
Race-Condition Detection in

Multicomputer Programs

SeRD-CSCS TN-94-12

June 1994

Abstract: In message-passing parallel programs a type of bug unique to parallel computing
can occur. This type of error is due to multi-message races. A race occurs when messages
are in transit at the same time and the corresponding receives can accept any of the messages.
Most of the time, races are incorporated into programs for reasons such as enhancing load
balancing. Sometimes a race causes erroneous execution that is hard to debug because of the
non-deterministic nature of the program (i.e. if the messages in a race are not received in the
same order as during the erroneous execution, the error might not occur). This paper addresses
this problem by describing an e�cient algorithm for tracing a given program execution and
replaying that execution deterministically. The tracing and replaying algorithm will help the
user reexecute a nondeterministic program deterministically. This reexecutability will allow a
user to gather information on and facilitate removal of all non-deterministic errors.

Michael John Meehan
Computer Science Department
University of North Carolina
CB #3175, Sitterson Hall
Chapel Hill, NC 27599-3175

meehan@cs.unc.edu

SeRD-CSCS Technical Note

TABLE OF CONTENTS

Table of Contents

1 Introduction : 1
2 Background : 2

2.1 Related Work : 2
2.2 Supported Platforms : 2

2.2.1 MPI : 2
2.2.2 The NEC Cenju-2 and Cenju-3 : : : : : : : : : : : : : : : : : : : 3

3 Examples : 3
3.1 Example 1: n messages from n processors : : : : : : : : : : : : : : : : : : 3
3.2 Example 2: n messages from m processors (n > m) : : : : : : : : : : : : : 3

4 Characteristics : 6
4.1 Concept of a Race : 6
4.2 Race Notation : 7
4.3 De�nition of a Race : 7

5 The Algorithm : 8
5.1 Tracing and Detecting Races : 8

5.1.1 Theory : 8
5.1.2 Implementation : 10

5.2 Deterministic Replay : 11
5.2.1 Theory : 11
5.2.2 Implementation : 11

5.3 Considerations : 12
6 Results : 13

6.1 Three race-intensive programs : 13
6.2 Traveling Salesman Program and Two Dimensional FFT : : : : : : : : : : 15

7 Conclusion : 16
8 Directions : 16
9 Acknowledgments : 16

List of Figures

1 Simple Three Message Race : 4
2 Block Race Example 1 : 4
3 Upper Bound: m=3, n=7, Num. Traced=6 : 5
4 Lower Bound: m=3, n=5, Num. Traced=2 : 6
5 Racing and Non-Racing Messages : 7
6 Block Race Example 2 : 9
7 Block Race Example 2: Erroneous Replay : 10
8 Timing for Three Implementations of MPI Recv : : : : : : : : : : : : : : : : : : : 14
9 Timing for Traveling Salesman Program and Two Dimensional FFT : : : : : : : 14

SeRD-CSCS TN-94-12 i

1. INTRODUCTION

1 Introduction

As part of the CSCS/NEC Joint Collaboration in Parallel Processing, CSCS's Section of Re-
search and Development (SeRD) is developing a tool environment to ease parallelization of
applications on distributed memory parallel processors (DMPPs or multicomputers) [?]. The
tool environment, known as Annai, consists of a parallelization support tool (PST), a perfor-
mance monitor and analyzer (PMA), a debugging tool for parallel programs (PDT), and a
common user interface (UI). In collaboration with a team of researchers developing an HPF
system at C&C Research Labs., NEC Tokyo, the tool environment allows pro�ling and debug-
ging of \low level" MPI [MPI94] message passing programs, and \high level" High Performance
Fortran (HPF) [HPF93] programs. In addition, the tools will support extensions to HPF to
allow the e�ective parallelization of irregular �nite-element based applications. The two-level
pro�ling and debugging support is eased by the fact that the NEC HPF system and PST are in
fact translators that generate Fortran, C, and MPI message passing constructs from high level
language input programs.

The race condition detection algorithm described in this paper will be integrated in PDT,
Annai's parallel debugging tool. PDT can debug on several platforms, among others our 128
node NEC Cenju-3 DMPP. PDT is currently based on the Free Software Foundation's GNU gdb

debugger [Sta93], and already allows most of the functionality available in standard debuggers.

A common debugging strategy involves reexecuting a program (on a given input) over and
over, each time gaining more information about bugs. Such techniques can fail on message-
passing programs. Because of variations in message latencies, di�erent runs on the given input
may produce di�erent results. This non-repeatability is a serious debugging problem, since an
execution can not always be reproduced to track down bugs.

A message-passing program is non-deterministic if the order of message receipts can vary from
one execution to another, i.e., either of two or more messages sent simultaneously can arrive
�rst at some receive point. These messages de�ne a race condition.

