Detecting the First Races in Parallel Programs with Ordered
Synchronization*

Hee-Dong Park, and Yong-Kee Jun!

Dept. of Computer Science, GyeongSang National University
Chinju, 660-701 South Korea
{hdpark, jun}@nongae.gsnu.ac.kr

Abstract

Detecting races is important for debugging shared-
memory parallel programs, because the races result
. unintended nondeterministic executions of the pro-
grams. Previous on-the-fly techniques to detect races in
programs with inter-thread coordination such as ordered
synchronization cannot guarantee that the race detected
first is not preceded by events that also participate in
a race. This paper presents a new two-pass on-the-fly
algorithm to detect the first races in such parallel pro-
grams. Detecting the first races is important in debug-
ging, because the removal of such races may make other
races disappear including those detected first by the pre-
vious techniques. Therefore, this technique makes on-
the-fly race detection more effective and practical in
debugging parallel programs.

Keywords: parallel programming, ordered synchroniza-
tion, debugging, on-the-fly analysis, first race detec-
tion, two-pass protocol

1. Introduction

Many errors in shared-memory parallel programs are
the result of two or more instructions accessing the
same shared variable from different parallel threads
when at least one of the accesses is a write and the
accesses are not properly synchronized. We refer to
such errors as races. These races can result in nonde-
terministic program execution, making debugging par-
allel programs difficult. Traditional cyclic debugging

*This work was supported in part by Institute of Informa-
tion Technology Assessment, and Korea Science and Engineering
Foundation (Grant No. 971-0901-012-2).

tIn Qyeongsang National University, he is also involved in
both Institute of Computer Research and Development, and In-
formation and Communication Research Center, as a research
professor.

with breakpoints is often not effective in the presence
of races, because the breakpoints can change the exe-
cution timing causing the erroneous behavior to disap-
pear.

On-the-fly detection [3,4,9, 11] instruments the pro-
gram to be debugged, and monitors an execution of the
program. The monitoring process reports races which
occur during the monitored execution. This approach
can be a complement to static analysis [2, 6], because
on-the-fly detection, as described in this paper, can be
used to identify feasible (real) races from the poten-
tial races reported by static analysis approaches. On-
the-fly detection also requires less storage space than
post-mortem detection [5, 7, 14] because much of the
information collected by the monitoring process can be
discarded as an execution progresses. Although on-the-
fly detection may not report as many races as current
post-mortem detection algorithms, at least one race is
guaranteed to be reported for each variable involved in
a race.

The algorithm reported in this paper is an on-the-
fly algorithm that detects the races that “occur first.”
Intuitively, the races that occur first are races between
two accesses that are not causally preceded by any
other accesses also involved in races. The first races
are important in debugging, because the removal of
such races may make other races disappear. It is even
possible that all races reported by other on-the-fly al-
gorithms would disappear once the first races are re-
moved. Reporting the first races is preferable to previ-
ous techniques which might require several iterations of
monitoring, because the cost of monitoring a particular
execution 1s still expensive.

This paper introduces an on-the-fly technique to de-
tect the first races in a particular execution of shared-
memory programs with ordered synchronization. Sec-
tion 2 shows some definitions related to our technique,
and states problems of the previous on-the-fly tech-

niques to detect the first races. Our new two-pass
algorithm for detecting the first races is presented in
Section 3. And, the related works are given in Section
4, before concluding the paper.

2. Background

In this section, we first describe the first races in a
program execution which is represented by a directed
acyclic graph called POEG (Partial Order Ezecution
Graph) [4]. And then we describe existing on-the-fly
techniques and discuss the problems of the techniques
for detecting the first races.

2.1. TheFirst Race

Parallel programs may have parallel loop constructs
such as PARALLEL DO and END DO. In an execution of
such programs with parallel loops, multiple threads of
control are created at a PARALLEL DO and terminated
at the corresponding END DO statement. These fork
and join operations are called thread operations. If two
threads are coordinated by synchronization primitives
such as the POST and WAIT, the thread that issues WAIT
may not execute beyond the coordination point until
the thread that issues POST reached the corresponding
point. On the other hand, the posting thread may
proceed immediately. These post and wait operations
are called coordination operation. A block is a sequence
of instructions, which is executed by a single thread and
does not include thread or coordination operations.

