It's difficult to determine
event order in
distributed systems
because of the
observahility problem.
The author discusses
this problem and
evaluates different
strategies for
determining

arrival order.

COLIN FIDGE

. esting and debugging a distributed system presents
University of Queensland

the programmer with profound challenges: merely
observing what is happening in a network of
processes is difficult. This observability problem
makes it hard to accurately determine event order
during a given computation.

An obvious approach to determining event order is to rely on the
arrival order of notification messages, Wthh tell the programmer that
an event has occurred. If a notification of event e arrived before a
notification of event f; you might assume e executed first. However,
there are a number of influences on observability that make arrival
order insufficient for judging the actual order in which events occur.
These include unpredictable processor preemptions, variable message
transmission delays, and different communication times depending on
the observer’s location.
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Figure 2. Multiple observers can see dif-
Serent event orderings.

For these reasons, programmers some-
times rely upon time stamping: a num- |
ber is assigned to each event and |
included within the notification mes-
sage. The observer can then use these
values to determine the true order in
which events occurred.

I have analyzed four time-stamping
methods to determine their effectiveness
in contending with observability prob-
lems. Although my work focuses on dis-
tributed systems, the concepts also apply
to any system exhibiting concurrency—
the appearance of two or more events
occurring simultaneously—including
multiprocessor machines and uniproces-
sor multitasking. Events in this context |
may be the execution of single machine -
instructions or entire procedures; the ‘
level of granularity is unimportant. To I‘
define event order, I use the idea of |
causality—the ability of one event to
affect another—because it allows us to |
reason independent of any particular
time frame. !

I also assume that asynchronous mes-
sage-passing is the only medium for
interprocess communication in the sys- ‘
tem under test; senders do not block |
and messages are buffered until a ‘

ordering can be caused by delayed noti-
Sfications.

out queuing is not necessarily assumed).
However, the concepts T discuss extend
directly to synchronous message-pass-
ing, shared memory, remote procedure
calls or rendezvous, and so on.

OBSERVABILITY PROBLEMS

An observer is any entity—a person or
a network process—that attempts to

Figure 3. Incorrect perception of event '

- reception of the message sent by P.

As Figure 1b shows, this same com-
putation can be redrawn so that the
same events occur in the same relative
local orders. Only the omnipotent
viewpoint provided by such diagrams
can tell us that independent events &
and ¢ are interleaved differently;
processes P and Q cannot “see” any dif-
ference.! Clearly, correctly ordering
such events is problematic. When you
rely solely on the arrival order of notifi-
cation messages to determine event
orderings in a distributed system, four
types of discrepancies can arise.

Multiple observers, different orderings.
Observers of a particular computation
may perceive different event orderings.

. Observers O and R in Figure 2 are noti-
receiver requests one (but first in, first '

examine a computation. Observers may |

watch the system while the computation
is in progress or examine a postmortem
event log or trace. In either case, the
observer must be informed when inter-
esting events occur; typically, system
probes either send notification messages
to the observer or write entries into the
log when an event occurs.

Imagine, for example, that you are
one of the observers of the distributed
system in Figure la. The compuration
is simple: The system consists of two
parallel processes P and Q. Process P
performs two events: event # denotes
message transmission; P then performs
b, an action local to itself. Process Q also
performs two events, ¢ and 4, ¢ being the

fied that events 4 and ¢ have occurred
(notification messages are shown as
dashed arrows). Due to the transmission
delays associated with the messages,
observer O believes that event
occurred before event ¢, whereas
observer R believes ¢ occurred before
event 4. Both interpretations are valid,
but they cannot be easily reconciled.
(There is an obvious parallel with space-
time physics: the observer’s location
determines its view of the universe.)

Incorrect perceived orderings. More
problematic is when the event ordering
you perceive is simply incorrect, as

. Figure 3 shows. This error can be

caused by notifications that are delayed

. due to retries or routing to the observer

through indirect pathways.

Same computation, different orderings.
When testing or debugging a system,
programmers typically replay the same
computation several times so they can
study different aspects of its behavior.
Unfortunately, they may see different
event orderings with each replay!

