Efficient Race Detection for Message-Passing Programs with Nonblocking
Sends and Receives

Robert Cypher

Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218
cypher@cs.jhu.edu

Abstract

This paper presents an algorithm for performing
on-the-fly race detection for parallel message-passing
programs. The algorithm reads a trace of the commu-
nication events in a message-passing parallel program
and either finds a specific race condition or reports
that the traced program is race-free. It supports a rich
message-passing model, including blocking and non-
blocking sends and receives, synchronous and asyn-
chronous sends, receive selectivity by source and/or
tag value, and arbitrary amounts of system buffering
of messages. It runs in polynomial time and is very
efficient for most types of ezecutions. A key feature of
the race detection algorithm is its use of several new
types of logical clocks for determining ordering rela-
tions. It is likely that these logical clocks will also be
useful in other settings.

1 Introduction

Many commercial parallel computers support a
message-passing model in which processes communi-
cate solely by issuing matching send and receive com-
mands. If a single receive command can be matched
to several different send commands (or vice-versa(.g, the
program is said to have a race condition. The detec-
tion of race conditions is critical for debugging parallel
programs for two reasons. First, although some par-
allel programs are designed to have race conditions,
many (including all deterministic programs) are de-
signed to be free of race conditions. Thus the existence
of a race condition can be proof of an error in the pro-
gram. Second, race conditions complicate debugging
because their nondeterministic nature can prevent in-
correct program behavior from being repeated.

In addition to the standard blocking sends and re-
ceives, many message-passing environments now pro-
vide nonblocking send and/or receive commands [6,
10, 13, 16, 23, 27]. The nonblocking commands sup-
port the overlapping of communication and compu-
tation, and they can be used to avoid deadlock IEE)]
However, because nonblocking commands allow a sin-
gle process to have many outstanding sends and re-
ceives at a single time, their use greatly increases the
potential for race conditions. As a result, the detec-

1063-6374/95 $04.00 © 1995 IEEE

534

Eric Leu

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120

leu@almaden.ibm.com

tion of race conditions in parallel programs that use
nonblocking sends and receives is particularly impor-
tant.

Other researchers have studied race conditions in
parallel programs. Damodaran-Kamal and Francioni
created a tool for detecting race conditions in message-
passing programs that use PVM [8]. However, they as-
sume that only blocking sends and receives are used.
Researchers have also considered race conditions in
the context of execution replay [4, 15, 19, 20, 24, 26],
where the goal is to record enough information to re-
produce an execution. In general, execution replay
aids debugging by allowing bugs to be reproduced,
but it does not help detect races in programs which
should be race-free. An exception is the execution re-
play work by Netzer [24] and by Netzer and Miller [26],
as they detect races in order to reduce the amount
of information that is recorded. However, the work
by Netzer [24] is for shared memory programs, while
the work by Netzer and Miller [26] applies only to
message-passing programs with blocking sends and re-
ceives. Finally, many researchers have studied race
conditions in parallel programs that use shared mem-
ory [1, 2,9, 11, 14, 17, 22, 24, 25).

In this paper we describe an algorithm for detect-
ing race conditions in parallel programs. It is a se-
quential algorithm.that reads a trace of the commu-
nication events in a message-passing parallel program
and determines if the execution contains a race con-
dition. The test is exact, so if the execution is race-
free, the algorithm will always report that there are
no race conditions, and if the execution contains a
race condition, the algorithm will always find and re-
port one such race. We assume a rich message-passing
model with both blocking and nonblocking sends and
receives, synchronous and asynchronous sends, receive
selectivity by source and/or tag value, and arbitrary
amounts of system buffering of messages. Our algo-
rithm can detect races in arbitrary executions, includ-
ing ones in which some or all of the processes deadlock
(which is important for debugging). It runs in poly-
nomial time and is extremely efficient for most types
of executions. In addition, it operates on-the-fly, thus
greatly reducing its storage requirements (as only a

small set of the most recently traced information is
maintained at any time). An important feature of our
race detection algorithm is its use of several new types
of logical clocks for determining ordering relations.
These logical clocks, which are fundamentally different
from those previously proposed [12, 14, 18, 21, 26], are
the first to capture the ordering information present
when nonblocking sends and reccives are used. As a
result, it is likely that they will also be useful in other
settings.

The remainder of this paper is organized as follows.
Section 2 discusses the message-passing model, the pa-
rameters that are used for analyzing the algorithm,
race conditions, and known results. The new types of
logical clocks are presented in Section 3. Section 4 de-
scribes the race detection algorithm. Conclusions and
directions for future research are given in Section 5.
Some proofs are omitted due to space limitations.

