
R. Badrinath *

Rakesh Gupta

Nisheeth Shrivastava

Department of Computer Science & Engineering

 Indian Institute of Technology, Kharagpur

 India-721302

ABSTRACT

Checkpointing and rollback recovery is a simple
technique for fault tolerance. The state of a process is
saved on a disk file from which the process can recover
on the occurrence of failure. In this paper we describe the
implementation of FTOP (Fault Tolerant PVM), a
coordinated checkpointing library integrated with PVM.
Existing PVM applications require only minor change for
incorporating fault tolerance using FTOP. FTOP provides
fault tolerance mechanism that is totally transparent to the
programmer. It does not require any changes to be made
in the kernel. FTOP handles intransit messages, open files
and routing that makes it a very useful fault tolerant
library.

KEY WORDS

Coordinated Checkpointing, Rollback recovery, Fault
tolerance.

1. INTRODUCTION

Distributed systems involving Network of Workstations
(NOWs) connected through a high speed LAN has been
heavily used to meet the high computing requirements of
applications. Cluster computing finds usage in scientific
computation involving Finite Element method, Weather
forecasting etc. NOWs are however prone to non-
negligible number of faults. As the number of
workstations in the cluster increases, the chances that one
of them fails increases exponentially. In the event of a
failure the re-execution from scratch of a long running
application is undesirable and hence some kind of fault
tolerance is needed.

*Currently at: INRIA/IRISA, Campus Universitaire de
Beaulieu, 35000 Rennes, France. Email :
rbadrina@irisa.fr

Checkpointing with rollback recovery provides an
efficient mechanism for providing fault tolerance. These

 techniques rely on recording the application process
execution state and upon failure restarting the process
from the last recorded consistent state. While extensive
research has been performed on checkpointing in
distributed environments, there are few transparent
checkpointers available to application developers[2].

 The proposed system FTOP is a checkpointing library
integrated with PVM (Parallel Virtual Machine. FTOP
implements a transparent checkpointing technique for
distributed applications running on PVM. Application
developers just need to add a single statement in their
PVM code and no other modification is required. Crash
failures are efficiently handled without any user
intervention. No changes is required in the kernel for fault
tolernace. Issues such as intransit messages which arise
due to assumption of reliable channels, routing of
messages to migrated tasks, Open files are also taken care
of.

FTOP assumes a homogeneous LINUX cluster which
communicate through reliable FIFO channels. FTOP
implements non blocking coordinated checkpointing and
recovery algorithm [4].

This paper is divided into 7 sections. Section 2 discusses
PVM. Section 3 discusses the system model and the
failure model for FTOP. Section 4 discusses
implementation details of FTOP checkpointing
mechanism. Section 5 discusses the structure of FTOP
stable storage. Section 6 discusses FTOP recovery
protocol. Section 7 discusses the testing environment and
the test cases.

FTOP: A LIBRARY FOR FAULT TOLERANCE IN A CLUSTER

2. PVM

PVM [8] is a library that provides a unified platform for
computing over a network of heterogeneous parallel and
serial computers. It allows the application designers to
harness the computing power of widely available general-
purpose computers (PCs), without knowing much about
the configuration of the system.

The Architecture: A typical PVM system consists of a
cluster of interconnected stand alone computers hosting a
Global Resource manager (GRM), several PVM daemons
and a runtime library called pvmlib linked into each
application process running under it.

Every node on the cluster hosts a daemon (called PVM-
daemon or pvmd), which is responsible for maintaining
communication, authentication and control protocols with
the virtual machine. A PVM task is a process linked with
pvmlib. Similar to pvmd's they are also assigned a
globally unique descriptor (tid). PVM's message passing
interface uses these tid's to designate source and
destination tasks for massages.

GRM is a special PVM task running on a failure free
machine. It is responsible for task scheduling and
coordination of checkpointing and recovery protocols.
PVM provides reliable and FIFO communication model
to the distributed applications. Such a message model
requires the recovery procedure to handle intransit
messages.

3 THE FTOP MODEL

FTOP supports fault tolerance for distributed applications
using PVM. This section discusses the system and failure
model assumed by FTOP.