In this work, we consider parallel programs with
nested parallel loops and ordered synchronization in
which any pair of the corresponding coordination
points are on ordered sequence such as ordered criti-
cal section [15] and sequence synchronization for soft-
ware pipelining [16]. The synchronization constructs
in OpenMP Fortran APT [15] includes ORDERED and
END ORDERED directives for the ordered critical sections
which can appear in the dynamic extent of a PARALLEL
DO directive. These directives is executed in the or-
der in which iterations would be executed in a sequen-
tial execution of the loop, while allowing program out-
side the section to run in parallel. PCF Fortran [16]
provides the primitives for sequence sysnchronization,
which is useful for communicating between iterations
of a loop, or for communicating between distinct loops.
Any sequence of events that can be numbered with
an arithmetic sequence can be synchronized using the
three primitives: SET to define an arithmetic sequence,
POST to indicate that computation for a particular el-
ement of the sequence 1s complete, and WAIT to ensure

'

Figure 1. The first races in an execution

that the computation for a particular element of the se-
quence to complete. Sequence synchronization is more
general than the ORDERED directives, because anything
that can be done with the directives can also be done
with sequence synchronization, but the reverse 1s not
true.

The concurrency relationship among blocks is repre-
sented by the POEG. A vertex of POEG represents a
thread or a coordination operation, and an arc originat-
ing from a vertex represents a block or a coordination
starting from the corresponding operation. Figure 1
shows a POEG that is an execution instance of a par-
allel program with ordered synchronization, where a
small filled circle on a block represents an access event
executed by the block to a shared variable X. In this
figure, six accesses are executed by three threads, and
two coordination activities occurred between four coor-
dination vertices which is represented with small empty
circles.

Because the graph captures the happened-before re-
lationship [12], it represents a partial order over a set
of the events executed by blocks that make up an exe-
cution instance of the program. Concurrency determi-
nation is not dependent on the number or the relative
execution speeds of processors executing the program.

Definition 2.1 An event e; happened before another
event e;, denoted by e; — e;, if there exists a path from
e; toe; ina POEG. Any two events are ordered if one
happened before the other. Two events are concurrent
with each other, if there exist no paths between them.

The maximum number of mutually concurrent threads
defines the mazimum concurrency of a program. For
example, consider the access events in Figure 1, where
ri and wj denote read and write accesses to a shared
variable, respectively. The ¢ and j in the preceding
are used to indicate the order in which the events are
observed in a particular execution. A read access r0
happened before a write access w3 because there exists
a path from r0 to w3, and we say these two accesses

are ordered. And, r0 is concurrent with w5, because
there exist no paths between them. The maximum
concurrency of the graph is three.

Two accesses to a shared variable are conflicting ac-
cesses 1if at least one of them is a write. If two access
events, e; and e;, are conflicting accesses and concur-
rent, then the two events constitute a race denoted
€i-€;.

Definition 2.2 An access ¢; is affected by another ac-
cess e;, if e; — e; and e; is involved in a race.

Definition 2.3 A race ¢;-¢; is unaffected, if neither
e; nor e; s affected by any other accesses. The race s
partially-affected, if only one of e; or e; is affected by
another access.

Definition 2.4 A tangle T' is a set of partially-affected
races such that if e;-e; 15 a race in T' then exactly one
of e; or e; is affected by ey such that eg-e; is also in

T.

Definition 2.5 A first to occur race or simply a first
race s either an unaffected race or a tangled race.

The term tangled race was introduced by Netzer and
Miller [14] and describes the situation when no single
race from a set of tangled races is unaffected by the oth-
ers. Note that there can never be exactly one tangled
race in an execution. Consider the accesses to shared
variable X in the POEG shown in Figure 1. There ex-
ist seven races in the execution: r0-wb, rl-w4, rl-wb,
r2-w3, w3-w4, w3-wd and w4-wdH. Among them, only
two races, r0-wb and r2-w3, are the first races which
are tangled races. Eliminating these two races may
make the other five affected races disappear.

