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1 Introduction

Parallel computers are an important part of high performance computing today and will
continue to be so for many years. A signi�cant number of these machines are programmed
using a conventional language with extensions for some form of explicit parallelism and
synchronization (e.g. doall or fork with message passing). Many of these programs are
intended to be deterministic, but due to synchronization errors are nondeterministic. Other
programs are intended to be nondeterministic, at least at some level. In both cases it
may be desirable to identify the sources of nondeterminism. This is particularly useful for
programs that were intended to be deterministic but might also be useful for intentionally
nondeterministic programs provided the information about sources of nondeterminism is
presented in a suitable manner.

Informally, a race exists between two program events if they conict (e.g. one reads
and the other writes the same memory location) and their execution order depends on how
the threads1 are scheduled. The formal de�nition of a race is given in the appendix. The
appendix also contains a structural breakdown of races into four groups.

There are many questions that can be asked about the possible \races" in a parallel
program.

� What ordering relationships should hold between statement instances (i.e. what state-
ment instances conict)?

� What ordering relationships do hold between statement instances?

� What are all of the races in this program?

� Are there any races in this program?

� What shared memory locations are accessed by a statement (instance)?

Current algorithms for detecting races in programs answer (or attempt to answer) one or
more of the above questions.

In [HM93b] we examine all possible ordering relationships that can hold between two
program events and classify each possibility as either a non-race or belonging to one of four
classes of races2. The remaining questions above are addressed by this paper. In Section 2
we present a taxonomy of event ordering approaches. Determining the possible order of
events recorded or observed during the traced execution of a parallel program is important
to most race detection algorithms. Section 3 places known results on event ordering into this
taxonomy. This section also presents three new negative results. In Section 4 we summarize
the current known algorithms that can correctly answer the question, \Are there any races in
this program?" In Section 5 we briey touch on the the issue of determining the conicting
accesses to shared data.

1For the purposes of this paper, the notions of thread, task and process are equivalent. We use the term
\thread" throughout.

2Most of the de�nitions found in [HM93b] are included in the appendix of this paper.
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2 A taxonomy of event ordering approaches

Previously, results in race detection have been classi�ed as static analysis, post-mortem
trace based, or on-the-y. Static analysis techniques are generally applied at compile time,
and do not require that the program be executed. The primary distinction between on-the-
y analysis and post mortem analysis is that in on-the-y analysis the trace is analyzed as
it is generated, thus the entire trace does not need to be stored. This permits more detailed
tracing, often including all of the accesses to shared memory. On-the-y race detection
naturally focuses on those races involving the shared memory accesses reported during the
execution. This is somewhat di�erent from the problem generally addressed in post mortem
trace analysis where an attempt is made to determine orderings between all blocks (without
regard to exactly which shared memory locations were accessed, as space limitations generally
prevent this information from being saved for post mortem analysis).

We were unable to come up with a formal characterization of race detection algorithms
that corresponded directly to static, post-mortem and on-the-y. For example many on-the-
y algorithm can be done post mortemwith at most a constant amount of memory per traced
item. Of course the number of events may make this prohibitive in practice for any constant.
Likewise, any post-mortem approach could be done on-the-y with a su�ciently large bu�er.
It might not be able to detect races as they occur, but the point is that there is no clear
dividing line between the on-the-y techniques and the post-mortem trace analysis methods.
Finally, both on-the-y and post-mortem algorithms might incorporate some information
obtained by preprocessing the program (i.e. via static analysis).

Despite their apparent di�erences, we will unify the static analysis, post-mortem, and on-
the-y approaches by viewing each as a type of static analysis on an appropriately constrained
programming model. We will constrain the programming model along two major axes. The
�rst axis identi�es the constraints on the control ow constructs used by the program. The
second axis identi�es the kinds of synchronization used by the program. The current known
results on computing ordering relationships are described in Section 3 and summarized in
Table 2.1 at the end of this section. The following subsections detail the taxonomy.