3.1 FTOP System Model
FTOP assumes a distributed system that consists of
1. A group of LINUX based workstations connected via

a high speed LAN.
2. PVM is assumed to be running on each of the

workstations.
3. One of the workstations has the GRM running on it,

we call this the coordinator. This node is assumed to
be fault free. The required reliability of the
coordinator can be achieved by hardware duplication
but the detail of achieving it is beyond the scope of
this paper.

4. Another workstation is configured as a stable storage.
This contains the checkpoint files, the messagelogs,
filelogs etc. This node is also assumed to be fault
free. In fact, a single machine can be configured both
as the coordinator and the stable storage.

5. All other hosts can fail.

6. The filesystem of the stable storage is NFS mounted
on all the workstations. The mount point must be
same on all workstations.

3.2 FTOP failure model
FTOP handles only crash failures of nodes and assumes
fail stop model. It does not handle process failures though
the support for process failure can be easily added.

4 CHECKPOINTING

In Checkpointing, the state of a process is freezed and
stored in a permanent storage, from which it can be
recovered in case of any failure. FTOP is based on non-
blocking coordinated checkpointing protocol [5] in which
the processes orchestrate to take their checkpoints. The
above was selected because it is free from Rollback
propagation, Domino effect, and has less checkpointing
overhead as processes can continue their computation
during the checkpointing protocol [5].

4.1 Checkpointing a Linux process:
To checkpoint a process we need to dump the entire state
(execution, process control and process address state) to
permanent storage (usually as a disk file) in a form, which
can later be reconstructed into a process.

Saving and restoring the execution state involves saving
of GPRs, floating point registers, etc. which may vary
depending on the architecture. Instead of going for
machine dependent assembler modules for each
architecture to accomplish this task, FTOP handles this
through signals. The signal handling mechanism of the
OS requires it to save the execution state of the process,
which can later be restored once the signal has been
serviced. In FTOP, a user-defined signal SIGUSR1 is
send to the task at the time of checkpointing. Each task
saves its execution state in the stack area, which can be
restored at the time of recovery.

Text area of a process is loaded as read-only section of
address space. So this section need not be checkpointed.
To checkpoint the stack area we need to know the
beginning and ending address of the stack. This
information is advertised by the Linux kernel through the
/proc filesystem. Shared libraries are linked into the
program in two stages. In compile stage only the symbols
are resolved, while at the execution time the dynamic
loader loads them into the process address space. There is
no guarantee that libraries will be mapped into same
addresses for multiple executions of the same program.
So there is a possibility of shared library being mapped
into different address during recovery, thus making all the
dynamic links invalid. To handle this we have two options
(a) update all the dynamic links at the time of recovery or
(b) we have to ensure that the libraries are mapped to the
same address on recovery. FTOP implements the second
one.

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

4.2 Checkpointing a distributed application:
As mentioned earlier, FTOP implements non blocking
coordinated checkpointing protocol.

The GRM initiates the checkpointing protocol on
receiving the SIGALRM signal. It sends an initiate
message (SM_CKPTSIGNAL) to all daemons in the
virtual machine. On receiving the initiate message the
daemons start the local checkpointing process by asking
(SIGUSR1) each task under them to take their local
checkpoints. Tasks after taking checkpoint send an ack
(TM_CKPTDONE) back to the daemon, which on
receiving acks from all the tasks sends an ack
(SM_CKPTDONE) back to the GRM. The GRM on
receiving ack messages from all the daemons commits
(SM_CKPTCOMMIT & SIGUSR1) the checkpoint and
inform each task about the successful completion of the
protocol through their daemons.

Figure 1 Timing Diagram for Checkpointing

protocol

Note that FTOP implements non blocking checkpoint
protocol in which the tasks continue with their execution
once they have taken their checkpoints. For this two more
protocol messages are required to add consistency (fig 2).
TM_CKPTSIGNAL: This message is sent by the task to
its daemon before each application message when the
checkpoint protocol is in progress. If the application
message is destined for a local task the daemon finds the
status of the destination. If the destination has taken
checkpoint then sends the application message to the task
otherwise it waits for the task to take checkpoint before
delivering the application message.