Because of such race conditions, a mechanism for tracing and replaying a program's execution
is an essential part of a DMPP-program debugger.

This algorithm is a framework for (1) detecting race conditions in a message-passing program
by tracing the order in which messages are delivered during a �rst execution, and for (2)
reproducing equivalent executions of the program by using the traces to force each message to
be delivered in the same order as during the �rst execution.

This paper describes an algorithm for tracing and replaying non-deterministic programs. The
algorithm was implemented as part of the MPI message passing library. The library will trace
the execution and replay it exactly as before. This algorithm involves tracing only the messages
that race and storing only those needed to ensure exact replay (not all messages are needed).

The paper begins by giving examples of types of races and characterizes how various tracing
and replaying algorithms would handle each. This section also discusses a functionality that
exists only in this algorithm. The next section gives a more indepth look at races and and the
e�ect they have on parallel programs.

Sec. 5 describes the tracing and replaying schemes, including the theory and implementation
of each. The section describes how the message are traced and the process of determining races
by deciding if messages of the same tag know of one another (i.e. a message (A) was sent by

SeRD-CSCS TN-94-12 1

2. BACKGROUND

a processor that received a message that was the end of a chain of messages that included the
message which is begin tested with A). The replaying strategy is described and some additional
considerations for MPI (which might be extended to other message passing interfaces) are
discussed.

The last two sections of the paper have timing results and conclusions. Two applications and
three race-intensive test programs were tested and the results are discussed.

2 Background

2.1 Related Work

There are three basic categories of race detection algorithms: after-the-fact analysis [HW93],
compile-time analysis [CS88] and on-the-y analysis [HMC90], [NM92a]. After-the-fact analysis
involves tracing all of the messages in a program and checking for races after program execution.
Compile-time analysis involves analyzing program semantics to determine potential races. On-
the-y strategies use information produced during execution to determine which message race.

The algorithm in this paper is an on-the-y algorithm based loosely on Netzer and Miller's [NM92a]
algorithm. Their algorithm uses vector timestamps appended to messages to determine where
races occur. The major di�erence between the Netzer algorithm and the one described here is
the FIFO assumption. Netzer and Miller do not assume a FIFO message passing system and
therefore recognize some communication patterns as races that are not races if FIFO ordering is
guaranteed. FIFO message passing guarantees that multiple messages from the same processor
p0 to the another processor p1 arrive in the same order that they were sent.

2.2 Supported Platforms

2.2.1 MPI

The race detection algorithm discussed in this paper was implemented in CSCS's subset of MPI.
The MPI subset is implemented in three layers. The lowest layer consists of three hardware-
dependent basic functions, i.e., non-tagged send, receive and poll operations. The second layer
consists of tagged point-to-point communication of contiguous data streams. On top of these,
the third layer consists of collective communication routines.

The race detection functionality was implemented on the second layer of the MPI subset.
The primitives involved in the race detection algorithm are MPI_Send, MPI_Recv, MPI_Ssend
MPI_Probe MPI_Iprobe. MPI_Isend and MPI_Irecv also have potential nondeterminism due
to a class of race known as data races [NM92b] but this is a di�erent genus of races and is not
considered in this algorithm.

Race detection and deterministic replay facilities will be included to support PDT. The strategy
will be to incorporate deterministic trace and replay into our communication platform. Trace
�les are generated by the communication library in this format. The library uses these trace
�les to facilitate deterministic replay.

2 SeRD-CSCS TN-94-12

3. EXAMPLES

2.2.2 The NEC Cenju-2 and Cenju-3

The NEC Cenju-3 can be con�gured with up to 256 VR4400SC RISC processors, each compris-
ing 64 Mbytes memory, 1 Mbyte of secondary cache, and 32 Kbytes primary cache mounted
on-chip. The CPUs are MIPS compatible 64 bit processors and are clocked with 75 MHz. They
communicate via a packet-switched multi-stage interconnection network composed of 4 � 4
crossbar switches. The machine is hosted by one or more VR4400SC-based workstations (NEC
EWS4800). For more details on the Cenju-3 architecture see [?]. The Cenju-2 is an experimen-
tal prototype of the Cenju-3. It is based on MIPS R3000 processors and uses a similar network.
The machine installed at CSCS features 16 processors and also 64 Mbytes memory per node.

Another supported platform is a simulator on Solaris based workstations. With this simulator
true parallelism can only be achieved on multi-processor based Sparc systems. The Solaris
simulation is very useful during the early stages of application development because direct
access to the generally expensive parallel systems is not necessary.