2 Preliminaries

2.1 Send and Receive Primitives

We will consider both blocking and nonblocking
sends and receives and both synchronous and asyn-
chronous sends. A blocking-asynchronous-send does
not return until the message has been copied out of
the sender’s buffer, while a blocking-synchronous-send
does not return until the message has been delivered
to the receiver. The nonblocking versions of these
send commands always return immediately without
copying the message out of the sender’s buffer. The
sender cannot overwrite that buffer until he issues a
corresponding wait-for-send command. Nonblocking
receives are analogous in that they return immedi-
ately, even if no message has arrived. The receiver
must issue a corresponding wait-for-recetve command
before reading the received message.

A receive command selects messages by specify-
ing either a single source or a wildcard value that
matches any source, and either a single tag value
or a wildcard value that matches any tag!. In this
paper we will assume weakly-ordered communication,
which was defined by Cypher and Leu [6] and has
been adopted in the Message-Passing Interface (MP(B
standard [23]. Informally, given any receive comman
weakly-ordered communication requires that only the
first send that is still unmatched and is compatible
with the given receive can be matched to that receive.
Similarly, given any send comrnand, weakly-ordered
communication requires that only the first receive that
is still unmatched and is compatible with the given
send can be matched to that send.

2.2 Formal Model

All of the results in this paper are based on a formal
model of message-passing semantics [6]. We will now
give a brief overview of that model. We consider the
execution of a message-passing program that consists
of p static processes. A program ezecution is repre-
sented by a pair (E, M), where

1A tag is an integer that is associated with each message
when it is sent.

535

e E=FE\E;...,B, and each E;; 1 < i < p,is
the finite sequence Tof events executed by process
i, and

e M is a set of ordered pairs of the form (a,b),
where a and b are both events in E, which speci-
fies the matching of send events to receive events.

Each event e € E is one of the following:

PS: A PS (Post-Send) event is a nonblocking send of
a message,

WS: A WS (Wait-for-Send-to-complete) event is a
synchronous wait for a specific earlier send event,

WB: A WB (Wait-for-Buffer) event is an asyn-

chronous wait for a specific earlier send event,

PR: A PR (Post-Receive) event is a nonblocking re-
ceive of a message,

WR: A WR (Wait-for-Receive-to-complete) event is
a wait for a specified earlier receive event,

INTERNAL: An INTERNAL event consists of a se-
quence of local calculations that do not perform
any message-passing, and

FINAL: A FINAL event indicates that the pro-
cess executing the event terminated successfully
(without deadlocking).

The events in the formal model map directly to
nonblocking sends and receives and their associated
wait commands. However, blocking sends and receives
can be represented by a pair of events. For example, a
blocking-asynchronous-send maps to a PS immediately
followed by a WB. The FINAL event is a formality
which allows the specification of both deadlocking and
nondeadlocking processes. A match m = (a,b) € M
is a pairing of a PS a with a PR b indicating that the
message sent by a is received by b. The formal model
makes no assumptions about the availability of system
buffers, so a WB may return immediately or it may
block until its corresponding PS has been matched to
a PR.

The following notation will be used throughout this
paper. Given any event e:

e kind(e): is PS, WS, WB, PR, WR, INTERNAL,
or FINAL,

e proc(e): denotes the process that executed e,

. corr&e) denotes the corresponding event exe-
cuted at process proc(e) (e.g., if kmd&l) = PR,
corr(e) denotes e’s correspondmg WR, and if
kind(e) = WB corr(e) denotes e’s correspond—
ing PS),

Given any PS e, dest(e) will denote e’s destination
process and tag(e) will enote e’s tag. Given any PR
e, source(e) will denote e ’s source process parameter
and tag(e) will denote e’s tag parameter either or
both of which may have the value “wildcard”).

A PS e is matched if there exists a PR f such that
(e, f) € M, and it is unmatched otherwise. Similarly,
a PR e is matched if there exists a PS f such that
(f,e) € M, and it is unmatched otherwise.

Given any events a and b, a immediately precedes
b iff b immediately follows a in the sequence Ep,;c(q),
and a precedes b iff b appears later in the sequence
Eproc(a) than does a. Given any PS s and any PR b, a
and b are compatible iff s’s destination is proc(r), r’s
source is proc(s) or a wildcard value, and r’s tag 1s s's
tag or a wildcard value.

Given any relation R, the transitive closure of R
will be denoted Rt and the reflexive and transitive
closure of R will be denoted R*.

2.3 Parameters

The following parameters will be used to analyze
algorithms throughout this paper.

e N.: number of events in entire trace
o Np: number of processes

e N,: maximum number of events local to any one
process

e N;: maximum number of distinct tags values used
per process

e N;: maximum number of overlapping posted
sends or receives (see below)

The parameter N, captures how many PS or PR
events can be active simultaneously at a single process.
More precisely, given a PS s, let count(s) denote the
number of other PS events s’ such that s precedes s’
and s' precedes corr(s) (if corr(s) exists). Given any
PR r, define count(r) analogously. The parameter
N, is the maximum, over all PS and PR events z, of
count(z). Note that typically N; €« N, and N, < N,.

