
SOFTWARE VERIFICATION RESEARCH CENTRE

SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 97-43

A limitation of vector timestamps for
reconstructing distributed

computations

C. J. Fidge

December 1997

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au



Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
�les are available via http://svrc.it.uq.edu.au



A limitation of vector timestamps for

reconstructing distributed computations

C. J. Fidge

Abstract

Vector timestamps provide a way of recording the causal relationships

between events in a distributed computation. We draw attention to a

limitation of such timestamps when used to reconstruct computations in

which message overtaking occurred.

1 Causality in distributed systems

In a landmark article, Lamport [5] de�ned the causal relationships among events
occurring in a message-passing distributed computation as the smallest relation
`!' such that

1. if e and f are events in the same process, and e occurs before f , then
e! f ,

2. if event e denotes transmission of a message m by a process, and event f
denotes reception of m by another process, then e! f , and

3. if e! f and f ! g, then e! g.

2 Vector time

A number of researchers, most notably Mattern [6] and Fidge [2], later inde-
pendently proposed vector clocks as a timestamping mechanism for distributed
computations that captures causality. In a computation involving n parallel
processes, each process p maintains a logical clock vector of length n. These
vectors are used to timestamp each event e and are also piggybacked onto each
outgoing message m. Let ~p, ~e, and ~m be the vectors associated with the respec-
tive process clock, event timestamp and piggybacked message vector. For some
vector ~v let ~v(i) denote its ith element.

Vector elements act as counters of the number of events known to have
occurred in each process. They are maintained using the following steps.

1. For each process p, all elements of ~p are initially 0.

2. When process p performs some internal event e, it

1



p q

g h0; 1i

h h1; 2i
f h2; 0i

e h1; 0i

Figure 1: Simple example of vector timestamping.

(a) increments process clock element ~p(p), and

(b) sets event timestamp ~e equal to ~p.

3. When process p performs a send event e, that produces a message m, it

(a) increments process clock element ~p(p),

(b) sets event timestamp ~e equal to ~p, and

(c) sets the piggybacked timestamp ~m attached to the outgoing message
equal to ~p.

4. When process p performs a receive event e, that accepts a message m with
piggybacked timestamp ~m, it

(a) increments process clock element ~p(p),

(b) sets each process clock element ~p(i) equal to max(~p(i); ~m(i)), where
i ranges from 1 to n, and

(c) sets event timestamp ~e equal to ~p.

The vector timestamps associated with two distinct events e and f , from
(not necessarily distinct) processes p and q, respectively, can then be used to
determine if e and f are causally related, merely by comparing two elements,
thanks to the following property [6].

e! f () ~e(p) � ~f (p)

For example, Figure 1 shows the timestamps associated with four events in a
simple computation involving two processes which exchange one message. These
timestamps tell us that g ! h because 1 � 2, and e ! h because 1 � 1. We
can also determine when events are not causally related, for instance, f 6! e

because 2 6� 1, f 6! g because 2 6� 0, and g 6! f because 1 6� 0. (Events f and g

are thus `concurrent' or `independent.')

2



p q

f h2; 0i

e h1; 0i

p q

h h2; 2i

g h2; 1i

f h2; 0i

e h1; 0i

h h2; 2i

g h2; 1i

Figure 2: Two distinct computations with identical timestamps.

3 Applications

Vector clocks o�er signi�cant advantages over other timestamping mechanisms,
most notably independence from absolute timing, and the ability to recognise
the absence of causality [4]. They have therefore been used in a number of
applications including detection of global states, enforcement of causal ordering,
and concurrent software metrics [3].

For debugging distributed programs, vector timestamps o�er a way of recon-
structing a computation after it has occurred. The timestamps can be logged
at run time, and the computation then reconstructed later for leisurely post-
mortem analysis. For instance, the four timestamps shown in Figure 1, h1; 0i,
h2; 0i, h0; 1i and h1; 2i, are su�cient for a simple tool to reconstruct and dis-
play this computation. Indeed, Figure 1 is the only computation that can be
drawn consistent with these timestamps. (We assume the vertical displacement
between events is irrelevant [5].) In particular, note that timestamp h1; 2i, as-
sociated with event h, tells us that a message was sent to process q by process
p, because the �rst vector element indicates knowledge of the occurrence of one
event in process p.

4 A limitation

It is tempting, therefore, to conclude that a set of vector timestamps, one per
event, fully characterise a distributed computation. However, we observe that
in systems that allow message `overtaking' this is not necessarily so. Figure 2
shows two distinct computations that have identical event timestamps. On the
left events e and h are internal to processes p and q. However, in the computation
on the right event e is a send, and event h is a receive. Despite the obvious
di�erences between the computations, the rules for maintaining vector clocks in
Section 2 timestamp their events identically. An attempt to reconstruct either
of these computations accurately from the event timestamps alone would be
thwarted by this ambiguity.