2.2. On-the-fly Race Detection

In this subsection, we introduce the previous tech-
niques for on-the-fly race detection and then discuss
their limitations to detect the first races for the execu-
tion model considered here.

The existence of a race involving a shared variable
is solely a function of which events access the variable
and the concurrency relationship between the events.
Therefore, we can consider races for each shared vari-
able independently. Current on-the-fly race detection
algorithms use a race detection protocol [4, 9, 11, 13]
which maintains an access history for each shared vari-
able and reports the detected races, and a labeling
scheme [1, 4, 8, 13] to generate the concurrency infor-
mation called label of each thread. The labels for two
threads can be compared to determine if the events in
the threads are ordered or concurrent.

Figure 2. Accesses with arace

Figure 3. A tangled race

The race detection protocols can be classified into
two groups: first race detection [9, 11], and race ver-
ification [4, 13]. With the protocols of race verifica-
tion, at least one race is guaranteed to be reported for
each shared variable if it 1s involved in a race, but a
race detected first can not be guaranteed to be a race
that occurred first. The first race detection provides
the protocols capable of detecting the first races, al-
though their programming models are more or less re-
strictive: only non-nested parallelism [11], and nested
parallelism with no other inter-thread coordination [9].
In this work, we present a new two-pass protocol which
extends the previous protocols again to first race ver-
ification in the first pass, and detects the first races
in the second pass for the parallel program which has
inter-thread coordination of ordered synchronization.

The protocols for first race detection [9, 11] are
based on identifying key accesses that could partici-
pate in a first race. The protocol keeps in the access
history three types of key accesses: read key, write
key, and read-write key. AH(X,R), AH(X,W), and
AH (X, RW) denote each set of these keys, respectively,
in the access history for a shared variable X. Races
are detected by checking three kinds of pairs among
the concurrent and conflicting key accesses: write and
write, read and write, and read and read-write. These
protocols, however, do not work for the programs with
inter-thread coordination.

Consider a series of POEGs shown in Figures 2 and
3. In this case, the above protocols will fail to find the
race rl-w4. First, look at the case of Figure 2. After
r0 is executed, AH (X, R) will contain r0 since it is a
key. The following r1 is not a key, because there exists
r0 that happened before r1, so r1 will be discarded.
Also 2 is a key and will be added to AH (X, R), and
w3 be added to AH (X, RW) because r0 is a key and
happened before w3, and it can find the race r2-w3.

T1 T2
ro

n
' Wn+2

Mn+l
Figure 4. Synchronized events

Second, look at the next case in Figure 3. When w4 is
executed, the protocol adds it to AH (X, RW), because
r2 i1s a key and happened before w4. But, the protocol
fails to find r1-w4, because r0 — r1 and r1 has already
been discarded. This kind of limitation is addressed in
the protocol presented in this paper.

3. The First Race Detection

To present our two-pass monitoring protocol that is
an on-the-fly technique to detect the first races in paral-
lel programs with ordered synchronization, in this sec-
tion, we define first the set of candidate accesses which
can be involved in the first races. Then, we introduce
a new protocol which collects a subset of candidates in
the first pass, and then completes the set of candidates
in the second pass.

3.1. The Candidate Accesses

To detect the first races in one monitored execution
of parallel programs with ordered synchronization, we
must store all the accesses that occurred before the
current access monitored, in the worst-case, which may
incur impractical space complexity. For example, con-
sider Figure 4 which shows two threads and many inter-
thread coordinations between them. In this case, the
first race involves r, and wyp42. To wait until wp4s
appears, we have to keep into the appropriate access
history all the accesses considering the synchronization
events of thread 77, because we can not expect when
the access wpyo occurs. This method therefore can
incur potentially unbounded space, and then imprac-
tical. To cope with this problem, we identify w,ys in
the first pass, and thereafter compares every read with
Wp 42 during the reexecution of the second pass to de-
termine another candidate r,,. This is the main idea of
our two pass on-the-fly technique.