Figure 2 Problem in Non-Blocking Coordinated
Checkpointing Protocol

If the application message is destined to a foreign task the
daemon sends the DM_CKPTSIGNAL to the destination
daemon before routing the message.

DM_CKPTSIGNAL: This is send by a daemon to
another daemon as discussed above. If checkpointing has
not been initiated in the destination host the destination
daemon starts the checkpointing protocol and ensures that
the destination tasks have taken checkpoint before
forwarding the message.

We claim that the protocol always takes a consistent
checkpoint. A checkpoint is inconsistent if the receive
event of a message is checkpointed but the send event is
not. For consistency all the messages send after a
particular checkpoint should be included in the next (or
later) checkpoint image of the receiver.
TM_CKPTSIGNAL and DM_ CKPTSIGNAL ensure
this.

4.3 INTRANSIT Messages
Intransit messages are defined as those messages whose
send has been recorded but the receive has not been
recorded. The assumption of reliable communication
channel leads to the requirement of checkpointing
communication channels between the processes.

The basic idea is to log the sends and receives of all the
messages to stable storage at the time of checkpointing.
When failure occurs, the logs can be examined to
determine which messages were in transit at the time of
checkpoint and can be replayed. A lot of issues arise in
logging and replaying of these messages. We discuss
them briefly.

• Some stub function for sending and receiving
messages is needed. This will provide the
sequence number for all sends and receive
events.

• A directory structure using which the process can
find and replay the intransit messages.

• A simple garbage collector.

TASK PVMD GRM

SM_CKPTSIGNAL

SIGUSR1

SM_CKPTDONE

SM_CKPTCOMMIT

TM_CKPTDONE

SIGUSR1

SIGALARM

GRM

T0

T1

Checkpoint Signal

Appl. Message

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

x
Highlight

4.4 Open Files
FTOP handles files in an efficient manner, though it
handles only file reads and file appends. Arbitrary file
writes are not handled because they are not quite common
and involve a lot of overhead. FTOP has the following
underlying assumptions for handling files
• Files are accessed with the same name on all nodes.
• Files are opened for read and append only.

To checkpoint the state of files the name of the files, their
descriptors, mode of opening and the read write pointers
need to be known. FTOP extracts all this information by
using the LINUX utility ‘lsof’. The read write pointers are
extracted using lseek call on the open files. These
information about the open files are kept in the filelog
corresponding to the task in the stable storage.

5 THE STABLE STORAGE:

FTOP requires the stable storage to be a failure free
machine that must be mounted on same location on all the
NOWs. It is used to store the checkpointed images and
message logs.

The process image is saved in Ckpt directory. Although
coordinated checkpointing requires only the most recent
checkpoint for recovery, two files for each process are
needed [5]. Similar is the case of file logs (fileinfo).
Hence two log files are required for storing file
information.

6 RECOVERY

Recovery involves fault detection, fault assessment and
fault recovery. In FTOP fault detection mechanism comes
in inbuilt with PVM. An idle PVM daemon occasionally
checks/polls its peers by continuously sending ping
packets. When a PVM daemon times out while
communicating with its peer, it informs the other live
daemons and the GRM about the failed host.

The coordinator i.e. the GRM performs fault assessment.
The GRM identifies the failed host and the tasks running
on them. It handles issues of tasks making a normal exit
and tasks that were spawned after the recovery line. The
tasks that made a normal exit after recovery line need to
be recovered at the time of recovery. The tasks that were
spawned after the last consistent set of checkpoints need
to be killed. The failed tasks are spawned on appropriate
host depending upon the load on each.

 Fault recovery involves the restoration of the failure free
state of execution. A 2 phase blocking protocol is
implemented in FTOP for fault recovery. In the first phase
the GRM informs each of the tasks to roll back to their
last committed checkpoint. When all the tasks have
successfully rolled back to their last consistent checkpoint
the GRM sends a commit message to the task. The actual

protocol messages are discussed in figure 3. The tasks are
not allowed to send and receive messages when the
recovery protocol is in progress.