This phenomenon occurs whenever overtaking of information transference
is possible, even indirectly. Figure 3 shows a computation in which indirect

3



p q r

j h2; 2; 2i

i h2; 2; 1i
h h2; 2; 0i

e h1; 0; 0i

f h2; 0; 0i
g h2; 1; 0i

Figure 3: A computation with indirect message overtaking.

p q p q

f h2; 0i
e h1; 0i

g h3; 0i
h h3; 1i
i h3; 2i
j h3; 3i

f h2; 0i
e h1; 0i

g h3; 0i
h h3; 1i
i h3; 2i
j h3; 3i

Figure 4: Two computations with send and receive events marked di�erently.

communication from process p to r, from event f to event i, via events g and
h, overtakes the direct message from event e to j. In this case the timestamps
assigned would be the same if e and j were internal events. Thus, merely
prohibiting overtaking of messages between pairs of processes is not su�cient
to avoid the problem.

One may think that keeping track of the `type' of events, i.e., whether they
are internal, sends or receives, would resolve the problem. Certainly this in-
formation would be su�cient to disambiguate the computations in Figure 2.
However the two computations in Figure 4, in which send and receive events
have been distinguished, show that this is insu�cient in general. Corresponding
events in both computations receive the same timestamps, and have the same
`types,' but the computations are di�erent.

5 Cause

The cause of this `problem' is straightforward. Step 4b, Section 2, is responsible
for merging causality information obtained through the receipt of a piggybacked
message timestamp with the local process clock. However, when the received
message has previously been overtaken this step has no e�ect. The update to the
process clock due to a receive event (Step 4) is then identical to that performed
for an internal one (Step 2), hence the ambiguity.

4



This is not a weakness or error in the vector time algorithm, however. It is,
in fact, a natural consequence of the de�nition of causality for distributed sys-
tems. Property 3, Section 1, tells us that causality is transitive. Consequently,
overtaken messages do not contribute new causal relationships. For instance,
the de�nition of causality states that the computation on the left in Figure 2
de�nes the following causal relationships: e ! f , e ! g, e ! h, f ! g, f ! h

and g! h. Exactly the same set of relationships is created by the computation
on the right, so it is to be expected that both computations are timestamped
identically.

6 A solution

Fortunately there is a straightforward solution. We noted in Step 3c, Section 2,
that each message carries with it the timestamp corresponding to the send-
ing event. Since vector timestamps are unique throughout a computation, this
information is su�cient to unambiguously determine the pattern of communi-
cations. Thus, if receive events are logged as pairs of timestamps, consisting of
the piggybacked time and the `local' time, then the two computations in Fig-
ure 4 would be distinguishable. In the left-hand computation the receive events
would be logged as h: (h3; 0i; h3; 1i), i: (h1; 0i; h3; 2i), and j: (h2; 0i; h3; 3i). In
the right-hand computation the events would be logged as h: (h3; 0i; h3; 1i),
i: (h2; 0i; h3; 2i) and j: (h1; 0i; h3; 3i). Matching receive events with their corre-
sponding sends is now trivial and a debugging tool can easily display the two
distinct computations. (When comparing events to detect causal relationships,
using the property described in Section 2, the �rst element of the pair is ig-
nored.) Of course, the disadvantage is that the information that must be logged
when a receive event occurs has been doubled.

Indeed, this solution is not surprising. The principle of making use of the
piggybacked timestamps to identify message overtaking is well established in
the vector time community. It is the basis of algorithms for enforcing causal

ordering , in which message overtaking is prevented by checking piggybacked
timestamps and accepting messages received only when it is clear that there are
no causally-preceding messages that have not yet arrived [1, 7].

7 Conclusion

We have described a limitation of vector clock timestamps for characterising
distributed computations, and have examined its cause and solution. While
not a profound issue, developers of debugging and analysis tools for distributed
systems should nevertheless appreciate this property of causality.

5



Acknowledgements

I wish to thank the students of the University of Queensland's Distributed Com-
puting course for helpful discussions and Andrew Martin for reviewing a draft
of this paper. This work was funded, in part, by the Information Technology
Division of the Australian Defence Science and Technology Organisation.

References

[1] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic
group multicast. ACM Transactions on Computer Systems, 9(3):272{314,
August 1991.

[2] C. J. Fidge. Timestamps in message-passing systems that preserve the par-
tial ordering. Australian Computer Science Communications, 10(1):56{66,
February 1988.

[3] C. J. Fidge. Logical time in distributed computing systems. IEEE Computer,
24(8):28{33, August 1991.

[4] C. J. Fidge. Fundamentals of distributed system observation. IEEE Soft-

ware, 13(6):77{83, November 1996.

[5] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558{565, July 1978.

[6] F. Mattern. Virtual time and global states of distributed systems. In M. Cos-
nard et al., editors, Parallel and Distributed Algorithms, pages 215{226.
North-Holland, 1989.

[7] M. Raynal and A. Schiper. The causal ordering abstraction and a simple
way to implement it. Technical Report 1132, Institut National de Recherche
en Informatique et en Automatique, France, December 1989.

6