Definition 3.1 A read (write) access a; is a read
(write) candidate, if and only if (1) a; is involved in a
race, and (2) there exists no other access ap such that
ap, — a; and ap is involved in a race.

Definition 3.2 A write access w; is a read-write can-
didate or r-write candidate, if and only if (1) w; is
involved in a race, (2) there exists a read candidate rp
which happened before w;, and (3) there exists no other
write access w, such that w, — w; and r, — w;.

Definition 3.3 The candidate set for a shared vari-
able X, denoted by CS(X), is a set of candidates
which occurred in an execution for a shared variable
X: CS(X,R) for a set of read candidates, C'S(X, W)
for a set of write candidates, and CS(X, RW) for a set

of r-write candidates.

For example, consider the accesses to a shared vari-
able X shown in Figure 3. The read access r0 is not
a candidate, because 70 is not involved in a race. The
read r1 and r2 1s a read candidate, however, because
rl is involved in a race with w4, and r2 with w3. The
write accesses w3 and w4 is an r-write candidate be-
cause they are involved in the race r2-w3 and rl-w4,
respectively. In summary, Figure 3 shows five accesses,
but candidates are four: r1, r2, w3, and w4.

All these candidates, however, is not always involved
in the first races. For example, assume that Figure 3
does not have r2. Then, the access w4 is not an r-
write candidate but a write candidate. In this case,
the race w3-w4 that involves an r-write candidate w3
is not a first race, because w3 is concurrent with a write
candidate w4 which is involved in r1-w4. Therefore, w3
is an r-write candidate which is not effective.

Definition 3.4 A read (write) candidate is effective
by itself. An r-write candidate is effective, if there does
not exist a write candidate.

An r-write candidate which is effective is not always
involved in the first races. For example, consider the
access w4 shown in Figure 1. In this case, w4 is an
r-write candidate which 1s effective, because there does
not exist any write candidate. This effective r-write
candidate w4, however, is involved in races with rl,
w3, and wbh, which are not first races. This is because
all the read candidates happened before w4, and then
there does not exist a read candidate which is concur-
rent with w4; all the races that involve w4 involves
the accesses which is affected by the read candidates.
Therefore, w4 is a pseudo r-write candidate although
it 1s effective.

Definition 3.5 A read (write) candidate is not peudo
by itself. An r-write candidate rw is pseudo, if there
does not exist a read candidate which is concurrent with
rw.

Definition 3.6 Given two concurrent candidates in
CS(X), a; and a;, which are effective and not pseudo,

| | pass-I | pass-11 |
AH(X,R) ry, T3
AH(X, W) | wh, w}, wi
CS(X,R) ro, T9
CS(X, W) | ws, wa, ws
CS(X,RW) w3, Wq, Ws

Table 1. AH and CS for Figure 1

a;-a; 1s a candidate race, if and only if a; and a; are in
one of the following two cases: (1) both a; and a; are
in CS(X,W); or (2) one of a; and a; is in CS(X, R),
and the other is in C'S(X, RW)UCS(X,W).

3.2. Two-Pass Protocol

To detect first races in two pass, our protocol collects
a subset of the candidates in the first pass, and then
completes the set of candidates in the second pass. By
the definitions of candidates, they are reproduced in
the second pass of monitored execution, but the order
in which two candidates are observed may be different
if they are concurrent. Our algorithm works in this
case. And, each current access halts the current thread
if it 1s a write or an r-write candidate in each pass of
the protocol. It is of no use to proceed more than the
current point in this case, because a write or an r-write
candidate does not happen before any other candidate.

The protocol checks in the first pass if every current
access is a candidate to get a subset of C'S(X). The
protocol is similar with the race verification protocol
using access histories, but it uses a special bit, called
affecting bit, for each access stored in access history.
The affecting bit is set if its access a; get involved in
a race. Affecting bits are shown in Table 1, which are
coded with asterisks attached to the accesses. And, in
this pass, the protocol does not discriminate write can-
didates from the r-write candidates which are filtered
out in the second pass.