3 Examples

To compare my algorithm with some previously developed, I will show two example races and
how di�erent algorithms would handle them. I will compare Miller and Netzer's [NM92a] fron-
tier tracing and the tradition algorithm of tracing all messages with my own method. The �rst
example will show that tracing all messages is su�cient to replay a race condition determinis-
tically but is not necessary. The second will show that in message passing systems that allow
message bu�ering that block races must also be taken into account. In both of the following
examples, each message is acceptable for any receive. (i.e. the receives considered can accept
from each of the sources and any of the tags of the racing messages).

3.1 Example 1: n messages from n processors

Fig. 1 depicts three messages racing for a set of receives. Processors 0, 2, 3 send messages
Msg0.1, Msg2.1, Msg3.1 respectively. The order that processor 1 receives the messages in this
case is: Msg0.1, Msg3.1, Msg2.1. In the case of all message tracing, the replay information fora
each of these messages would be stored. This will give correct replay results, but storing the
information for all of these messages is unnecessary. The information for Msg2.1 is superuous.
Upon replay, the algorithm will ensure that Msg0.1 and Msg3.1 are replayed in the correct order.
This being the case, Msg2.1 will automatically arrive at the correct receive. Therefore, there is
no need to store replay information for the e�ectually deterministic Msg2.1. My algorithm and
the frontier algorithm will trace this race and store replay information for only the �rst two
messages, since only these are necessary for deterministic replay.

In general, if n messages from n processors are racing, then the information for the �rst n � 1
messages is su�cient and necessary for deterministic replay.

3.2 Example 2: n messages from m processors (n > m)

Fig. 2 characterizes a type of race which occurs when multiple processors send multiple messages
to a given processor. Processors 0 and 2 are each sending three messages to processor 1. FIFO

SeRD-CSCS TN-94-12 3

3. EXAMPLES

�gure1.ps

59 � 75 mm Msg3.1

M
sg0.1

M
sg

2.
1

0 1 2 3

Figure 1: Simple Three Message Race

�gure2a.ps

53 � 113 mm

0

M
sg

2.
1

M
sg0.1

1 2

M
sg0.3

M
sg

2.
3

M
sg

2.
2

Msg0.2

Figure 2: Block Race Example 1

4 SeRD-CSCS TN-94-12

3. EXAMPLES

�gure3a.ps

78 � 126 mm

0 1 2

Msg0.1

M
sg0.3

M
sg0.2

M
sg

2.
3

M
sg

2.
3M

sg
2.2

M
sg

2.1

3

Figure 3: Upper Bound: m=3, n=7, Num. Traced=6

message control is assumed (i.e. messages of the same tag from the same processor to a given
processor cannot overtake each other). Because the messages are FIFO, the order of arrival of
messages from processor 0 is guaranteed (the same holds true for the messages from processor 2).
The messages from a given processor have a guaranteed order, but the messages from di�erent
processors can be interleaved in any way.

I will not go over the traditional trace-all method as it has the same drawbacks described above.
The frontier method will trace the messages and detect races in Msg0.1 $ Msg0.2, Msg0.2 $
Msg2.1, Msg2.1 $ Msg0.3 and Msg0.3 $ Msg2.2. This would constitute storing the replay
information for Recv1.2, Recv1.3, Recv1.4 and Recv1.5. The algorithm described in this
paper would detect that Msg2.1 races with Msg0.1 and Msg0.2 (a block race) as well as the
races between Msg2.1 $ Msg0.3 and Msg0.3 $ Msg2.2. Therefore it would store the replay
information for Recv1.1 ! Recv1.4, which is necessary and su�cient for correct reexecution.
The algorithm would not store the information for Recv1.5. FIFO message passing guarantees
that Msg2.2 will arrive at Recv1.5.

In general, for n racing messages from m processors (n > m) it is necessary to trace at most
n� 1 messages as shown in Fig. 3 and at least m� 1 as shown in Fig. 4.

SeRD-CSCS TN-94-12 5

4. CHARACTERISTICS

�gure3b.ps

78 � 101 mm

0 1 2

Msg0.1

3

M
sg

2.1

M
sg

2.3

M
sg

2.3

M
sg

2.3

Figure 4: Lower Bound: m=3, n=5, Num. Traced=2

4 Characteristics

In this section, I will give a more formal de�nition of a race. The following subsections will
describe what it means for messages to race, de�ne some notation, and give a de�nition for a
race.

4.1 Concept of a Race

A race occurs between messages if each of the messages could theoretically be accepted by
the same receive. In a program that embodies a number of races, with each instance of the
program's execution, the receives associated with the races might accept messages in a di�erent
order.

Fig. 5 is a pictorial example of racing and non-racing messages. In this �gure, Msg2.1 and
Msg0.1 race. That means that either Msg2.1 or Msg0.1 could have been received by either
Recv1.1 or Recv1.2.