6.1 Restoration of the Local state of a linux
process
The processor context saved due to the invocation of the
last checkpoint signal handler contains information
regarding where execution should resume in the user’s
code once failure is detected. On the occurrence of failure
the process after restoring its address space must jump to
the point of execution where the execution of the last
checkpointing had completed. For this FTOP uses the
setjmp() and longjmp() system calls (see man pages on
LINUX for details). setjmp is called with the user defined
buffer JMP_BUF as argument. This saves the PC value,
the stack pointer, base pointer, and other state
information. If somewhere in the program longjmp() is
called with the JMP_BUF as argument than the PC value
and other state information restores to the value which
was there when the original setjmp() call was made. This
mechanism is used for restoration of the execution state.
During checkpoint the process calls the setjmp function
and than takes the checkpoint and returns from the
checkpoint signal handler. At the time of recovery the
process after restoring the address space calls longjmp()
with the same JMP_BUF. This takes the program to the
point where the checkpoint was taken. After returning
from the checkpoint handler the execution state of the
process prior to checkpoint is restored.

6.2 Process address space
The FTOP does not restore the read only part of the
process address space. It only restores the writeable and
the shareable parts of the process address space.

As discussed in section 4, the shared libraries should be
mapped at exactly the same location where they were
mapped during the failure free execution to prevent the
dynamic links from becoming stale. In FTOP dynamic
libraries are restored by first creating the mapped segment
in the virtual address space using the mmap() function
call. The protection and attribute flags for this new
segment are set to those saved in the checkpoint file
except that the segment always has write access and the
memory is always marked as private. Write access is
necessary so that the saved bytes in the checkpoint file
can be written to the segment.

The most difficult part to restore is the stack area of the
process address space. The problem is that the saved stack
information may overwrite the call frame of the procedure
doing restart. In FTOP Whenever the checkpointed stack
need to be restored, a check of whether the current stack
frame is above the old stack or not is done. So if the
current stack frame is within the range of the saved stack
the same function is called recursively until the current
stack frame is below the old stack. Then the contents of

x
Highlight

saved stack are copied from file to the virtual memory
space of the process.

6.3 Communication channel
To restore the state of the communication channel FTOP
replays all intransit messages. Each process after restoring
its execution state and address space looks into the log to
find out all intransit messages. A sequence number
references each message from a particular source to a
particular destination. The process finds the sequence
number of the last message send by it to a destination and
the sequence number of the last message received by the
destination from it. All messages whose sequence number
lies between these two messages are intransit messages
and need to be replayed.

 6.4 Open files
There are several methods for checkpointing open files,
which are discussed in the literature. This includes
Shadow copy (Libckpt[3]), in place update with undo logs
(winckp [5], and SCR algorithm [6]), modification
operation buffering (7).
Since we are not using random read/write on files, these
techniques introduce a lot of overhead, so FTOP
incorporates a novel technique that has very little
overhead in handling files. Restoring the open files
involves

Figure 3 Timing Diagram for Recovery Protocol

reading of the file log for the process to determine the
state of the files opened by the process until the last
committed checkpoint. In FTOP once this information is
got each of the files are reopened and their descriptors are
duped to the new descriptor. The read write pointers are
restored by seeking to the read write position as kept in
the checkpoint file.

6.5 Message Routing:
In PVM, message routing is done according to the task-id
(tid). During recovery, some tasks may be re-spawned
(probably on a different host) and given a new tid. But
since in FTOP, fault tolerance is transparent, a task, which
wants to send message to the respawned task will never
know about the failure and will continue to send messages
addressed to the old tid. This gives rise to the problem of
routing. To handle this, FTOP maintains a mapping
between the oldest tid (a task may fail multiple number of
times) of the task and its current tid. This mapping exists
in the form of a route-table in every daemon. Whenever a
message destined to a non-existent tid arrives the daemon
scans the route table to find the corresponding mapping,
and routes the packet appropriately.

7 TESTING:

Various applications such as Matrix multiplication and
POVRAY were tested on FTOP.