2.1 Constraints on control ow

We consider three possible constraints on the control ow: no branching (i.e. all loops
can be unrolled at compile time), no loops containing synchronization constructs, and
unconstrained control ow. A loop that is always executed the same number of times does not
present the same di�culties as a while loop iterating until a dynamic condition is satis�ed.
For the purposes of the above de�nition and the remainder of this section, the term \loop"
applies only to those statements which cannot be unrolled at compile time.
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Branch-free programs

During a program's execution, each instance of a conditional statement takes a particular
branch. When the program's execution is traced, a record is made of the events (or perhaps
only the important events) executed by each thread and when they are executed. This record
de�nes a branchless program since all of the branching has been \hard wired" when the trace
was generated. The way the branches get \hard wired" depends on both the input supplied
to the program and the outcome of control races in the traced execution.

Analyzing a trace is thus analogous to analyzing a branch free program. This leads to
the questions \how hard is the ordering problem for branch free programs?" and \what can
we infer about the original program that contained branches?"

One possible goal is to determine the races exhibited by the traced execution. Since only
one execution is considered, each detected race will involve two unsynchronized events in
the execution. Thus only concurrent races and some general races (see appendix) can be
detected in this way.

A more powerful approach is to consider all possible executions of the branch-free program
on a particular input. The key sub-goal of this approach is a partial order indicating which
pairs of events are ordered or semi-ordered. From this partial order and the knowledge of
which events conict one can determine which pairs of events are races. Since the branch-
free program has the same set of possible executions on every input, one can use the pairs
of events that are races for any particular input to determine which statement pairs in the
program form a race.

Note that some races can a�ect the evaluation of branch conditions. Thus, even an exact
analysis of the branch-free program can lead to incorrect results for the original program
generating the trace. Some races may be missed because the branches leading to them were
not taken in the traced execution. Other races may be incorrectly included because some
branch conditions would be evaluated di�erently in the executions responsible for them. See
Figure 2.1 for an example of how races may be missed or incorrectly included.

Programs with branches but no loops

The problem becomes even more di�cult when we consider analyzing programs with
branching (but without loops). For each input, the program with branching can be viewed as
a set of branch-free programs. Each legal combination of branch choices for that input leads
to one branch-free program. A simplifying assumption [CS88] is that all branch combinations
are possible, so that any set of branch choices is legal. Without this assumption it isNP-hard
to determine which branch choices are legal (see Theorem 2).

Each branch-free program associated with a branching program/input pair has its own
set of races between events. What one would like to determine is a partial order over the
events where there is an arc from event e1 to event e2 if and only if e1 and e2 are ordered
(or semi-ordered) by every branch-free program represented by the program/input pair. As
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Thread A Thread B
A1: j := 0; B1: i := 1;
A2: i := 0; B2: if (i=0) then
A3: if (i=1) then B3: j := 1;
A4: k := 1; B4: k := 2;

Figure 2.1: This program fragment has conicting updates to shared variables i, j,
and k (as well as conicting reads to i in the if conditions). Assume each labeled
statement is an event. Consider the branch-free program that results when event
A2 is executed after event B1 and before event B2. Event A4 does not appear in
this branch free program as the condition \i=1" in event A3 is hard-wired to false.
The general race (A4, B4) exists in the original program but not the branch-free
program. Furthermore, the pair (A1, B3) is a race in the branch-free program but
not in the original program. In the original program A1 is semi-ordered before B3.

Thread A Thread B ThreadC
if (input=1) wait(x); wait(y);

then post(x); S1; S2;
else post(y); post(y); post(x);

Figure 2.2: This program fragment contains two conicting statements, S1 and S2.
Although either S1 or S2 can happen �rst, for any given input either S1 happens
before S2 or S2 happens before S1 but not both. By De�nition 13, this program
does not contain a race.

above, this partial order can be combined with conict information to obtain those pairs of
events forming races.

Now consider the possible inputs for the branching program. For each input there is a
set of event pairs which are unordered (with respect to that input). Taking the union of
these sets of event pairs gives us all pairs of events that are unordered on any possible input.
Using information on which event pairs conict, we can then list the pairs of events forming
races in the program.