Msg2.2 on the other hand does not race with any other messages in this execution model.
Msg0.1 and Msg2.1 have to be received by either Recv1.1 or Recv1.2 before Msg1.1 is sent to
Recv2.1. Only after Recv2.1 can Msg2.2 be sent. Therefore, Msg2.2 will always be received
after Msg0.1 and Msg2.1 and does not race with them.

6 SeRD-CSCS TN-94-12

4. CHARACTERISTICS

�gure4.ps

53 � 107 mm

0 1 2

Msg2.2

[1 1 1]

[1 1 2]

[0
 0 1]M

sg
2.1

M
sg0.1[1 0 0]

Msg1.1

Figure 5: Racing and Non-Racing Messages

4.2 Race Notation

Here is described some notation used in this paper for more concise description of race detection
algorithms. Msgp.n refers to the nth message sent from processor p. Similarly, the notation
Recvp.n refers to the nth receive on the pth processor.

All �gures used in this paper show races which occur at the beginning of the program's execution.
In reality the choice of location is arbitrary. The �gure can be taken as the beginning of the
racing program's execution, or it could equivalently be anywhere in the execution as long as no
messages before those depicted in the �gure race with any of the messages in the �gure. This
is similar to Miller and Netzer's frontier concept.

4.3 De�nition of a Race

All of the �gures in this paper refer only to receives that can legally accept any of the messages
sent. In the MPI message passing systems, messages have a tag. The tag is a user de�ned value
that lets the receiver know what type of message it is. Receives not only have a restriction as
to what tag they can receive, but also what processor they accept a message from.

In reality, for messages to race they must have the same tag, or the corresponding receives must
be able to accept the tags of all racing messages. In MPI, messages of di�erent tags can race
if the corresponding receives have the MPI_ANY_TAG wildcard as its tag parameter. It is also

SeRD-CSCS TN-94-12 7

5. THE ALGORITHM

necessary for all of the receives associated with the race to have the ability to accept from any
of the sources associated with the racing messages. If a receive can only accept messages from a
particular source, then the FIFO-ality of the system will deterministically guarantee the arrival
of a particular message, and the associated messages could not be part of a race.

Therefore, the de�nition of a race is simple: messages race if they can be simultaneously in
transit and the associated receives can accept any of the messages. The method for determining
if messages can be simultaneously in transit is described in Sec. 5. For a set of receives to be
able to accept any of a set of messages, the receives must be able to accept messages from all
of the sources of the racing messages and the receives must be able to accept messages having
any of the tags associated with the given messages.

5 The Algorithm

This section describes the algorithm for run time race detection. The �rst subsection describes
the method for detection of races. The second subsection describes how the information from
tracing with vector timestamps is used for deterministic replay. The third describes additional
tracing considerations for the MPI message passing interface.

5.1 Tracing and Detecting Races

5.1.1 Theory

For ease of explanation, the discussion of races will begin with examples involving only two
messages and later be generalized to more messages. To determine if two messages race, one
has to determine whether both messages can be accepted by the same receives and if they
could be in transit at the same time. To determine the former, a check must be made to
ensure that both of the receives could have theoretically accepted both messages. In MPI
for example, both of the receives must use the MPI_ANY_SOURCE wild-card for its designated
source. If communication blocks are implemented, then the two messages must also have the
same communication block. (A communication block causes receives to accept messages from
a subset of all of the processors). A check must also be performed to ensure that both receives
can accept both messages with respect to tags. In MPI, this means that either the messages
are of the same tag and both receives can accept this tag or both receives use the MPI_ANY_TAG
wildcard as their tag designator.

To determine if two messages could be in transit at the same time one has to determine whether
the second message received knew about the �rst. One message can be simultaneously in transit
with another only if they do not know of each other.

For one message to know of another, its processor must have received the last of a chain of
messages including the known message before it sends the knowing message. This is illustrated
in Fig. 5. Msg2.2 knows of Msg0.1 because processor 2 received the end of a chain of messages
(Msg0.1, Msg1.1) that included Msg0.1 into Recv2.1 before sending Msg2.2. Since Msg2.2

knew of Msg0.1 there is no race and no information is stored. It can be easily seen that Msg0.1
and Msg2.1 do race since the second does not know of the �rst.

As pointed out by Miller and Netzer [NM92a] only the information for the �rst of the two racing

8 SeRD-CSCS TN-94-12

5. THE ALGORITHM

�gure6a.ps

53 � 88 mm

0 1 2

Msg0.1

M
sg

2.
1

Msg0.2

Msg0.3

Figure 6: Block Race Example 2

messages needs to be stored for deterministic reexecution of the race. If the �rst of two racing
messages is forced to the correct receive upon reexecution, then the second will automatically
go to the correct receive (because there will be no other receive it can go to). In Fig. 5, if
Msg2.1 is forced to Recv1.1 then Msg0.1 has no option except to go (correctly) to Recv1.2.