Figure 4 shows two different
instances of the same computation. In
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Figure 4. The same computation can exhibit different event ovderings.

both cases, processes P and Q perform
exactly the same events in the same rel-
ative orders (z then & and ¢ then d). In
the first instance, observer O sees event
¢ occur before event 4, but in the sec-
ond instance (involving the same pro-
gram, supplied with the same data, and
following the same control paths) the
observer sees b occur before event c.
This nondeterministic behavior during
debugging may be due to minor differ-
ences in the processor and link loads
caused by other system activity and can
occur even with a deterministic compu-
tation! This can be a major source of
frustration; even though you’re using a
replay mechanism, ordering errors you
observed previously can simply vanish.

Arbitrary orderings. When you rely on
notification arrival time to determine
event orderings you may assume arbi-
trary orderings between unrelated
events. In Figure 5, observer O first
sees that event # occurred before event
¢. This is a valid observation: 4 must
occur before ¢ in this computation.
Observer O then sees event ¢ occur
before event 4. This perceived order-
ing is merely an artifact of the notifi-
cation mechanism. If you compare
Figures la and b, for example, you can
see that events » and ¢ are independent
and can occur in either order (in a
global sense of time). This is a serious
problem because such arbitrary order-
ings are indistinguishable from genuine
“enforced” orderings and thus inhibit
your ability to know if the same event

orderings will be maintained in future

tests. During debugging, a program-
mer observing ¢ preceding # may mis-
takenly conclude that this program has
sufficient interaction between process-
es P and Q to always maintain this
relationship.
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Figure 5. Relying upon notification
arvival time can lead you to assume arbi-
trary event ovderings.

TABLE 1

EFFECTIVENESS OF TIME-STAMPING MECHANISMS

Ordering Mechanisms

Real-time
time stamps

‘Logical

arrival
ordering

Effects

clocks

time stamps
t’otally“' " partially
ordered

local global

clock

Multiple observers see
different orderings

Incorrectly perceived

v

orderings

‘Same coinf)ﬁﬁation
exhibits different
‘orderings
Arbitrary orderings
-adopted

EFFECTIVENESS OF
TIME STAMPING

Table 1 summarizes my analysis of
four different time-stamping mecha-
nisms; a check indicates that the mech-
anism successfully overcomes a particu-
lar observability problem.

Local real-time clocks. One obvious
source for time stamps is to use what-
ever real-time clock is available in each
processor’s hardware. All notification
messages then have the same time value
associated with each distinct event. This
means that all observers see the same
time orderings, thus avoiding the first
effect. Unfortunately the others persist.

Figure 6 shows two possible ways to
time-stamp the events in the sample
computation. Because the clocks on dif-
ferent processors are not synchronized,
they will inevitably drift. Incorrect
orderings result: on the left, the clock
on P’s processor is ahead of that of Q so

7
v

event ¢ erroneously appears to occur
before event a. Also, each instance of
the same computation can receive dif-
ferent time stamps, as the scenarios in
Figure 6 show. Finally, the ordering
between independent events, such as b
and d, is randomly influenced by
processor loads and the inability of the
clocks to remain synchronized.

Global real-time docks. Let’s assume that
the clocks are synchronized throughout
the distributed system to a high degree of
accuracy, in effect providing a global ref-
erence for real time. This avoids incorrect
orderings, and time readings become
meaningful across processor boundaries
and hence always reflect the actual order
of event occurrence.

Nevertheless, as Figure 7 shows, the
same computation can still yield differ-
ent orderings if system loads vary
between tests, and independent events
are still arbitrarily ordered.

It is perhaps surprising that such a
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Figure 7. Real-time time stamps use a global clock to provide synchronization. Still,

different orders can result.

Figure 8. Logical time stamps using a
totally ovdered logical clock.

powerful facility as global real time,
which is expensive to achieve, still fails
to satisfy our needs. To answer the
question of whether one event must
precede another in a particular compu-
tation would require an unbounded
number of tests!