The set of pairs of unordered events must be computed separately for each possible input.
As shown in Figure 2.2, two conicting statements that are not ordered the same across all
inputs do not necessarily constitute a race. The order in which S1 and S2 from Figure 2.2
are executed depends on the input, but is the same on each particular input. Although
some might consider this a race, we feel that this behavior is neither nondeterministic nor
particularly indicative of an error. By our de�nitions (see appendix), the code fragment in
Figure 2.2 is race-free.

The assumption that all branch combinations are possible has the fundamental drawback
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that extra (spurious) races may be reported. Certain combinations of branches are often
infeasible, and races in the branch-free program(s) using infeasible combinations of branches
may result in infeasible races being reported (as in Figure 2.2). A combination of branches
may be infeasible because two branch conditions may always compute the same value or
because statements in (or the absence of statements from) one branch may determine the
value of a later branch condition.

Unrestricted programs

Programs containing loops (and/or recursion) present an additional di�culty. If the
number of loop iterations cannot be bounded at compile time, then the number of events
executed by the program (and the number of branch conditions evaluated) is also unbounded.
Thus a single program with loops can represent an in�nite number of branch-free programs.

For each choice of input, we obtain a version of the looping program. Each version of the
looping program represents a (possibly in�nite) number of branch-free programs. For each
input, we can (at least conceptually) identify3 which pairs of events are ordered or semi-
ordered, and (given conict information) which pairs of events form races for that input.

We can then proceed in the same way as the loop-free case. The union over all possible
inputs of these pairs of events forming races can then be used to determine which pairs of
statements in the program are races.

2.2 Type of synchronization

The second axis identi�es the type of synchronization used by the program. At the
top level we only distinguish two types of synchronization: monotonic and non-monotonic.
These terms were �rst applied to synchronization in [HM93a]. Intuitively, a synchronization
construct is monotonic if once a blocking operation becomes unblocked, it remains unblocked
for the duration of the program (e.g. Post and Wait with no Clear - once an event is posted,
any Wait operations on that event become unblocked and the e�ect of the Post cannot be
undone). This intuitive description is only intended to give a general idea of the classi�cation
and to motivate the choice of monotonic to describe the class. The intuitive notion also
accurately describes all \real" monotonic synchronization constructs that we have examined
but is not su�cient to precisely characterize the class. The formal de�nition is given below.

De�nition 1: A set of synchronization constructs is monotonic if every branch-free par-
allel program composed entirely of synchronization constructs from the set either always
terminates normally (all threads complete) or always deadlocks in the same state.

3Determining which pairs of events are ordered or semi-ordered is undecidable in general, see Theorem 3.
However, the assumption that all combinations of branches are possible alleviates this problem.
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Exact Solution Approximations

Branch
free

Mono-
tonic

� all monotonic are in P [HM93a],
� fork/join is in P
[MC91, DS90, NR88],
� ordered critical sections are in P
(section 3.1),
� post/wait no clear is in P
[NG92],

Non-
mono-
tonic

� single semaphore is in P
[LKN93],
� post/wait/clear is NP-hard
(Thm: 1),
� semaphores are
co-NP-hard[NM90]

semaphores [HMW93]

No
loops

Mono-
tonic

� fork/join is NP-hard (Thm: 2),
� post/wait no clear is Co-NP-
hard[CS88] even if all paths are ex-
ecutable,

fork/join [MC91, DS90, NR88],
post/wait no clear [CKS90]

Non-
mono-
tonic

� post/wait/clear is NP-hard
(Thm: 1 or [CS88]),
� semaphores are NP-hard

fork/join [MC91, DS90, NR88],
post/wait no clear [CKS90]

Unre-
stricted

any Undecidable (Thm: 3) fork/join [MC91, DS90, NR88],
ordered critical sections [Ste93],
semaphores [McD89],
message passing [DKF93],
rendezvous [Tay83, LC89]

Table 2.1: What ordering relationships hold between statement (instances)?