For simple races involving n messages, only the information for the �rst n� 1 need to be saved
(for block races see below). Fig. 1 shows a triple race between Msg0.1, Msg2.1 and Msg3.1. If
the information for Msg0.1 and Msg3.1 (the �rst two messages to be received) is stored and
the reexecution order of these two messages is guaranteed, then Msg2.1 will go to Recv1.3 as
desired.

A block race is another class of races. Block races are races between a message and a set of
messages. If a message does not know (in the same context as described above) of a set of
messages, then it is in a race with them. Fig. 6 shows a simple block race. Msg2.1 does not
know about Msg0.1, Msg0.2 or Msg0.3, therefore it is in a race with all of them. Since Msg2.1
races with all of these messages, trace information Recv1.1, Recv1.2 and Recv1.3 must be
stored.

It might not appear that the block race detection is necessary, but Fig. 7 shows a potential
problem if only simple (non-block) races are traced. If only the simple races are traced, then
the only race detected is the one between Msg0.3 and Msg2.1. The only replay information
stored would be that Recv1.3 needs to receive Msg0.3. It is easy to see that since Msg2.1 could
be accepted by Recv1.1 or Recv1.2 which would would cause erroneous execution.

SeRD-CSCS TN-94-12 9

5. THE ALGORITHM

�gure6b.ps

53 � 88 mm

0 1 2

Msg0.3

Msg0.2

Msg0.1

M
sg

2.1

Figure 7: Block Race Example 2: Erroneous Replay

5.1.2 Implementation

To implement the concept of knowledge between messages I used a technique similar to Netzer
and Miller's vector timestamp [NM92a]. They suggest that each message should have the sending
processor's vector timestamp appended to the end of it. Each processor has an internal clock
which increments upon each event in the processor. By de�nition, for a processor p, the pth
value of the vector timestamp is equal to the internal clock. The rest of the vector timestamp
for each processor is determined by doing a component wise maximum on its current timestamp
and any timestamp appended onto an incoming message.

Given two incoming messages a and b , the �rst arrived from processor pa the second from pb
and their vector timestamps Va and Vb, one can determine if they race (i.e. the second message
doesn't know of the �rst) by comparing the path value of the vector timestamps. If the path
value of Va is higher than the path value of Vb, then the two messages race. This is easy to
understand. For message b to know of message a, then the path value (a's internal clock) would
have to be incorporated into message b's timestamp (because the path value would be passed
along through the chain of messages linking the two).

Fig. 5 demonstrates this. Msg2.1 arrives before Msg0.1 so the 2nd value of their timestamps
must be compared. The 2nd value of Msg2.1's timestamp is 1 and the 2nd value of Msg0.1's
timestamp is 0, therefore the two messages race. Considering Msg2.2 and Msg0.1, we see that
the 0th value of the Msg0.1's timestamp is 1 and the 0th value of Msg2.2's timestamp is also
1, so the second message knows of the �rst one, therefore they do not race.

To detect block races, a bu�er of timestamps from recently received messages must be stored.
Such a bu�er of timestamps must be stored for each tag. The bu�er does not have to store all
past timestamps. A timestamp can be taken out if a message of its tag has been received from

10 SeRD-CSCS TN-94-12

5. THE ALGORITHM

every processor (excluding the timestamp's source and receiving processor). Cause for exiting
on this condition can be explained as follows. If a message of the same tag is received from
another processor, then the message either races with the current message or it doesn't. If the
new message races with the old, then the old message's trace information is stored and the old
timestamp is removed from the bu�er. If the new message does not race with the old, then
the new one's timestamp is added to the bu�er and the old one remains. If a message of the
same tag has been received from every processor and the message is still in the bu�er, then it
is impossible for another message to arrive that would race with the message in question.

In addition to appending the timestamp, every message also has its sending processor number
appended onto the end of the message. This information will be written to the trace �le. Its
use is described in the next section.

5.2 Deterministic Replay

If there is a bug in an application, the user would need to replay the program exactly as it
played before in order to gather more information about the error. If the error is proceeded
by a race condition, then successive replays may or may not recreate the bug. In order to
guarantee identical execution, the program must be deterministically replayed (i.e. all races in
the program must have the same order of arrival of messages as in the �rst execution). This
can be accomplished by using the replay algorithm described in this section.

5.2.1 Theory

To replay a race condition exactly as before, one needs to know which messages should arrive
at all critical receives and should be able to hold o� reception until the correct message arrives.
To determine which messages race, given that the original execution has been traced correctly
(as described above), one simply needs to read in the trace �le which will indicate all critical
receives and the correct messages for each.