Totally ordered logical clocks. The out-
standing problems described so far are
tied to using absolute time to order
events. These values are randomly
influenced by factors such as processor
loads and the start time of each
process. Logical clocks have a more
objective ordering mechanism and
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Figure 6. Two ways to time-stamp events using unsynchronized local clocks.
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Figure 9. Logical time stamps using a
partially ordered logical clock.

thus provide a possible solution. (As
the box on page 81 describes, certain
closed-world conditions must be met
for their use).

A simple system of logical clocks can
be used to totally order distributed-
system events using the following rules!:

¢ Each process maintains an integer
counter.

¢ When a process performs an
event of interest, the counter value
Increases.

¢ When a process sends a message,
the current counter value is “piggy-
backed” on the message.

¢ When a process receives a mes-

sage, it sets its own counter to be

greater than its current value and that

of the piggybacked value received.
Figure 8 shows the totally ordered

- time stamps associated with each event,

assuming that the counters start from

| zero and are incremented by one at

each event occurrence. The values for
events 2 and & are obvious. The receive
event ¢, however, is given time stamp 2,
rather than 1, because it must have a
higher value than the corresponding

| send event. The time stamps thus gen-
! erated are not unique, as events 4 and ¢
- show. The total ordering is completed

by adopting an arbitrary but consistent
ordering among processes when two
events have the same time stamp.!

This mechanism has the same
advantages as global real-time clocks
and also precludes the possibility of the
same computation producing different
orderings. The time stamps are consis-
tently associated with each event
regardless of the number of replays or
differences in absolute timing (assum-
ing the algorithm for increasing time
stamps is deterministic). This consis-
tency is an important advantage during
testing and debugging because it allows
you to avoid repeating a computation
to see if different orderings are observ-
able (a nondeterministic program may
still generate several different comzputa-
tions, however).

The advantages of totally ordered
logical clocks, along with their ease of
implementation, have led to their use
in many distributed debugging sys-
tems. However, one issue remains:
arbitrary ordering is still imposed on
independent events. An observer rely-
ing on the time stamps in Figure 8 will
mistakenly conclude that & always
occurs before d, even though no inter-

| action between processes P and Q

guarantees this. This misleading view
will thwart any attempts to identify
problems stemming from inadequate
synchronization between events.



Partially ordered logical clocks. The
ordering of events defined by totally
ordered clocks is an incomplete view of
event causality. However, with a
straightforward extension, causal order-
ings can be preserved. Pardally ordered
logical clocks have been identified by
several researchers as a way to record
the whole causality relationship.2* The
clocks do this by treating each time
stamp not as a single number, but as an
array, or vector, of numbers.

Pardially ordered logical clocks can
be maintained as follows2 4,

¢ Each process maintains an array of
counters, with one element in the array
for each distributed-system process.

¢ When a process performs an event

of interest, it increases the counter value !

associated with this process in its array.
¢ When a process sends a message,

the array of counters is piggybacked on .

the message.

¢ When a process receives a mes-
sage, it sets each element in its array to
equal either its old value or the value of
the corresponding element in the piggy-
backed array, whichever is larger.

Figure 9 shows how our example
would be time-stamped. Processes P
and Q both maintain an array of two
counters: the first counter value repre-
sents the number of events known to
have occurred in process P; the second,
the number of events known to have
occurred in process Q. (This example
has a fixed number of processes, but
the concept extends to dynamic
process creation.?)

The entire array forms the time
stamp. When comparing two such time
stamps, you can conclude that some
event e, occurring in process 7, preceded

some event f, occurring in process j, |
only if event f’s time stamp has a |
counter value for process /i greater than !

or equal to the counter for process 7 in
event ¢’s time stamp, and event ¢’s time
stamp has a counter value for process j
strictly less than that for process j in
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Figure 10. Inaccurate reporting can
vesult from synchronous notifications.

A CLOSED-WORLD ASSUMPTION

Figure 11. Intrusiveness due to synchro-
10US BOLIf1cations.