Monotonic synchronization operations include nested fork-join (e.g. nested parallel loops),

ordered critical sections (i.e. properly paired and nested lock-unlock operations where when-
ever multiple locks are simultaneously held, they are always obtained in the same order),

bu�ered send-receive where the sender names the receiver, and post and wait with no clear.
Non-monotonic synchronization operations for which results have been published include
post and wait with clear [CS88], and semaphores [LKN93, NM90].
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3 Details of known results in our taxonomy of ordering event
results

The taxonomy introduced in the previous section has six major categories fmonotonically
synchronized, non-monotonically synchronizedg � fno branches, no loops, unrestrictedg. In
this section we briey describe the known results in the various categories and provide some
new results. The categories are presented in order of increasing computational complexity.
Since unrestricted programs create undecidability problems regardless of the synchronization
primitives used, we have combined the two unrestricted program categories.

3.1 No Branches and Monotonically Synchronized

We proved in a previous paper [HM93a] that computing the precise ordering relation-
ships between events in branch-free monotonically synchronized programs can be done in
polynomial time. (This generalizes a result of Netzer and Gosh [NG92], see Section 3.1.) For
completeness we include here several previous polynomial time results for determining the
precise ordering relationships between events for programs using speci�c sets of monotonic
synchronization constructs.

Fork/Join

A number of methods have been developed in the context of on-the-y race detection
that could be used as polynomial time algorithms for determining event orders in branch free
fork/join programs[MC91, DS90, NR88]. Some recent e�orts have focused on reducing the
number of events that must be traced[MC93] or recorded[Net93]. As these fork/join analysis
algorithms read the trace only once and have limited storage requirements they can often be
executed \on-the-y," concurrently with the parallel program they are analyzing.

Critical Sections with Lock/Unlock

In programs that contain only fork/join synchronization, if there is a race between two
events, then it must be a general race. With the addition of ordered critical sections, the
races may be either general races (i.e. not protected by the same lock) or unordered races (i.e.
protected by the same lock). These two kinds of races can be distinguished by comparing
the locks held when the events were executed. For branch-free programs, this comparison
can easily be done using O(L2) time and O(L) space per event, where L is the maximum
lock nesting depth. In practice the lock nesting depth is very small (i.e. 0 or 1) [DS91].

Post/Wait no Clear

Netzer and Ghosh [NG92] have an algorithm that precisely determines the event orderings
for a trace of a program that uses Post/Wait synchronization with no Clears. The algorithm
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constructs a DAG where the nodes are the events in the trace and the edges represent the
guaranteed orderings between events. That is, two events e1 and e2 are ordered (de�nition 6),
if and only if there is a path from the node for e1 to the node for e2. The graph construction
requires O(np) time and O(np) space where n is the number of events in the trace and p is
the number of threads.

3.2 No Branches and Non-monotonically Synchronized

As can be seen in table 2.1, most results in this section (and sections 3.3 and 3.4) indicate
that exact solutions are not tractable. The only exception that we are aware of is a recent
result by Lu et.al. [LKN93] showing that the exact solution for programs using only a single
semaphore can be found in polynomial time.

Single Semaphore

Computing the exact ordering relationship between events for a loop-free program that
synchronizes using only a single semaphore can be done in O(n1:5p) time [LKN93] where n is
the number of events and p is the number of threads. The algorithm presented by Lu, Klein,
and Netzer determines if two events are ordered by solving a kind of scheduling problem.
When P-operations are assigned a cost of +1 and V-operations are assigned a cost of �1, a
branch-free program using a single semaphore can execute to completion if and only if it has
a schedule whose cumulative cost is always � 0. Thus one can tell if a program can complete
by �nding a schedule where the maximum cumulative cost is minimized. Although this kind
of scheduling problem is NP-complete in general, Lu, Klein, and Netzer show how a solution
for series-parallel graphs can be modi�ed to determine if two events in a branch-free program
are ordered.

As presented in their paper, the algorithm of Lu et.al. determines some events to be
ordered that should not be (according to our de�nitions). This derives from their claim that
if you arti�cially order two events and then fail to �nd a complete schedule, the events cannot
occur in that order (and hence are always ordered in the reverse direction). It could be that
two events can occur in the arti�cially added order, but then the program deadlocks later in
its execution. Only a small change to their algorithm is needed to get the preferred result.
Instead of insisting on a schedule for the entire program it is only necessary to �nd a pre�x
of a schedule that includes the two arti�cially ordered events. Their algorithm provides the
necessary information to determine if such a pre�x exists.