The only piece of information necessary to determine the correct message for a critical receive is
the sending processor's number. Because we are assuming a FIFO machine, we are guaranteed
the order of arrival of messages from a given processor. Assuming that all messages up a
certain critical receive arrive in the correct order, then the next message to come from the
critical receive's desired source will be the correct one.

5.2.2 Implementation

For a processor to know which message to receive, it needs to know which receives are critical
and which messages should be received at each. To know which receives are critical, the trace �le
must (for each processor) supply the number corresponding to the internal clock of the original
receive. To know which message should be received by a critical receive only the original sender's
source number is needed.

To implement reexecution, the program reads in the trace �le and determines what the next
critical receive is. The program will execute without any interference until the �rst critical
receive (since all of the preceding receives are already deterministic). Upon the �rst critical
receive, the program will block until the correct message arrives. This process is repeated again

SeRD-CSCS TN-94-12 11

5. THE ALGORITHM

for the next, and all proceeding critical receives.

One should note that this does not guarantee the order of arrival of messages, it simply guar-
antees the order of reception of the messages. The messages can still arrive in any order and
must be bu�ered until their correct reception time.

5.3 Considerations

Races can occur in more operations associated with message passing than just sends and receives.
If messages are racing to a given processor and a probe is done on the receiving processor, then
a race is actually occuring at that probe. If any of the information from the probe is used in
the program (i.e. the messages source, length, et cetera), then the race a�ects the program.

Blocking probes are traced in the same manner as receives. To trace them correctly, all of
the operations for tracing a receive must be performed except for the removal of the message
from the message bu�er. The incoming timestamps are compared to those of the receives and
other blocking probes, stored and removed from the bu�er upon the same conditions and stored
identically in the trace �le if they race.

If a user chooses to trace blocking probes, (the user is given the choice in my implementation)
then the every action that is performed for a receive, is also performed for each blocking probe,
including internal clock incrementation for each blocking probe occurrence. One should note
that since the blocking probes are treated exactly as blocking receives are by the algorithm, the
same internal clock is used for both. If on a processor p there have been two blocking receives
and three blocking probes, then the internal clock would be equal to 5.

Non-blocking probes (such as MPI_Iprobe which I will refer to as Iprobe here) can be the cause
of non-deterministic behavior. As with blocking probes, if any of the information from the
Iprobe is used in the program (i.e. source, length, et cetera), it can cause non-deterministic
behavior. Non-blocking probes cannot be traced in the same manner as blocking probes and
receives, since they are simply checks for existence of message. Instead, the outcome for every
non-blocking probe must be recreatable from a trace �le.

Keeping the trace information for every Iprobe would be very expensive. One would have to
store each Iprobe's outcome (true or false) and the message's source if the Iprobe was successful
and was of a class that can detect messages from more than one source. Upon investigation it
was discovered that for the set of programs that had Iprobes, less than one percent of those
probes were successful. Therefore, it is most e�cient to store only the information for the
successful Iprobes.

For deterministic replay of the non-blocking probes, the Iprobe trace is read into a bu�er. Every
time an Iprobe is called, the Iprobe event counter is incremented. The Iprobe event counter and
trace �les are separate and distinct from those that used for the blocking receives and probes.
Regardless of the existence of messages in the bu�er, the replay mechanism will force the Iprobe
to return a value of false until the Iprobe counter matches the value for the next true Iprobe.
When the counter does match, and a true value has to be returned, the Iprobe will block until
it has received the correct message, and then it will return a true value. Once again, only the
source number needs to be known for the critical Iprobes. If the Iprobe has the correct source,
then FIFO-ality will guarantee that the correct message arrives.

12 SeRD-CSCS TN-94-12

6. RESULTS

Something to take into consideration is the number of message timestamps allowed in the
timestamp bu�er. Since a comparison has to be made between the current timestamp and all
old timestamps of its tag, keeping too many timestamps would slow down the trace execution
of the program considerably.

For two racing messages to have a non-deterministic receive order, their order of arrival would
have to vary from execution to execution. One might be able to assume this implies they would
have to be in transit at nearly the same time during all executions. For two messages to be
in transit at the same time, they must be in the message bu�er at nearly the same time. By
experiment, I have found that two times the number of messages allowed in the message bu�er
works as a timestamp bu�er limit. Intuitively, this seems reasonable since races that need
to be addressed should have receives that are relatively close. For the Cenju-2 and Cenju-3
the message bu�er can hold 64 messages. This means 128 timestamps would be stored in the
timestamp bu�er. For the Solaris version of MPI, only 32 messages are stored in the message
bu�er.