To accurately model event relationships in the logical tlmc~stamp1ng mecha~
nisms I discuss here, two conditions are essential.

¢ All system processes must participate in the time-stamping algorlthm

¢ All interactions between processes must be time stamped.’ o
If any process does not propagate time stamps correctly, or if the processes can -
interact through some covert channel that is not time stamped (such as a file sys-

tem), then the clock values may not accurately reflect causal relanonslnps
Conversely, a passive observer process must zo¢ participate in the time=stamp=:
ing algorithm if it is to be unintrusive. If the observer propagates time stamps it~
receives in notification messages, then the mere act of notfying the observer cre-
ates detectable causal relationships that would not exist in the observer’s absence.
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event f’s time stamp.

The second condition avoids reflex-
ivity! and allows for the case of syn-
chronous message passing, where cor-
responding send and receive events are
treated like a single action and receive
the same time stamp. A simpler test is
available if only asynchronous message
passing will be used.*

For example, in Figure 9 we can con-
clude that event 2 preceded event 4
because 4 knows of the occurrence of 1
event in process P, as does «, but #
knows of no events in process Q, where-

as d knows of 2. Similarly we know that¢ :

preceded d because d knows of more
events in process Q (2) than does ¢ (1).
These observations can also be
achieved using totally ordered clocks.
However, where the totally ordered
model assumed that & preceded d, the
partially ordered model does not. You
cannot show that b precedes d because &
knows of more events (2) in process P
than does d (1). Furthermore, you can-

not show that 4 precedes b either
because d knows of more events occur-
ring in process Q (2) than does & (0). An
observer can therefore use these time
stamps to determine that events 4 and 4
are unordered; they are independent
actions that (in global time) may occur
in either order, or even simultaneously.

Thus, the remaining observability
problem is resolved; partially ordered
clocks reflect only true causal orderings
and make the absence of ordering explicit.

SYNCHRONOUS NOTIFICATIONS

Many observability problems stem
from unpredictable delays between the
time that distributed-system events
occur and the time that an observer is
notified. It is therefore tempting to
assume that using synchronous com-
munication between the system and its
observers will avoid these effects.
Unfortunately, as Figure 10 shows, the




THE PROBE EFFECT

.+ The probe effect (sometimes referred to as the “Heisenberg
effect” by aspiring physicists) is often associated with, but dis-
tinct from, the observability problem. The probe effect occurs
when a-debugger adds auxiliary code that alters the behavior of
a concurrent program.! Whereas the observability problem
concerns the ability to study a particular computation, the
probe effect concerns the ability to perform a given computa-
tion in the first place. The probe effect may make existing
_errors vanish, by preventing certain erroneous computations
from occurring, or may cause new errors to appear, by allow-
ing computations not possible in the original program.

Avoidance hehavior. Many systems programmers take extreme
measures in an attempt to avoid the probe effect, typically by
trying to account for the time occupied by the auxiliary code.?
Unfortunately, software-based debuggmg utilities inevitably
introduce some degree of intrusiveness. (Customlzed hard-

Reproducibility. We must clearly distinguish the probe. effect
from the difficulty of achieving reproducibility while observing
concurrent software. Having seen the system perform:some
behavior of interest, programmers need reproducibility to
force this particular computation to occur again for closer
inspection. However, the problem of achieving reproducibility
exists for any program that makes nondeterministic choices,
regardless of the presence or absence of debugging probes, and
can be treated using methods quite distinct from those pro-
posed to overcome the probe effect.” These include recording
traces for later replay’ or giving the programmer explicit con-
trol over nondeterministic alternatives.

Practical debugging problems attributed to the probe
effect are, quite often, actually manifestations of the difficulty
of achieving reproducibility.

expensive and inflexible.)
"The probe effect manifests itself by

terministic choices;

shared memory, or

problems persist. Information is still
being sent from processes P and Q to
O, but the double-headed arrows
denote the bidirectional causality rela-
tion that results from synchronous
communication.