2.4 Race Conditions

Intuitively, a program execution (E, M) has a race
condition if there exists a PS s and a PR r that were
not matched to one another, but could have been
matched to one another. This notion is defined for-
mally [7] by considering every possible PS s and PR r
which were not matched to one another, and consid-
ering every possible intermediate state of the program
execution. If at any possible intermediate state s can
be matched to r without violating the model’s seman-
tics, there is a race condition.

Unfortunately, there could be an exponential num-
ber of possible intermediate states, so the formal defi-
nition does not immediately provide a polynomial time
race detection algorithm. Fortunately, a characteriza-
tion of race conditions has been created that does lead
to a polynomial time algorithm [7]. This characteri-
zation will be given in Theorem 2.2 below.

2.5 Known Results

The following theorem captures a property of
weakly-ordered communication [7).

536

Theorem 2.1 Given any matches (s1,71)
and (s2,73), if $1 precedes so and ry precedes ry, then
sy and ro are not compatible.

The following ordering relations will be needed for
the efficient characterization of race conditions.
Given matches (s1,m1) and (s2,72),

R ((s1,71), (82, 72)) iff:
e 5 and ry are compatible and s; precedes s3, or
e s and ry are compatible and r; precedes 5.

The “happened-immediately-before” relation for
message-passing systems with weakly-ordered commu-
nication, Ry, is defined as follows:

1. Given events z and y, Ry(z,y) iff:
e precedes y.

Given an event z and a match (s, r), Rp(z, (s, 7))

iff:
er=sorz=r.

3. Given a match (s, r) and an event z, Rx((s,7), z)
iff:

e corr(s) immediately precedes z and corr(s)
is a WS, or

o corr(r) immediately precedes z.

Given matches (s1,71) and

Rp((s1,71), (82, 12)) iff:
hd Rm((sly 1'1), (52) 7'2)).

Intuitively, these rules capture the ordering rela-
tionships between the starting times of events and
matches. Rule 1 captures the fact that events are ex-
ecuted sequentially per process. Rule 2 states that
a match between PS s and PR r cannot occur un-
til events s and r have begun execution. Rule 3 states
that the event following a WS (respectively, WR) can-
not begin execution until the PS (PR) event for which
the WS (WR) is waiting has been matched. Rule 4
captures the message-ordering properties of weakly-

ordered communication. Finally, relation R}T is the
“happened-before” relation for message-passing with
weakly-ordered communication, and is analogous to
Lamport’s “happened-before” relation [18]. However,
unlike Lamport’s “happened-before” relation, Rf is
a partial order of the events and the matches, rather
than simply events. Matches are included in this re-
lation because matches depend on earlier events (by
Rule 2), matches depend on earlier matches (by Rule
4), and events depend on earlier matches (by Rule
3). The fact that matches must be included in the
“happened-before” relation will have a significant im-
pact on the detection of race conditions.

Definition: Given any match (s1,71) and any PS
s2, (51,71) and sy conflict iff

(s2,72),

e s, and r; are compatible,

¢ sy and s, were executed by different processes,
. -ﬂR;‘;((sl,rl), sg), and

e sy is not matched to a PR r; where ry precedes
r1.

Theorem 2.2 gives a precise characterization of
those programs that have race conditions [7].

Theorem 2.2 A program ezecution (E,M) has a
race condition iff there ezists a match (s1,71) and a
PS sy which conflict.

Given Theorem 2.2 it is relatively simple to create
an O(NZ2N?) time off-line race detection algorithm.
The main bottleneck in this algorithm 1is testing if
R ((s1,71),52). This bottleneck can be overcome
with the use of logical clocks, as will be described in
the next section.

3 Logical Clocks

A logical clock is a value that is associated with each
element of a partially ordered set in order to speed
the comparison of items in the set [12, 14, 18, 21, 26].
In this section we will see how logical clocks can be
created for events and matches in the context of on-
the-fly race detection.

3.1 Type A Clocks

The first type of logical clock we will consider is a
natural extension of the vector clocks that were cre-
ated for message-passing systems with blocking sends
and receives [12, 21]. These clocks, which we call Type
A clocks, are defined below.

Given any vectors u and v, let sup(u, v) denote the
component-wise maximum of u and v. Given any vec-
tor v and index 7, let inc(u,?) denote the vector v
where v[i] = u[i] + 1 and v[j] = u[j] for j # 1.