This limitation is not based entirely on the logic of race detection, and there is a potential for
important races to be skipped (in which case the bu�er size should be increased). This is simply
a method of reducing the number of message in the bu�er, and therefore the execution time
of tracing. In reality, messages (unless taken out because they race with another or because a
message of their tag has been received from every other processor) could stay in the bu�er for
the duration of the program and continue to have potential to race with another message. If
two messages are not received at nearly the same time, even if they race, they are not likely to
be received in subsequent executions in a di�erent order. In the race detection application, the
number is automatically set to two times the length of the message bu�er, but can be reset if
desired.

6 Results

The race detection algorithm has been designed to complement the MPI message passing in-
terface. All test programs were run using the modi�ed MPI library. This section discusses the
results of three race-intensive programs and two sample programs.

The three race-intensive programs were run on the NEC Cenju-2 using 4 processors. All three
programs have the same functionality, but were implemented with a di�erent series of MPI
calls. The three programs use a di�erent set of MPI calls to implement the functionality of an
MPI_Recv with an MPI_ANY_SOURCE designator. The results shown here are averages of 5 test
runs. In the programs, each processor sends 500 messages to each of the other three processors
and receives 500 message from each of the other three processors. All 1500 messages received
at each processor are involved in at least one race. From these 1500 messages, 1499 need to be
traced.

6.1 Three race-intensive programs

The �rst implementation used an MPI_Recv.

MPI_Get_source(status, &src_now);

MPI_Recv(&recv[l], 1, MPI_INTEGER, MPI_ANY_SOURCE, DONE, MPI_COMM_WORLD, &status);

SeRD-CSCS TN-94-12 13

6. RESULTS

table1.ps

140 � 57 mm

MPI_Send

MPI_Recv

MPI_Probe

MPI_Iprobe

MPI_Recv

MPI_Send

MPI_Recv

MPI_Probe

MPI_Send

MPI_Recv

MPI_Iprobe

Implementation Function No Race Detect Race Tracing Race Replaying

42 50

120 249 195

36 48 38

43

35 82 51

35 82 51

38 50 38

87 199 143

8 15 18

Figure 8: Average Times (in Micro Seconds) for MPI Calls in the Three Implementations of
MPI Recv

table2.ps

171 � 46 mm

Program

TSP

2DFFT

Execution Time

Total Time

Execution Time

Total Time

No Race Detection Race Tracing

5.115

0.0

0.0 4.5088 (88%)

10.295 (101%)

5.786 (13%) 8.662 (70%)

5.161 (101%)

Race Replaying

4.636

0.0

0.0

4.704 (1%) 4.642 (<1%)

3.464 (75%)

8.168 (76%)

4.709 (102%)

9.351 (102%)

Timing

File I/O Time

File I/O Time

13.823 (170%)

Figure 9: Average Execution Times (in Seconds) for Traveling Salesman Program and Two
Dimensional FFT

Fig. 8 shows the average execution times for the MPI_Sends and the MPI_Recvs for non tracing,
tracing, and replying executions. The increase in the amount of time needed to implement a
send is due to the appending of timestamps onto the end of each message. For replay, only
a counter must be incremented and therefore not much additional execution time is needed.
The additional time to receive during tracing is due to taking the timestamp o� the message
and checking for races. The additional time needed to receive during replay is simply due to
bookkeeping and checks to see when the next racing message will arrive.

The second implementation used an MPI_Probe and an MPI_Get_source to �nd out where the
next message was from and received it with an MPI_Recv:

MPI_Probe(MPI_ANY_SOURCE, DONE, MPI_COMM_WORLD, &flag, &status);

MPI_Get_source(status, &src_now);

MPI_Recv(&recv[l], 1, MPI_INTEGER, src_now, DONE, MPI_COMM_WORLD, &status);

The average send and receive times for the non-tracing, tracing and replay executions are similar
to those listed above. The execution time di�erences for the MPI_Recvs and MPI_Sends for the
three types of executions are the same for all three test programs, so they will not be mentioned

14 SeRD-CSCS TN-94-12

6. RESULTS

again.

Fig. 8 shows the time needed for the MPI_Probes. The additional execution time needed
during tracing is due to the reception of the message and race checking with the timestamp.
The message must actually be received (but not removed from the message bu�er) so that the
timestamp can be taken o�. During replay, additional time is needed for execution because the
probe must wait for the correct message from the correct processor before it can return (instead
of returning as soon as any message arrives).