Post/Wait/Clear

With the addition of the Clear operation, determining precisely the ordering relationships
for branch-free programs becomes NP-hard.
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Theorem 1: Deciding if there exists a race between two conicting statements in an arbi-
trary shared memory parallel program, containing explicit thread creation and Post/Wait/Clear
synchronization but no loops or branches, is NP-hard.

Proof: The proof is by reduction from 3-SAT. We construct the following program which
encodes an instance of the 3 CNF satis�ability problem. This program will contain a race if
and only if there is a satisfying assignment to the 3 CNF formula.

� De�ne signal START.

� For each variable X de�ne 4 signals, Xt (X is true), Xf (X is false), and XisT XisF (X
has a value).

� For each clause C de�ne a signal Ct (C is true).

� For each variable X create two threads, TXt and TXf as follows:

TXt: TXf:
wait START wait START
clear Xf clear Xt
post XisT post XisF
wait Xt wait Xf
for each C containing X for each C containing not X

post Ct post Ct
end for end for

� Create two other threads - main and racer as follows:

main: racer:
for each variable X for each variable X
post Xt wait XisT
post Xf wait XisF

end for end for

post START race statement
for each clause C for each variable X
wait Ct post Xt

end for post Xf
race statement end for

� Claim: The race statements can execute concurrently if there is a truth assignment
satisfying all of the clauses.
1. Run main until just after \post START"

2. Run to completion each TXt if X true in truth assignment or TXf if X false in
truth

3. Run to completion remaining TXt's and TXf's.

4. Observe that all Ct, XisT and XisF are now posted.
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� Claim: If there is no truth assignment satisfying all of the clauses then the race
statement in racer must execute before the race statement in main.

1. All Ct must be posted before main executes the race statement.

2. For some X, both TXt and TXf must have posted signals for all Ct to be posted
(otherwise the clauses are all satis�able).

3. Either Xt or Xf must have been posted twice, and thus the race statement in
racer must have already been executed.

NOTE: The operations on the XisT and XisF events are not necessary for the theorem.
However, if these operations are removed then the program will have many executions which
end in deadlock.

Semaphores

Determining precisely the ordering relationships for even branch-free programs containing
semaphore synchronization is co-NP-hard[NM90].

The results in this area are therefore restricted to approximations. Helmbold et.al.
[HMW91] and Netzer and Miller [NM91] have pursed two complimentary approaches. The
�rst group has been attempting to �nd as many races (unordered blocks) as possible, while
the other has been trying to reduce the number of reported races that cannot actually occur.

3.3 No Loops and Monotonically Synchronized

Excluding arbitrary loops is necessary to avoid termination problems and the undecid-
ability shown in section 3.5. Loops executing a �xed number of times can be unrolled. This
clearly a�ects the complexity of any analysis algorithm, but is essentially what happens in
any trace based approach to race detection. Loops that do not contain synchronization op-
erations and which are guaranteed to terminate are allowed because they do not a�ect the
order analysis between events.

Theorem 2: Deciding if there exists a race between two conicting statements in an arbi-
trary shared memory parallel program (containing explicit thread creation but no loops) is
NP-hard.

Proof: By reduction from 3SAT. Create a parallel program that forks executing the state-
ments x:=1; print(x); in one branch and if(3SAT formula over input) then x:=0;

in the other branch. There is a race between the print(x) and the assignment x:=0, if and
only if the formula is satis�able for some input.