Each event or match z is assigned a clock A® which
is a vector of N, integers. Type A clocks are calculated
as follows:

o If y is the first event in soine process i:
— AY[]] =1
— AY[j] :=0for all j #1.

e If z and y are events in some process ¢ where z
immediately precedes y:

— AY = inc(A%,i);
— if there exists a match (s,r) such that

Ri((s,), 9):
AY := sup(AY, AG)).

e If (s,7) is a match:

— A7) = sup(A®, A7),

—for all matches (s',7')
Rh((sl) rl)) (31 T)):
AGr) = sup(AGT), A(’l"’)).

such that

537

Intuitively, given any event or match z, A®[7] gives
the number of events in process ¢ that must have be-
gun execution when « began execution. The following
theorem shows that Type A clocks can be used to de-
termine certain R; relations. The proof is given in
the appendix.

Theorem 3.1 Given any event a and any event or
match b where a £ b,

Ri(a,b) & A%[proc(a)] < A’[proc(a)].

Note that Theorem 3.1 provides an efficient means
for determining if R;f(a,b) where a is an event and
b is a match. However, it does not allows us to effi-
ciently determine if R;f (a,b) where a is a match and
b is an event, which is what is required for detecting
race conditions. This is because A® provides infor-
mation about the events that must happen before z,
but not about the matches that must happen before
z. One approach to solving this problem would be to
add to A® information about matches that must have
happened before z. However, this cannot be done effi-
ciently because the matches are only partially ordered
with respect to one another, even if we restrict our
attention to the matches that were either sent from or
received at a single process. In contrast, the events
that are executed at a single process are totally or-
dered with respect to one another, which is why the
clock A% can encode the set of events at process
that must have happened before z in the single inte-
ger A%[3].

3.2 Type B Clocks

We will now introduce logical clocks that can be
used to test if R; (a,b) where a is a match and b is
an event. These clocks, which we call Type B clocks,
are similar to Type A clocks, except they record in-
formation about the number of events in each process
that must have begun execution after a given match or
event began execution. Type B clocks are calculated
as follows:

o If z is the last event in some process i:
- B*li] =1,
— B®[j] :== 0 for all j # 4.

o If z and y are events in some process ¢ where z
immediately precedes y:

— B® :=inc(BY,1);
— if there exists a match (s,r) such that
Ru(z, (s, 7)):
B? := sup(B®, B(:"),

o If (3; 7') is a match:
~ BGM[4] := 0 for all 7;

— for all events y such that Rp((s,r),y):
B(":') s SUP(B(”"),BV).

— for all matches such that

(s',7)
Riu((s,7r), (s',7)):
BG:7) = sup(B(), B(s’,r’)),

Theorem 3.2 Given any event or match a and any
event b where a £ b,

Ri(a,b) < B°[proc(b)] > B®[proc(b)].

As a result of Theorem 3.2, Type B clocks can be
used to create an efficient off-line race detection al-
gorithm. However, the Type B clock of an event or
match £ depends on the clocks of events and matches
that happened after z, so Type B clocks are not well-
suited to on-the-fly race detection. To be more precise,
it is possible to use Type B clocks for on-the-fly race
detection, but the algorithm has prohibitive storage
requirements because the clocks cannot be discarded,
due to the fact that events and matches that occur
much later could cause them to be updated. What is
needed for on-the-fly race checking is a type of clock
that depends only on the clocks of earlier events and
actions, plus the clocks of at most a small number of
later events and actions.

3.3 Type C Clocks
We will now formally define Type C clocks. Assume
that each event or match ¢ has a Type A clock A®

as defined above. Given any match (s,r), C(>7) is
calcul-*- " as follows:

o CG[j] := oo for all 5;

o for all matches (s, r’) such that R}, ((s,7), (s', 7))
and for all events y such that Rx((s’,7'),y):

CN)[proc(y)] := min(CC[proc(y)], AY [proc(y))).
The following theorem is proven in the appendix.

Theorem 3.3 Given any match (s,r) and any event
z, R;T((S,T)’x) & 37 such that C(“:")[j] < Ax[]]

As a result of Theorem 3.3, Type A and C clocks
can be used for race detection. Note that Type C
clocks are fundamentally different from all previously
defined logical clocks [12, 14, 18, 21, 26], as they must
be used in conjunction with another type of clock in
order to test the “happened-before” relation.

3.4 Type D Clocks
Type C clocks still have the disadvantage that

CG) can depend on events and matches that happen
much later than (s,r). However, by making a small
change to these clocks, we will be able to remove this
problem. The resulting clocks, called Type D clocks,
are defined formally below. Assume that each event
or match z has a Type A clock A® as defined above.

Given any match (s, r), D7) is calculated as follows:

o D(M[] := oo for all §;

538

e for all matches (s', ') such that R}, ((s,), (s, 7))
and corr(r) does not precede r/, and for all events
y such that Rx((s', '), y):

DN proc(y)] := min(D7) [proc(y)], AY [proc(y)]).

The following theorem shows how Type A and D
clocks can be used for race detection.