Inaccurate reporting. It is still possible
for the notification arrival time to
reflect event orderings incorrectly. In
Figure 10, process P is delayed after
performing event #, perhaps due to
contention for the processor, before it
can send the event notification to O.
Consequently, the notification for
event ¢ arrives before that of its causal
predecessor a. Also, arbitrary orderings
are still imposed, such as between & and
d. Similarly, multiple observers may see
different orderings and a single compu-
tation may yield different observations.

Intrusive observers. Synchronous noti-

ware can be used to unintrusively monitor a system,” but this is

-+ changing the probability of making particular nonde-

¢ altering real-time execution speeds,
¢ changing access patterns to inadequately protected

¢ making a program augmented with debugging probes
distinguishable from the unaugmented program.

A commonly suggested solution is to permanently install
debugging probes so that the program undergoing debuggingis 6. D. Haban, “DTM: A Method for Testing Distributed Systéins,” Proé: 62b
the same as the final “production” version,"*”7 albeit with a
penalty in terms of runtme overheads. (This approach has the
benefit of leaving debugging “hooks” in an operational system to
track infrequent errors thateluded testing and debugging, but
such access points can also be a security hazard!)
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fication messages cannot solve our |

observability problems. Even worse,
synchronous notification introduces a
form of probe effect, in which the mere
act of observing the system alters its
behavior—again there is a parallel with
quantum physics. (The box, “The Probe
Effect,” above provides more detail.)

The probe etfect manifests in two
ways. First, processes that wish to noti-
fy the observer are effectively blocked
until the observer deigns to communi-
cate with them. This can alter real-time
behavior and nondeterministic choices
in the system. Also, any bias on the
observer’s part about “preferred” sys-
tem processes to communicate with
will influence the observed processes’
ability to proceed.

Second, the bidirectional causality
relationship defined by synchronous
communication creates new causal
orderings that would not exist in the

1. P.S. Dodd and C.V. Ravishankar, “Monitoring and Debugging Distributed
Real-Time Programs,” Software—Practice & Experience, Oct: 1992,

. F. Baiardi, N. de Francesco, and G. Vaglini, “Development of a Debugger
for a Concurrent Language,” IEEE Trans. Software Eng., Apr. 1986;

. L.D. Wittie, “Debugging Distributed C Programs by Real- Tune Replay,”
ACM SIGPLAN Notices, Jan. 1989, pp. 57-67.

H. Tokuda, M. Kotera, and C. Mercer, “A-Real-Time Monitot: fot a
Distributed Real-Time Operating System,” ACM SIGPLAN-Notices,

. C.E. McDowell and D.P. Helmbold, “Debugging Concurtent Programs,”
ACM Computing Surveys, Dec. 1989, pp. 593-622.

Symp. Reliability in Distributed Software and-Database Systenrs, IEEE CS

Press, Los Alamitos, Calif., 1987, pp. 66-73.

A. Gordon, Ordering Errors in Distributed Programs, doctoral dissertation,

Univ. Wisconsin-Madison, Madison, Wisc., 1985.

. J. Joyce et al., “Monitoring Distributed Systems,” ACM Trans. Compmw
Systems, Feb. 1987, pp. 121-150.

observer’s absence. If you follow the
arrows from b to 4 in Figure 11, you
can see how this occurs. Each event in
the figure is followed by a notification
message. After receiving notification of
event & in process P, the observer inter-
acts with process Q to receive notifica-
tion of event ¢. This creates a causal
link between P and Q, via the observer
O, which means that event & potendally
causally affects event d!

Ithough in my study partially
ordered logical clocks proved to
be the only time-stamping method that
fully indicates ordering between
events, they are not the only mecha-
nism you should use because
¢ they are notoriously expensive to
implement,5 and
¢ the array size must be as great as
the number of parallel processes.®
Many schemes have been suggested for
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reducing their cost, but all either involve some loss of causali-
ty information or merely trade storage requirements for
communication and processing overheads.

Nevertheless, when you use other time-stamping mecha-
nisms, you should appreciate their limitations and understand
that they offer an incomplete view of event ordering.
Pardally ordered clocks can then be used to give the com-
plete picture when necessary. @
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