The key di�erence between this result and the Post/Wait no Clear result of Callahan and
Subhlok (see Section 3.3) is they assume all paths are executable and this trivial proof hinges
on whether or not one path is executable. The set of programs where all paths are executable
is clearly a subset of all programs and hence they have shown that with the addition of Post
and Wait the problem is still NP-hard even for the smaller set of programs.
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Post/Wait no Clear

Callahan et.al. [CKS90] have studied simple programs containing only if-then-else condi-
tionals and Post/Wait synchronization without Clear (i.e. no loops). The Post/Wait oper-
ations are permitted to specify events within an array. They claim that as generally used,
the index expressions for these events are amenable to standard dependence analysis for
computing a dependence distance (i.e. the di�erence between the parallel loop index and
the array index used by the Post or Wait). In an earlier paper [CS88] they prove that the
problem of determining if a program is race free is Co-NP-hard for even these relatively
simple programs under the further assumption that all program paths are feasible.

In [CKS90], they have gone on to develop a dataow formulation of the problem for which
they can compute an approximate solution in polynomial time (the paper does not give the
actual complexity). This approximation only applies to programs that are \serializable."
By that they mean that if all parallel loops and parallel case statements (the only types
of forking they support) are executed in sequential order (the cases from the parallel case
are executed in the order they appear textually) then the program will complete without
blocking. i.e. no Wait will be encountered until after a Post for the same event has been
executed.

They give an algebraic formulation of the problem when the program is further restricted
to contain only one Post for each event variable. The algebraic formulation provides an exact
solution that appears faster in practice than the previous method. However, it involves a
transformation to a system of linear equations and determining if there exists a non-negative
integral solution to the system of equations. Although such integer linear programming
problems are NP-hard, the systems generated in practice are claimed to be generally small
enough so that this is not a problem.

3.4 No Loops and Non-Monotonically Synchronized

As already indicated, all results in this area show that exact solutions are not tractable.
Some approximation algorithms can be found in [MC91, DS90, NR88, CKS90].

Post/Wait/Clear

The Co-NP-Hard result from [CS88] also applies here. In fact, with the addition of Clear,
even detecting races in branch-free (i.e. no conditionals or loops) programs is NP-Hard (see
Theorem 1).

Semaphores

Determining precisely the ordering relationships for branch-free programs containing
semaphore synchronization is co-NP-hard[NM90]. Therefore the problem is also co-NP-
hard when branches are permitted.
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3.5 Unrestricted programs

If programs are allowed to have branches and unbounded loops, determining the or-
dering relationships between statement instances is undecidable, regardless of the type of
synchronization used.

Theorem 3: Deciding if there exists a race between two conicting statements in an arbi-
trary shared memory parallel program is as hard as the halting problem.

Proof: Given an arbitrary (sequential) program P and input I, we create a new parallel
program containing a new shared variable x initialized to 0. The parallel program forks,
executing \print(x);" in one branch. The other branch �rst checks that the parallel program's
input equals I. If the input matches I then program P is simulated and when (if) the
original program halts, the statement \x := 1;" is executed. If the input does not match I
then the second branch terminates without accessing variable x. There is a race between the
\print(x);" statement and the \x := 1;" assignment if and only if program P halts on input
I.

Nevertheless, programmers must still uncover data races in their parallel programs.
Therefore approaches that compute approximate answers to the problem have been studied
and continue to be investigated [Tay83, LC89, HM91].

4 Are there any races in this program?

Because the problem of detecting races in parallel programs is in general intractable,
approximations must su�ce. There are two ways to err: report races that do not really
exist (infeasible races) or fail to report some of the races4. The problem with the former is
that the user may be inundated with infeasible races and miss the real race. The problem
with the latter is that a program may be reported to be race free when in fact it is not. A
compromise that has been achieved in some situations is to guarantee to report a non-empty
subset of the actual races. While some races may still be missed, if a program (or execution)
is reported to be race free, then the report is accurate.

4.1 Fork/Join

Mellor-Crummey [MC91] describes a method for analyzing programs containing only
properly nested fork/join parallelism. This approach requires O(V N) space where V is the
number of shared variables and N is the maximum nesting depth of the forks. Also each
monitoring operation requires O(N) time. The method is called O�set-Span labeling and

4A related problem has been observed by Netzer and Miller [NM91]. Even reporting only races that can
actually occur (feasible races) can be too much. There may be a small number of important \�rst" races
towards which the programer should be directed and then a possibly large number of other \artifact" races.