Theorem 3.4 Given any match (s,r) and any event
z, RZ-((S,T)J) & 37 such that D(’:')[j] < A%[j].

The following theorem characterizes the types of
matches that can be related by the R, relation.

Theorem 3.5 Given any matches (s51,7)
and (s2,72), if Rm((s1,71), (52,72)) then vy precedes
ry.

As a result of Theorem 3.5, it follows that for any
match (s, r), there are at most N, matches (s', ') such

that R} ((s,r),(s’,7')) and corr(r) does not precede

/. Therefore, given any match (s,r), D(*>") depends
only on the clocks of at most O(N,) events.

4 On-the-fly Race Detection

We will now show how Type A and D clocks can be
used to create an efficient on-the-fly race detection al-
gorithm. Throughout this section we will assume that
the events and matches are read by the race detection
program in a conststent order, that is in some total
order that is consistent with the R,T relation.

4.1 Data Structures

Our race detection algorithm maintains N, linked
lists of events, denoted Ly, Ls, ..., Ln,, where L; con-
tains the events executed by process ¢ stored in the
order in which they were executed. Each event z has
a pointer to its corresponding event, corr(z). The
algorithm also maintains the matches that have oc-
curred, and it maintains pointers between each match
(s,r) and the events s and r. A Type A clock is main-
tained for each event and match, and a Type D clock
is maintained for each match.

4.2 Calculating the Logical Clocks
Whenever a new event or match z is read by the
race detection algorithm, A” is calculated. It is pos-
sible to calculate A® immediately upon reading z be-
cause A” depends only on those clocks AY such that
Ri(y,z), so AY has already been calculated. If z is an
event, A” is a function of events and matches that
can be located in O(1) time using the data struc-
tures described above. If £ = (s,r) is a match, it
is necessary to locate each match (s’,7') such that
Ry, ((s',7), (s,7)). It follows from Theorem 3.5 that »’
precedes r. In fact, the following theorem shows that
only the N, PRs preceding r are involved in matches
that need to be checked in order to calculate A%.

Theorem 4.1 Given any matches (s,r) and (s',7')

where corr(r') precedes v, AT[j] > AC'"[j] for each
process j.

Proof: Let j be an arbitrary process and let z be
the event such that corr(r’) immediately precedes z.
Note that Rp((s' ,r'),zfg and z precedes r. Therefore,
it follows from the definition of Type A clocks that
ACOf) < A*[f] < AT[j). O

In addition, we must calculate the Type D clocks
for the matches. When a match (s,r) is read,
each entry in its clock D(*") is initialized to infin-
ity. The clock D" must then be updated with
the Type A clocks of certain events. However, those
events come after (s,r), so they are not known
when (s,r) is read. Instead, when each event y
is read and AY has been calculated, if there is a
match (5',7') such that Ry((s',r'),y) we search for
each match (s,r) such that R}, ((s,r),(s',7')) and
corr(r) does not precede r and set DG [proc(y)] :=
min(DC" [proc(y)], AY[proc(y)]). It follows from The-
orem 3.5 that proc(r) = proc(r'), so only those
matches received at a single process have to be tested
to see if their Type D clocks should be updated with
AY. Furthermore, it follows from the definition of
Type D clocks that only O(N;) such matches have
to be tested.

4.3 Detecting Races

In order to detect race conditions, for each match
s1, 7'1& and PS sy, we must check if (s1, 1) and s con-
ict. Given a PS sy we will check the O(N,) matches
(s1,71) such that proc(ry) = dest(s2) to see if (51,711
and s; conflict. We cannot do this when we read P,
s, because the conflicting match Ssl, r1) might not
yet have been read. However, it follows from the fol-
lowing theorem that if s; is matched to a PR 7y, a
conflicting match (s1,71) must have been read before
(s2,7p) is read.

Theorem 4.2 Given any matches
(s1,71) and (s2,73), if (51,71) and sy conflict, then

R} ((s1,71), (s2,72)).

Proof: It follows from the definition of conflict
that s; and r; are compatible and r, precedes
r9. Therefore, Rm((sl,rlf, (s2,72)), which implies

R-}t((sl’ 1‘1), (SZa 7'2))' jm]

Thus whenever a match (s2, r2) is read, the O(N,)
matches (s1, 1) such that r; precedes ry are tested to
see if (s1, rlg and ss conflict. This will detect if gsl, r1)
and sz conflict for any matched PS s;. Possible con-
flicts involving unmatched PS events are tested after
all of the inputs have been read.

It should be noted that the above tests use the Type
D clocks of earlier matches in order to detect race
conditions, despite the fact that the Type D clocks are
initially set to infinity and are modified as later events
are read. Fortunately, it can be shown that because
the events and matches are read in a consistent order,
the above tests will always be correct (even if the Type
D clocks have not been completely calculated).