Algorithm 1 The first pass uses AH(X) which has
two sets of read and write accesses, and produces
CS(X) which has two sets of candidates: one set for
read candidates, and the other for both write and r-
write candidates.

1. Update AH(X): (1) For all accesses in AH(X), if
there 1s an access ap which 1s happened before the
current and the affecting bit of ap, is true, return,
otherwise delete ay from AH(X); and (2) Add the
current to the corresponding set of AH(X).

2. Determine candidate: (1) For all accesses in
AH(X), if there is an access a; which is involved
n a race with the current, set to true the affecting
bits of both a; and the current. (2) Return, if the
affecting bit of the current is false.

3. Update C'S(X): Add the current to the CS(X, R)
if it is a read access, or to the CS(X, W) if it is a
write access.

4. Halt: Halt the current thread, if the current is a
write access.

In the above first-pass algorithm, the step 1 up-
dates the corresponding access history AH(X, R) or
AH (X, W) with the current access. This step makes
AH(X,R) and AH (X, W) contain the accesses which
are mutually concurrent. Any access which arrives in
the step 3 is a candidate, and then added to the cor-
rensponding C'S(X). For example, consider the case
shown in the Table 1 for the Figure 1 again. The first
access r0 is added to AH (X, R), and deleted when the
next read access r1 is observed in the step 1 of r1, The
write access w3 is added to AH (X, W) in its step 1.
w3 is also added to C'S(X, W) in its step 2 and 3, be-
cause w3 is concurrent with r2 which has been kept in
AH (X, R), and the affecting bits of both w3 and r2 is
set to true. This halts the thread which executes w3
in the step 4. The subsequent accesses w4 and w) are
also added to C'S(X, W), and halt the corresponding
threads.

Theorem 1 An access is a candidate which is effective
and not pseudo in an execution of program, if and only
if the access is involved in a first race.

Proofs of theorems appear in the appendix.

To complete C'S(X), the second pass protocol checks
if the current is a candidate, and filters an r-write can-
didate which is same with the current out of the set
of write candidates. In this case, the current access
was the r-write candidate in the first pass. Filtering
r-write candidates is important because the candidates
may not be effective or may be pseudo. After the sec-
ond pass, we report the candidate races as the first
races from the corresponding candidate set by Defini-
tion 3.6.

Algorithm 2 The second pass does not use AH(X),
but only uses C'S(X). CS(X) has three sets of candi-
dates including CS(X, RW).

1. Determine candidate: (1) For all accesses in
CS(X), if there is no access which is involved in

a race with the current, return; (2) In case of the

read current, return if there is a read candidate
in CS(X, R) which happened before the current;
and (3) In case of the write current, determine
of the current s an r-write candidate, by checking

CS(X, R).

2. Update CS(X):
sponding set of CS(X), if the current is a new
candidate; or move the current from CS(X,W)
to C'S(X, RW), if the current is an r-write candi-
date.

Add the current to the corre-

3. Halt: Halt the current thread, if the current is a
write or an r-write canidate.

For example, consider the case shown in the Table 1
and Figure 1. The first access r0, in the second execu-
tion, is added to C'S(X, R), because 70 is involved in a
race with w5 which has been kept in CS(X, W) in the
first pass. The next read access rl is returned in its
step 1. Another read access r2 is added to C'S(X, R),
because 72 is involved in a race with w3 which has been
kept in C'S(X, W) in the first pass. The subsequent ac-
cesses w3 and w4 which have been kept in CS(X, W)
are moved to C'S(X, RW), because there exist a read
candidate r0 which is happened before w3 and w4.
And, w5 is also moved to C'S(X, RW), because of the
read candidate 72 in C'S(X, R) which is happened be-
fore wbh. Finally, five candidates are detected as shown
in Table 1: two read candidates and three r-write can-
didates. When we report the first races with this result
in CS(X), we can identify that w4 is a pseudo r-write
candidate, because there does not exists any read can-
didate which is concurrent with w4. Therefore, the
remaining four candidates are involved in two tangled
races: r0-wb and r2-w3.

