically increasing manner. The updates are governed by the following maintenance rules:

Rule A: Local event ticking. Whenever a process instance p; performs an event, it increments ¢;(¢)
at least once. This ticking is performed before other rules are applied.

Rule B: Synchronous event set. During the occurrence of a synchronous event set, all process in-
volved pj,...,pr exchange their current clock values, and then maximize their local clocks using
the clock values from every other participating process instance; that is, Vz : {j...l}, ¢z :=
max(c;,...,¢). Timestamp is made at this point, if any. After this, each of the process in-
stance p, increments the local clock values of all involved process instances except itself; that is,
Vy:{j...l,y # 2} cz(y) := cz(y) + 1. (The two-phase update technique is applied.)

Rule C: Asynchronous event set. Whenever a process instance p; triggers an asynchronous interpro-
cess event, it takes the current clock value as the timestamp of the event. Then, it puts the value
of ¢; into a message as t;, increments t,(¢) by one, and delivers the message to the corresponding
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response process(es). (The idea of two-phase update is applied. However, the second update is
for the time value delivered in the message rather than the local clock value.)

Upon receiving the time value ¢; from process instance p;, the response process instance p;
maximizes its counter values using t;; that is, ¢; := max(t;, ¢;).

Comparison Rule. Given two timestamps ., and t;;, we can determine the happened-before
relation using the following rule:
ei = fi & te,(3) <ty ()

By case analysis, we can formally prove that the comparison rule is correct. Informally, one can
observe that at every point of interprocess interactions and only at these points, we maximize the
involving timestamps and increment the appropriate clock elements to maintain the “<” relation.
Moreover, any scenario in which we assume the timestamp comparison condition holds without any
causal relationship will lead to a contradiction.

An example. The example presented in [Fid91] is used to illustrate the improved clock mecha-
nism so that the readers can perceive more easily the differences between the original and the improved
mechanisms. In Figure 1, dots represent the events and circles represent the point where the current
clock value is given next to it. We treat process creation and process merged termination as asyn-
chronous event sets. Events G and C are asynchronous send and receive events respectively. Events
F and I are synchronous message passing event pair.
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Figure 1: An Example of Timestamping Events with the Improved Logical Clock Mechanism

With the comparison rule, we have

139



e =(C — C)since (2 £ 2)

e B — D since (1 < 3)

e (D — B)since (3£ 1)

e H — G since (1 < 3)

~(C — H) since (2 £ 0)

D and J are potentially concurrent because ~(D — J) and ~(J — D) (since (3 £ 0)A (2 £ 2)).

4 Conclusion

In the past, people have typically studied distributed computations with an interleaved total order-
ing on the events performed. With the introduction of Fidge logical clocks, people have a basic
tool to study distributed computations with the precise partial ordering of its events. In this paper,
an improved version of this basic tool is presented. The improved mechanism provides generic and
less number of maintenance rules to support various kinds of interprocess events and to simplify the
comparison rule. These improvements facilitate the use of the clock mechanism in different commu-
nication paradigms and allows efficient timestamp comparisons. The improved mechanism has been
implemented in a visualization tool to study interprocess events of concurrent programs [FL92]. The
implementation is found to be effective and efficient.
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