4.4 An Improvement

The algorithm described above can be improved
due to the following observation. It has been shown

539

that only the O(N,) most recent events per process,
and their associated matches, need to be maintained
for the calculation of Type A and D clocks. Thus, each
list L; will only hold the most recent O(N,) events,
and events no longer on these lists will be deleted.
In addition, matches involving events that have been
deleted can also be deleted, unless they are still needed
for race detection. It is immediate from the defini-
tion of a conflict that if (s;,7;) and sy conflict, then
source(r,) must be a wildcard, so the match (s1,r)
1s not needed for race detection if source(rlglis not a
wildcard. In fact, the following theorems show that
even among the matches with wildcard sources, only
a few cannot be deleted.

Theorem 4.3 Given any matches (s1,r1), (si,r]),
and (sg,72), where source(ry) source(r})
wildcard, tag(ry) = tag(r}), and ry precedes r} which
precedes rq, if (s1,71) and sy conflict then either
(s}, 7)) and s2 conflict or (s1,m) and s conflict.

Theorem 4.4 Given any matches (s1,71) and
(s}, r}) where source(r1) = source(r}) = wildcard,
tag(ri) = tag(r}), and ry precedes ry, and given any
unmatched PS so, if (s1,71) and sy conflict then either
(s1,7)) and s3 conflict or (s1,71) and s} conflict.

As a result of Theorems 4.3 and 4.4, given any
process 7, in addition to the matches that have PR
events in L;, we will only store matches with wildcard
sources, and among such matches, we will only store
the most recent match for each tag value (including
the wildcard value). Furthermore, in order to speed
the search for a conflicting match (sq, r1), we will store
the match (s1,71) in a balanced search tree Tproc(r,)
indexed according to tag(r,). Given any PS sy, we will
only have to test at most two matches in the search
tree Tyest(s,), one with the wildcard tag and one with
tag equal to tag(sy).

4.5 Analysis

We first consider the time required to maintain the
logical clocks. Given each new event or match z that
is read by the program, A® is a function of at most
O(N,) other clocks. These clocks can be located in
O§N,i time, and all N, components of each clock
must be examined, so the time required to calculate
A? is O(NpN;). When a new match (s, r) is read, the
clock DG is initialized in O(N,) time. Then when
a new event z is read, at most O(N,;) Type D clocks
must be updated. These clocks can be found in O(N2)
time by using a simple marking algorithm to calculate
the R; relation. Once these clocks have been found,
their Type D clocks can each be updated in constant
time, so the time required to update Type D clocks
given a new event z is O(Nﬁ?. Thus the total time
spent calculating clocks for all events and matches is
O(N.NyN, + N.N2).

Given a PS sy, in order to test if there exists
a match (sy,7;) such that (sy,r;) and s, conflict,
at most O(N;) matches with PR events in Lgest(s,)
have to be tested, along with at most two matches

in Tyest(s;)- Because Tgesi(s,) contains at most N
matches, all of the possibly conflicting matches can
be found in O(N, + logN;) time. Each of these
matches can be tested for a conflict in O(N,) time,
so the total time for testing conflicts with a f’S s9 18
O(N, N +log N;), and the time for testing for conflicts
with all PS events is O(N.Np No+ N, log Ny). We must
also maintain the necessary pointers and balanced
search trees, but these operations do not dominate the
running time. As a result, the entire race detection
algorithm requires O(N,N,N, + N.N2 + N, log N;)
time. This is a significant improvement over the
naive O(N2N?) time off-line algorithm based on The-
orem 2.2.

Although our algorithm uses logical clocks of length
N,, the fact that older events and matches can be
deleted greatly limits the storage required. In par-
ticular, only O(NpN;) events and O(Ny N, + NpNy)
matches (N, per L; and N; per T;) must be stored.
Because each event and each match requires O(N,)

memory, the entire algorithm uses O(NPZN, + N}?N,)
memory.

5 Concluding Remarks

This paper described an algorithm that detects race
conditions in program executions which use blocking
and nonblocking send and receive primitives. The key
to the algorithm’s efficiency is the use of two new types
of logical clocks for testing the “happened-before” re-
lation for blocking and nonblocking sends and receives.

In the future we plan to create a tool that will au-
tomatically determine if an execution of a message-
passing program is portable and repeatable. We have
shown that any execution (with locally deterministic
events) is portable and repeatable if and only if it is
free from race conditions and it does not have any
system buffer dependencies [7]. Thus we will use the
race detection algorithm presented here, in conjunc-
tion with a test for system buffer dependencies, to
determine the portability and repeatability of the ex-
ecution.

References

[1] D. Callahan, K. Kennedy and J. Subhlok, “Anal-
ysis of Event Synchronization in a Parallel Pro-
gramming Tool”, in Proc. ACM Symp. on Prin-
ciples and Practice of Parallel Programming, pp.
21-30, 1990.