7.1 Testing Environment:
We have tried to emulate the cluster environment as close
as possible. The system contains a network of
workstations and a machine configured as a stable
storage. The configuration was:

o Pentium III Workstations with Red Hat Linux
7.1, connected through 100 Mbps Ethernet LAN
serve as the nodes in the cluster.

o One of the workstations is configured to be the
stable storage. The Stable storage is NFS
mounted on a specific directory on each of the
nodes.

o The application chosen to measure the
performance was straightforward matrix
multiplication. Two 700*700 matrix were
randomly generated and were multiplied. The
variation of the execution time with the
checkpointing interval is reported in the
following graph.

10, 36

20, 18

30, 11
40, 8

infinity, 3
0

5

10

15

20

25

30

35

40

10 20 30 40 infinity

Checkpointing Interval (secs)

Ru
nn

in
g

tim
e

(s
ec

s)

Series1

Figure 4 Variation of Exec time with
checkpointing interval

SM RECOVERYDON

SM RECOVERYCOMMI

TASK PVMD GRM

SM_RECOVER

SIGUSR2

TM RECOVERYDON

SIGUSR2

HOSTX

o The other application that was used to measure the
performance was PVMPOV. It is a full featured
distributed ray tracer build on PVM.

254

246

241
236

238
241

247

228

215

220
225

230
235

240
245

250
255

260

30 60 90 120 150 180 210 240

Checkpointing Interval

E
x
e
c
u

ti
o

n
 T

im
e

Figure 5 Performance results for PVMPOV

Interval No. of
checkpoints

Execution
time

30 7 254
60 3 246
90 2 241

120 1 236
150 1 238
180 1 241
210 1 247
240 0 228

Since the checkpoint overhead is inversely related to the
checkpointing interval therefore the downward slope is
seen in the initial phase of the graph. However there is an
increase in the overhead in later phase due to increase in
checkpoint size arising due to the increase in number of
messages to be logged. The last point provides the
execution time without any checkpoint session.

8 CONCLUSION
This paper describes an effort to build a fault tolerance
into the standard PVM model staying entirely at the user
level. The methods are such that they can be carried over
to other similar environments. While we have been able
to rollback the open files state of the process, other state
such as device association may require explicit OS
support. As a future direction we intend to integrate well
known optimizations into the checkpointing protocols,
and aim to support checkpointing schemes other than the
coordinated checkpointing explored in this paper.

REFERENCES

[1] Taha Osman and Andrez Bargiela. Process
Checkpointing in an open distributed environment.,
Proceedings of European Simulation Multiconference,
ESM’97, Istambul, June 1997, 536-540 .

[2] Yuqun Chen, James S. Plank and Kai Li. CLIP: A
Checkpoint tool for message passing parallel programs.
Proceedings of Supercomputer ’97 , San Jose , California,
November 1997.

[3] James S. Plank, Micah Beck and Gerry Kingsley.
Libckpt: Transparent Checkpointing under Unix.
Proceedings of the Usenix Winter Technical Conference,
New Orleans, LA, January 1995, 213-223

[4] Y-M. Wang, Y. Huang, K-P Vo, P-Y Chung and C.
Kintala, Checkpointing and its Applications, Proceedings
of the 25th Symposium on Fault-Tolerant Computing,
June 1995, pp. 22-31.

[5] P.E. Chung, W-J Lee, Y. Huang, D. Liang and C-Y
Wang, Winckp: A Transparent Checkpointing and
Rollback Recovery Tool for Windows NT applications,
Proceedings of IEEE 29th Symposium on Fault- Tolerant
Computing, Madison, June 1999, 220-223 .

[6] Wei Xiao-Hui and Ju Jiu-Bin. SCR algorithm:
saving/restoring states of file systems. Operating
Systems/Review, 33(1), Jan. 1999, 26-33.

[7] Dan Pei, Modification Operations Buffering: A Low-
overhead Approach to Checkpoint User Files,
Proceedings of IEEE 29th Symposium on Fault-Tolerant
Computing (Student paper), Madison, June 1999, 36-38.

[8] J. J. Dongarra, A. Geist, R.J. Manchek, and V.S.
Sunderam. Integrated PVM framework supports
heterogeneous network computing. Computers in
Physics:7(2), April 1993, 166-175.