Theorem 2 There erists a first race a;-a;, if and only
if a;-a; 1s a candidate race.

The space complexity of our algorithm depends on
V which denotes the number of monitored shared vari-
ables, and T" which denotes the maximum parallelism
of the program. The access history requires O(T') space
for each shared variable, because it has at most two ac-
cesses for each thread. And then the required space for
candidate set is also O(T). The total space complexity
of our algorithm is therefore O(VT).

4. Related Works

Some works are reported to detect the first races
in parallel programs in [3, 9, 11, 14]. In this section,

we describe the existing techniques and compare them
with our technique.

Choi and Min [3] propose an on-the-fly technique
for reexecuting monitored programs to reproduce un-
detected races. The undetected races are such the races
that are not detected in the first execution of monitored
program, and then include the first races. To detect
the undetected races, they propose a method which
guarantees deterministic reexecution of the program up
to the point of the races detected first, allowing addi-
tional instrumentation that can locate the previously
undetected races. With this method, programmers re-
peat reproducing undetected races and debugging the
parallel program until the program does not include
any other races. This method, therefore, requires ad-
ditional efforts of the programmer to detect the first
races in parallel programs, allowing a cyclical debug-
ging such as breakpoint or execution replay. And, such
cyclical debugging leads to another drawback, because
it may require iterations of monitoring and the cost of
monitoring a particular execution is still expensive.

Kim and Jun [11] present a scalable on-the-fly tech-
nique for detecting the first races to reduce the central
bottleneck to serializing at most two accesses of each
thread. This technique checks each access, and com-
pares it with the other accesses to the same shared
variable. The main power of the technique is detect-
ing the first races in one monitored execution, but the
programs considered in the technique is restricted to
programs that have no other inter-thread coordination
or synchronization. Jun and McDowell [9] present an
on-the-fly technique to detect efficiently the first races
in programs that have nested parallelism and no other
inter-thread coordination. This technique also detects
the first races in one monitored execution.

Netzer and Miller [14] introduce a notion of the first
race, called non-artifact race, which uses the event-
control dependences to define how accesses affect each
other. They show a post-mortem method to detect the
races by validation and ordering of data races. Data
race validation determines the feasible races which in-
volve accesses that either did execute concurrently or
could have. Data race ordering identifies the races that
did not occur only as a result of other races.

5. Conclusion

In this paper, we present a two-pass on-the-fly algo-
rithm to detect the first races in programs which may
have ordered synchronization. This algorithm also can
be used for the nondeterministic programs such as Ada
programs with select statements, if we keep in the first
pass the sequence of accesses appeared until the candi-

dates, and then control the second pass using the access
sequence.

The main idea of the technique is identifying the
set of candidate accesses which includes all accesses in-
volved in first races. In the first pass, a subset of the
candidates is gathered. And, the second pass completes
the candidate set by detecting the candidates not de-
tected yet in the previous pass. And then, we report
the candidate races as the first races.

This technique makes on-the-fly race detection more
effective and practical in debugging a large class of
shared-memory parallel programs, since the removal of
the first races may make the races affected by the first
races disappear. We have been implementing our tech-
nique in a prototype system called Race Stand [10] for
debugging races in parallel programming environment.

References

[1] Audenaert, K., “Clock Trees: Logical Clocks for
Programs with Nested Parallelism,” Tr. on Soft-
ware Engineering, 23(10): 646-658, IEEE, Oct.
1997.

[2] Callahan, D., K. Kennedy, and J. Subhlok, “Anal-
ysis of Fvent Synchronization in a Parallel Pro-
gramming Tool,” 2nd Symposium on Principles

and Practice of Parallel Programming, pp. 21-30,
ACM, March 1990.

[3] Choi, J., and S. L. Min, “Race Frontier: Reproduc-
g Data Races in Parallel-Program Debugging,”
3rd Symposium on Principles and Practice of Par-
allel Programming, pp. 145-154, ACM, April 1991.

[4] Dinning, A., and E. Schonberg, “An Empirical
Comparison of Monitoring Algorithms for Access
Anomaly Detection,” 2nd Symposium on Princi-

ples and Practice of Parallel Programming, pp. 1-
10, ACM, March 1990.