J-D. Choi and S. Min, “Race Frontier: Reproduc-
ing Data Races in Parallel-Program Debugging”,
in Proc. ACM Symp. on Principles and Practice
of Parallel Programming, pp. 145-154, 1991.

T. Cormen, C. Leiserson and R. Rivest, “Intro-
duction to Algorithms”, The MIT Press, Cam-
bridge, MA, 1990.

3]

[4] R. Curtis and L. Wittie, “BugNet: A Debug-
ging System for Parallel Programming Environ-
ments”, in Proc. 8rd Intl. Conf. on Distributed

Computing Systems, pp. 394-399, Oct. 1982.

540

[5] R. Cypher, “Message-Passing Models for Block-
ing and Nonblocking Communication”, DIMACS
Workshop on Models, Architectures, and Tech-
nologies for Parallel Computation, pp. 274-279,
Tech. Rep. 93-87, DIMACS, Sept. 1993.

R. Cypher and E. Leu, “The Semantics of Block-
ing and Nonblocking Send and Receive Primi-
tives” in Proc. 8th IEEE Intl. Parallel Processing
Symp., pp. 729-735, 1994.

R. Cypher and E. Leu, “Repeatable and Portable
Message-Passing Programs”, in Proc. ACM
Symp. on Principles of Distributed Computing,
pp- 22-31, 1994.

(6]

S. Damodaran-Kamal and J. Francioni, “Nonde-
terminacy: Testing and Debugging in Message
Passing Parallel Programs”, in Proc. ACM/ONR
Workshop on Parallel and Distributed Debugging,
pp. 118-128, 1993.

A. Dinning and E. Schonberg, “An Empirical
Comparison of Monitoring Algorithms for Access
Anomaly Detection”, in Proc. ACM Symp. on
Principles and Practice of Parallel Programming,
pp. 1-10, 1990.

J. Dongarra, R. Hempel, A. Hey and D. Walker,
“A Proposal for a User-Level, Message-Passing
Interface in a Distributed Memory Environment”,
ORNL Tech. Rep., ORNL/TM-12231, June 1993.

P. Emrath, S. Ghosh and D. Padua, “Event Syn-
chronization Analysis for Debugging Parallel Pro-

grams”, in Proc. Supercomputing ’89, pp. 580~
588, Nov. 1989.

[10]

[1

—

C. Fidge, “Logical Time in Distributed Comput-
ing Systems”, IEEE Computer, pp. 28-33, Aug.
1991.

D. Frye, R. Bryant, H. Ho, R. Lawrence and M.
Snir, “An External User Interface for Scalable
Parallel Systems”, Tech. Rep., IBM Highly Par-
allel Supercomputing Systems Lab., Nov. 1992.

D. Helmbold, C. McDowell and J-Z. Wang, “De-
termining Possible Event Orders by Analyzing
Sequential Traces”, IEEE Trans. on Parallel and
Distributed Systems, 4(7), pp. 827-840, 1993.

M. Hurfin, N. Plouzeau and M. Raynal, “ERE-
BUS: A Debugger for Asynchronous Distributed
Systems”, In Proc. 3rd Intl. IEEE Workshop on
Future Trends in Distributed Computing Systems,
pp. 93-98, Apr. 1992.

Intel Corp., “Intel iPSC/860 Programmer’s Ref-
erence Manual”.

{17] Y-K. Jun and K. Koh, “On-the-fly Detection of
Access Anomalies in Nested Parallel Loops”, in
Proc. ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pp. 107-117, 1993.

(15]

(16]

[18] L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System”, CACM, 21(7),
pp. 558-565, 1978.

[19] T. Leblanc and J. Mellor-Crummey, “Debugging
Parallel Programs with Instant Replay”, IFEE
Transactions on Computers, C-36(4), pp. 471-
482, 1987.

[20] E. Leu, A. Schiper and A. Zramdini, “Effi-
cient Execution Replay Technique for Distributed
Memory Architectures”, in Proc. 2and Euro-
pean Distributed Memory Computing Conference,
LNCS 487, Springer-Verlag, pp. 315-324, Apr.
1991.

F. Mattern, “Virtual Time and Global States of
Distributed Systems”, in Parallel and Distributed
Algorithms, M. Cosnard and P. Quinton, eds.,
North-Holland, Amsterdam, pp. 215-226, 1989.

(21]

J. Mellor-Crummey, “Compile-Time Support for
Efficient Data Race Detection in Shared-Memory
Parallel Programs”, in Proc. ACM/ONR Work-
shop on Parallel and Distributed Debugging, pp.
129-139, 1993.

(22]

[23] Message Passing Interface Forum, “Document for
a Standard Message-Passing Interface (Draft)”,

Apr. 1994.

R. Netzer, “Optimal Tracing and Replay for De-
bugging Shared-Memory Parallel Programs”, in
Proc. ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pp. 1-11, 1993.