4. Are there any races in this program? 13

is similar to English-Hebrew labeling [NR88]. In particular the label for each thread that
is created during the execution of the program is computed based only on the labels of its
immediate predecessors (the thread executing the fork or the threads resulting in a successful
join). The length of each label is proportional to the current nesting depth and at most three
labels must be stored on-the-y for each shared variable. The most signi�cant contribution
of O�set-Span labeling is that a single execution is su�cient to identify a non-empty subset
of the races that could occur for a given input.

4.2 Critical Sections

Dinning and Schonberg [DS91] describe an approach to detecting access anomalies in
programs that contain critical sections (i.e. properly nested binary semaphores). This
approach can use any existing method for determining when two blocks are ordered (e.g.
O�set-Span labeling) ignoring the orderings imposed by the unlock-lock operations. As one
would expect, ignoring the unlock-lock orderings results in many false anomalies. This is
solved by adding lock covers to the labels for blocks in critical sections. A lock cover indicates
what locks are held when a block executes. If there is no nondeterminism \propagated" by
the critical sections then the access anomalies reported will include at least one anomaly (if
there are any) from the set of access anomalies that could occur given the input supplied
during the analyzed execution. Nondeterminism is propagated by a critical section if the
occurrence of some event depends on the ordering of some critical section. This property
can be conservatively checked statically in polynomial time.

In addition to needing the lock covers, this approach requires a larger history for each
shared variable than the approaches described in Section 3.1. For each shared variable the
history may contain as many as T �R labels and lock covers representing the latest writes
and similarly for the reads. T is the maximum degree of concurrency and R is the number
of lock covers which is bounded by 2K where K is the number of locks.5 Dinning and
Schonberg claim that the use of nested critical sections is rare resulting in very few lock
covers in practice.

4.3 Semaphores

We have developed an algorithm for analyzing traces of programs that contain semaphore
synchronization. In [HMW93] we proved that our algorithm will �nd at least one race from
the set of possible races that can occur for a given input if any exist.

5Simply checking the intersection of the locks held when accessing a variable is not su�cient. One access
may be protected by locks a and b, another by locks b and c, and a third by locks a and c. Although the
intersection of the locks held is empty, there is no concurrent race between the three accesses.
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5 What shared memory addresses are accessed by a statement
(instance)?

Operationally, race detection systems can be divided into three groups, compile time sys-
tems, post-mortem trace based systems and on-the-y systems. A distinguishing character-
istic is the degree to which the aliasing problem is solved/avoided. Compile time approaches
must attempt to solve the problem (e.g. conventional vectorizing compiler analysis). Space
limitations generally prohibit post-mortem systems from storing all shared memory accesses
during data collection. Instead some type of summary information is recorded and then
the actual addresses are estimated or re-generated when needed. On-the-y systems have
no such space limitation and can use the actual memory addresses in the analysis, thereby
eliminating any aliasing problems.

Any monitoring/trace based approach can therefore easily answer the question: \Given
shared memory location X, what statements access X?" By \easily" we mean that the cost of
answering this question is dominated by the cost of determining the ordering relationships.
In general it will add a constant time cost to the processing of each statement (event).

For compile time systems there has been a large body of work performed on this problem
restricted to statements within the same loop nest. This work answers a variation of the
previous question, the new question being:

Given two statements, S1 and S2, can they access the same location?

For two statements outside of a common loop nest there has been no published work that
we are aware of.

6 Conclusion

We have presented a taxonomy of approaches for determining event orders in executions
of parallel programs (which can then be used for race detection). The purpose of this
taxonomy is to organize the previous results and determine just how much we actually know
today about the \race detection" problem. We then summarized previous results and placed
them into the taxonomy (Table 2.1). Finally we have presented some new results as a �rst
step in �lling in the missing pieces of the event ordering taxonomy (two more NP-Hardness
results and an undecidability result).
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7 Appendix

In this appendix we present our terminology for races and the ordering relationships
between events. A complete discussion of this terminology can be found in [HM94]. In
[HM94] we also de�ne four additional orthogonal attributes of races: the a�ect on control
ow (control/data race), the severity (benign/critical race), the a�ect on other races (depends
on), and the feasibility (feasible/infeasible).