[6] Emrath, P. A.; S. Ghosh, and D. A. Padua, “De-
tecting Nondeterminacy in Parallel Programs,”

Software, 9(1): 69-77, IEEE, Jan. 1992.

[6] Grunwald, D., and H. Srinivasan, “Efficient Com-
putation of Precedence Information in Parallel
Programs,” 6th Workshop on Languages and
Compilers for Parallel Computing, pp. 602-616,
Springer-Verlag, Aug. 1993.

[7] Helmbold, D. P., and C. E. McDowell, “A Class of
Synchronization Operations that Permit Efficient
Race Detection,” 2nd Int’l Conf. on Parallel and

Distributed Processing Techniques and Applica-
tions, pp. 1537-1548, CSREA, August 1996.

[8] Jun, Y., and K. Koh, “On-the-fly Detection of
Access Anomalies in Nested Parallel Loops,” 3rd
Workshop on Parallel and Distributed Debugging,
pp. 107-117, ACM, May 1993.

[9] Jun, Y., and C. E. McDowell, “On-the-fly Detec-
tion of the First Races in Programs with Nested
Parallelism,” 2nd Int’l Conf. on Parallel and Dis-

tributed Processing Techniques and Applications,
pp- 1549-1560, CSREA, August 1996.

[10] Kim, D., and Y. Jun, “An Effective Tool
for Debugging Races in Parallel Programs” 3rd
Intl. Conf. on Parallel and Distributed Process-

ing Techniques and Applications, pp. 117-126,
CSREA, July 1997.

[11] Kim, J., and Y. Jun, “Scalable On-the-fly De-
tection of the First Races in Parallel Programs,”
12nd Intl. Conf. on Supercomputing, pp. 345-352,
ACM, July 1998.

[12] Lamport, L., “Time, Clocks, and the Ordering of
FEvents in a Distributed System” Communications

of the ACM, 21(7): 558-565, ACM, July 1978.

[13] Mellor-Crummey, J., “On-the-fly Detection of
Data Races for Programs with Nested Fork-Join
Parallelism,” Supercomputing 91, pp. 24-33,
ACM/IEEE, Nov. 1991.

[14] Netzer, R. H. B., and B. P. Miller, “Improving the
Accuracy of Data Race Detection,” 3rd Symp. on
Principles and Practice of Parallel Programming,

pp. 133-144, ACM, April 1991.

[15] OpenMP Architecture Review Board, OpenMP
Fortran Application Program Interface: Version

1.0, October 1997.

[16] Parallel Computing Forum, PCF Parallel Fortran
Eztensions, Fortran Forum, 10(3), ACM, Sept.
1991.

Appendix: Proofs of Theorems

Theorem 1 An access is a candidate which is effective
and not pseudo in an execution of program, if and
only if the access 1s involved in a first race.

Proof (=) If an access a; is a candidate which is ef-
fective and not pseudo, it is involved in a first race.
There are two cases in which the access is an r-write
candidate or not.

Case A: a; 1s a read or a write candidate. An access
a; 1is effective and not pseudo by Definition 3.4 and

3.5. And by Definition 3.1, there does not exist any
access ap such that a, — a; and aj is involved in a
race. This implies that there exists no other race that
involves an access which happened before a;. Therefore
if a; 1s a read or a write candidate, a; is unaffected by
Definition 2.2.