[24]

[25] R. Netzer and B. Miller, “Improving the Accu-
racy of Data Race Detection”, in Proc. ACM
Symp. on Principles and Practice of Parallel Pro-

gramming, pp. 133-144, 1991.

R. Netzer and B. Miller, “Optimal Tracing and
Replay for Debugging Message-Passing Parallel
Programs”, in Proc. Supercomputing ’92, pp. 502-
511, Nov. 1992.

Thinking Machines Corp., “CMMD Reference
Manual, version 3.0”, May 1993.

(26]

(27]

Appendix

Theorem 3.1 Given any event a and any event or
match b where a # b,

R} (a,b) & A°[proc(a)] < A’[proc(a)].

Proof: a) =: If Rf(a,b), there must exist a se-
quence of events and/or matches z1,3,..., %% such
that z; = a, zx = b, and Rh(z.;,z;H} forl <i<k.
If z; and ;4 are both events, it follows that either
A%in [proc(t:j] = A%[proc(a)] or A%+i[proc(a)] =
A”‘[proc(af)] + 1. If one gor both) of z; and 41 is a
match, it follows that A+ [proc(a)] > A®¢[proc(a)].

541

Therefore, in any case A%+ [proc(a)] > A% [proc(a)],
which implies that A4 [proc(a{(] > A"[proc&a)].

b) <: Assume for the sake of contradiction that
Ac[proc(a)] < A’[proc(a)] A =Rjf(a,b). Given any
event or match z, let S, be the set of all events and
matches y such that Rx(y, z). Note that for any event
or match z, A® is a function of the Type A clocks of the
events and matches in S;. Given any event or match z,
define inherited(z, a) to be an event or match y € Sy
such that for all z € Sz, A? [proclga] < AY[proc(a)].
Note that inherited(z, a) is defined for all such that
Sz is nonempty.

Let z1,%2,...,2r be the sequence of events and
matches such that z; = b, S, 1s empty, and z;4; =
inherited(z;,a) for 1 < ¢ < k (the sequence must
be finite because z;y; = inherited(z;,a) implies
Ru(%i41,2:)). It follows from the definition of Type A
clocks that for all 4, 1 < i < k, either A% [proc(a)] =
A%i+1[proc(a)] or A% [proc(a)] = A%+ [proc(a)] + 1.
Let j be the largest integer less than or equal to k
such that A®i[proc(a)] = A*[proc(a)] (j must exist
because A%[proc(a)] > 1 and A®*[proc(a)] < 1). Note
that either z; = zj or there exists an z;4; such that
A%i+iproc(a)] = A%jproc(a)] — 1. I z; = =z, be-
cause A%[proc(a)] > 1 it follows that A% [proc(a)] =
1 and z; is the first event in process proc(a), so
it follows that z; = a. On the other hand, if
A%i+t[proc(a)] = A%[proc(a)] — 1, it follows from the
definition of Type A clocks that proc(z;) = proc(a).
Because A%i[proc(a)] = A®[proc(a)], it follows that
z; = a. Therefore, in either case z; = a, which im-
plies that R} (a,b), which is a contradiction. O

Theorem 3.3 Given any match (s,r) and any event
z, Rf ((s,r),z) & 3j such that cGr[4] < A%[4].
Proof: a) =: If R} ((s,r),), it follows that there
exists a sequence of events and matches y,y2,..., ¥k
such that y1 = (s,7), y¢ = =, and for all 7, 1 < i <k,
R;.(y.-, Yit+1). Let h be the smallest integer such that
yn 1s an event. Note that Ru(ya—1,ys) where ys_1
is a match and yx is an event. Also, note that ei-
ther (s,r) = yn—1 or RE((s,r),yn—1). Therefore,
it follows from the definition of Type C clocks that
CG M) [proc(yn)] < A¥*[proc(yn)]. Also, note that ei-
ther y, = z or R (ya,z). Therefore, it follows from
Theorem 3.1 that AY*[proc(ys)] < A%[proc(ys)]. As a
result, ") [proc(ys)] < A® [procgyh)].

b) <: Assume for the sake of contradiction that
there exists a match (s, r), an event z, and a process
j such that C®"[j] < A®[j] A =Rf((s,7),z). Let
S be the set of all events z in process j such that
there exists a match (s’, ') where R}, ((s,7),(s', 7)) A
R;,S(s’ ,7),2). It follows from the definition of Type
C clocks that there exists an event z € S such that
CGn[j] = A%[j] (# must exist because C(*7[j] # 00).
Because CG[j] < A*[j), it follows that A*[j] <
AZ[j], and because proc(z) = j, it follows from The-
orem 3.1 that either z = z or R} (z,z). However,

R{((s, r),2), so Rz'((s, r),), which is a contradition.