De�nition 2: An event is a contiguous sequence of one or more atomic operations executed
by a single thread.

De�nition 3: A simple statement is a syntactic structure from a program such that if
any instruction in the machine level translation of the statement is executed every instruction
from the machine level translation of the statement will be executed.

A compound statement is any syntactically contiguous sequence of simple statements.

De�nition 4: Two events from di�erent executions of the same program are equal (i.e. can
be considered to be the same event) if

� they occur in the same thread,
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� their constituent atomic operations are derived from the same simple source program
statements, and

� both events are the nth occurrence of their constituent atomic action sequences by the
thread.

De�nition 5: Let events e1 and e2 be two events occurring in an execution of a program.
If e1 completes before e2 begins then we say e1 happened before6 e2, written e1!e2. If e1
begins before e2 ends and e2 begins before e1 ends then the two events overlap. If either e1
and e2 overlap or e1!e2, then we write e2 6!e1.

De�nition 6: Fix an input to the program. Event e1 is ordered before event e2 if in every
execution of the program on the input in which either event occurs, e1!e2.
Two events, e1 and e2, are ordered if e1 is ordered before e2 or e2 is ordered before e1.

De�nition 7: Fix an input to the program. Event e1 is semi-ordered before event e2 if
for that input
� every execution where both e1 and e2 occur, e1!e2,
� there exists an execution containing e1 but not e2 and
� every execution that contains e2 also e1.
Two events, e1 and e2, are semi-ordered if e1 is semi-ordered before e2 or e2 is semi-ordered
before e1.

De�nition 8: Two events are unordered if they are neither ordered nor semi-ordered.

De�nition 9: Two simple statements conict if they both access the same shared resource
and one (or both) of the accesses modi�es the resource. The accesses can be explicit as in
access to a shared variable or implicit as in a communication port used for message passing.

De�nition 10: Two di�erent events conict if they represent the execution of conicting
simple statements.

De�nition 11: Fix an input to the program. If two conicting events are unordered (with
respect to the input) then there is a race between the two events on the input.

Given two events that occur in some execution7 of a program for a �xed input, in any
particular execution on that same input:

� the two events will overlap or

� one will happen before the other or

� only one of the two events will occur or

� neither of the two events will occur.
The possible combinations (except neither event occurring) are shown in Table 7.1.

De�nition 12 (Kinds of Races.): The following four kinds of races are disjoint.

concurrent race: In every execution of the program on the �xed input where both e1 and
e2 occur, they overlap.

6This is a strictly temporal relation and should not be confused with Lamport's causal \happened before"
relation.

7This need not be the same execution for both events.
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There exists executions where
e1!e2 e2!e1 overlap e1 only e2 only
yes yes yes y/n y/n general race
yes yes no y/n y/n unordered race
yes no yes y/n y/n general race
yes no no y/n yes omission race
yes no no y/n no not a race
no yes yes y/n y/n general race
no yes no yes y/n omission race
no yes no no y/n not a race
no no yes y/n y/n concurrent
no no no yes yes omission race

Table 7.1: Summary of possible ordering relationships.

general race: There exist executions of the program on the �xed input in which e1 and e2
overlap and executions where either e1!e2 or e2!e1.

unordered race: There exist executions of the program on the �xed input in which e1!e2
and executions in which e2!e1 but no execution in which e1 and e2 overlap.

omission race: There exist executions of the program on the �xed input where e2 occurs but
e1 does not and there exist executions where either e1!e2 or e1 occurs but e2 does not,
but there are no executions on the �xed input where either e1 and e2 are concurrent or
e2!e1.

De�nition 13: A program contains a race between statements s1 and s2 if there is an input
I and events e1 and e2 such that:

1. e1 represents the execution of an instance of s1,

2. e2 represents the execution of an instance of s2,

3. s1 and s2 contain (or are) conicting simple statements, and

4. there is a race between e1 and e2 on input I.