Case B: a; s an r-write candidate. Given a race in-
volving a write access aq, if a; is an r-write candidate
which effective and not pseudo, there exists a read can-
didate r; such that r, — a;, and it satisfies the following
conditions: by Definition 3.2, 3.4 and 3.5. Case B.1)
There does not exist write candidates. If there exists
a write candidate w,, 7 is involved in a race with w,.
This means that a; is affected by r; which is a contra-
diction that a; is involved in a first race. From this,
we can see that w, must be an r-write candidate. And
there exists a read candidate r, which happened before
wgy. In this case, there exists a race r-w,, and then a;
is affected by a read candidate r;. So as-r, and wg-r;
are in a tangled. Therefore, a; is affected by an ac-
cess 7 which is involved in a tangled race. Case B.2)
There exists a read candidate which 1s concurrent with
a¢. This is implied in the above Case B.1. Case B.3)
There does not exist any write access wy such that wy
— ay. If there exists a write access wy, which happened
before a;, there are two subcases: (1) In the case of r;
— wy,. There exists a read candidate r, and an r-write
candidate w, such that r, which happened before w,
and w, which is concurrent with r;. This implies that
wp, 18 also concurent with w, because of r, — wy. The
read candidate r; is not happened before r, because r;
1s concurrent with w,. Therefore wy, 1s concurrent with
r,. This means that wy, 1s an r-write candidate which 1s
a contradiction that a; 1s an r-write candidate because
of wp, — a;. (2) In the case of wp, — 1. From the
above subcase (1), if there exists an r-write candidate
w, which 1s concurrent with r;, wy is also concurrent
with wg. This implies that wy, 1s a candidate, and both
r; and a; cannot be candidates which are contradiction.
Therefore if an access 1s a candidate which is effective
and not pseudo, it is involved in a first race.

(<) If an access ay is involved in a first race, it is a
candidate which 1is effective and not pseudo. The first
race is either an unaffected race or involved in a tangled
race by Definition 2.5. There are two cases.

Case A: a; s a read access. Unaffected race with
a; means that there does not exist any access a; such
that a; — a;. This implies that a; is a read candidate
by Definition 3.1, and is effective and not pseudo by
Definition 3.4 and 3.5.

Case B: a; 1s a write access. (Given an access ag
such that a; — a;, there are two subcases. Case
B.1) If a; is a write access. In this case, by above

Case A, a; is write candidate with effective and not
pseudo because ag; should not involved in any race.
Case B.2) a; is a read access. (1) a; is not involved
i a race. This means that there does not exist any
write candidate which is concurrent with a;. So a; is
effective, and there exists a read candidate which is
concurrent with a; because as is not involved in any
race, which implies that a; is not pseudo. (2) as is
nvolved tn a race. If there exists a write candidate wy,
which is involved in a race with ag, this implies that a;
is affected by as. If a; is, however, involved in a first
race, w, should be an r-write candidate. Therefore
ay is effective, and there exists a read candidate r,
which 1s concurrent with a; which means not pseudo.
Therefore, if an access 1s involved in a first race, it is
a candidate which is effective and not pseudo. @Q.E.D.

Theorem 2 There exists a first race a;-a;, if and only
iof aj-a; 1s a candidate race.

Proof (=) If there exists a first race a;-a;, then a;-a;
1s a candidate race. We prove this with its contraposi-
tive: If a;-a; s not a candidate race, a;-a; is not a first
race. If a;-a; is not a candidate race, by Definition 3.6,
there are two cases.

Case A: Ether a; or a; is not a candidate. By The-
orem 1, a; or a; is affected by a race which is not a
tangled race.

Case B: Both a; and a; are candidates, and a;-a; s
not a candidate race. By Definition 3.6, there are two
subcases: Case B.1) Both a; and a; is read candidates.
In this case, a;-a; is not a race because the two accesses
are not conflicting. Case B.2) Both a; and a; is r-write
candidates. In this case, by Theorem 1, both a; and
a; are affected. Therefore, If a;-a; is not a candidate
race, a;-a; is not a first race.

(<) If there exists a candidate race, a;-a; is a first
race. From Definition 3.6, there are three cases. Case
A: Both a; and a; are write candidates. Case B: One
of a; and a; is a read candidate and the other is a write
candidate. In the above two cases, neither a; nor a; is
affected by Theorem 1. Case C: One of a; and a; 1s
a read candidate and the other is an r-write candidate.
In this case, one read candidate is not affected, and the
other r-write candidate is not a pseudo candidate and
is affected by an access which is involved in a tangled
race. Therefore, if there exists a candidate race, a;-a;,
a;-a; is unaffected or in a tangle, so a;-a; is a first race.

Q.E.D.