The third implementation used an MPI_Iprobe inside a while loop and an MPI_Get_source to
�nd out where the next message was from and received it with a MPI_Recv:

MPI_Iprobe(MPI_ANY_SOURCE, DONE, MPI_COMM_WORLD, &flag, &status);

while (!flag) {

MPI_Iprobe(MPI_ANY_SOURCE, DONE, MPI_COMM_WORLD, &flag, &status);

}

MPI_Get_source(status, &src_now);

MPI_Recv(&recv[l], 1, MPI_INTEGER, src_now, DONE, MPI_COMM_WORLD, &status);

Fig. 8 shows the time needed for the MPI_Iprobes. Even though the intrusiveness of the race
detection algorithm is very small in the Iprobes, it is proportionally large because of the quick
execution of the subroutine. The tracing overhead is due to the checking and storing of the
results in the bu�er. Most of the replay overhead is caused by waiting for the correct message
when the Iprobe needs to return a true value.

6.2 Traveling Salesman Program and Two Dimensional FFT

Fig. 9 shows the slowdown of a parallel implementation of the traveling salesman program for
16 cities using 16 processors of the NEC Cenju-3. One can see that the majority of the overhead
on tracing and replaying is due to �le I/O. The additional 13% execution time for race tracing
is due to appending, receiving and bu�ering timestamps and checking for races. The time to
write the trace �les adds an additional 88% to the execution time, producing a total slowdown
of 101%.

The 70% slowdown in execution during replay is due to MPI_Recvs and MPI_Iprobes waiting
for the correct message to arrive. The �le I/O adds another 101% to the execution time giving
a total slowdown of 170%.

The TSP program is an extreme example of the slowdown due to the race condition detection
algorithm. The parallel two dimensional FFT program has no races and no non-determinism.
The slowdown data for this program is included to give users an idea of the performance for
programs that have few or no races. Fig. 9 shows that the tracing and replaying have nearly the
same execution times as the standard MPI library. The slowdown was 1% for tracing and less
than 1% for replaying. The �le I/O added 75% and 102% for tracing and replaying respectively.
This �le I/O time is constant for programs with no races (since no race data has to be written
out), therefore if the problem size is increased, the percentage slowdown will decrease.

SeRD-CSCS TN-94-12 15

7. CONCLUSION

7 Conclusion

An algorithm for e�cient race detection tracing and deterministic replaying has been described
in this paper. The algorithm uses a method of vector timestamping to provide the information
necessary for the algorithm to determine whether messages race with each other. Additional
time is needed for execution of a program using race detection (either tracing or replaying). The
additional time needed is a proportional to the number of races in the program being tested
and in the worst case should not be enough to deter a programmer from using the algorithm's
implementation as a debugging tool.

The algorithm assumes the message passing system is FIFO and uses that knowledge to trace
the optimal number of messages.

8 Directions

This algorithm should be ported to the Annai debugging environment. It would also be useful to
develop an incremental replay tool which uses the race detection tracing information in addition
to computer state information to replay from a given point in a program's execution. A widget
to show the critical program regions and the pattern for the racing messages for the UI would
also prove useful for debugging.

9 Acknowledgments

I would like to thank Roland R�uhl and of Christian Cl�emen�con for all of their help and guidance
through the development of this algorithm. I would like to thank Will Sawyer, Karsten Decker
and all of the people at CSCS for making it possible for me to be involved in the research
activities at CSCS. Finally, I would like to thank all of my SSIP piers for their academic and
non-academic support over the duration of this program.

References

[CS88] D. Callahan and J. Sublock. Static analysis of low level synchronization. In Proceedings
of ACM/ONR Workshop on Parallel and Distributed Debugging, pages 100{111, May
1988.

[HMC90] Kennedy K. Hood, R. and J. Mellor-Crummey. Parallel program debugging with
on-the-y anomaly detection. In Proceedings of Supercomputing '90, November 1990.

[HPF93] HPFF (High Performance Fortran Forum). High Performance Fortran Language Spec-
i�cation: Version 1.0. Scienti�c Programming, 2(1&2), 1993. Special Issue.

[HW93] McDowell C. Helmbold, D. and J-Z Wang. Determining possible event orders by
analyzing sequential traces. In IEEE journal on Parallel and Distributed Systems,
1993.

16 SeRD-CSCS TN-94-12

REFERENCES

[MPI94] MPIF (Message Passing Interface Forum). MPI: A Message-Passing Interface Stan-
dard. Technical report, University of Tennessee, Knoxville, TN, USA, May 1994.
Version 1.0.

[NM92a] Robert H. B. Netzer and Barton P. Miller. Optimal tracing and replay for debugging
message-passing parallel programs. In Proceedings of Supercomputing '92, pages 502{
511, Minneapolis, MN, November 1992.

[NM92b] Robert H. B. Netzer and Barton P. Miller. What are race conditions? some issues
and formalizations. ACM Letters on Programming Languages and Systems, 1:74{88,
March 1992.

[Sta93] R. M. Stallman. GDB Manual: The GNU Source Level Debugger. Free Software
Foundation, 1993.

SeRD-CSCS TN-94-12 17

