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ABSTRACT
The running times of many computational science applications are
much longer than the mean-time-to-failure of current high-perfor-
mance computing platforms. To run to completion, such applica-
tions must tolerate hardware failures.

Checkpoint-and-restart (CPR) is the most commonly used scheme
for accomplishing this - the state of the computation is saved peri-
odically on stable storage, and when a hardware failure is detected,
the computation is restarted from the most recently saved state.
Most automatic CPR schemes in the literature can be classified as
system-level checkpointing schemes because they take core-dump
style snapshots of the computational state when all the processes
are blocked at global barriers in the program. Unfortunately, a sys-
tem that implements this style of checkpointing is tied to a partic-
ular platform; in addition, it cannot be used if there are no global
barriers in the program.

We are exploring an alternative called application-level, non-
blocking checkpointing. In our approach, programs are transformed
by a pre-processor so that they become self-checkpointing and self-
restartable on any platform; there is also no assumption about the
existence of global barriers in the code. In this paper, we describe
our implementation of application-level, non-blocking checkpointing.
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We present experimental results on both a Windows cluster and a
Compaq Alpha cluster, which show that the overheads introduced
by our approach are small.

1. INTRODUCTION
This thing that we call failure is not the falling down, but the

staying down. Mary Pickford

The high-performance computing community has largely ignored
the problem of implementing software systems that can tolerate
hardware failures. This is because until recently, most parallel
computing was done on relatively reliable big-iron machines whose
mean-time-between-failures (MTBF) was much longer than the ex-
ecution time of most programs. However, many programs are now
designed to run for days or months on even the fastest comput-
ers, even as the growing size and complexity of parallel computers
makes them more prone to hardware failure. Therefore it is be-
coming imperative for long-running scientific programs to tolerate
hardware failures.

The standard technique for accomplishing this is checkpoint-
and-restart (CPR for short)1. Most programmers implement CPR
manually by (i) identifying points in the program where the amount
of state that needs to be saved is small, (ii) determining what data
must be saved at each such point, and (iii) inserting code to save that
data on disk and restart the computation after failure. For exam-
ple, in a protein-folding code usingab initio methods, programmers
save the positions and velocities of the bases (and a few variables
such as the time step number) at the end of each time step. In effect,
the code becomes self-checkpointing and self-restarting, and it is
as portable as the original application. Furthermore, if checkpoints
are saved in a portable format, the application can be restarted on
a platform different from the one on which the checkpoint was

1Strictly speaking, CPR provides a solution only forfail-stop
faults, a fault model in which failing processors just hang with-
out doing harmful things allowed by more complexByzantine fault
models in which a processor can send erroneous messages or cor-
rupt shared data [16].



taken. To ensure a consistent view of global data structures, this ap-
proach of manual application-level checkpointing (ALC) requires
global barriers at the points where state is saved. Although bar-
riers are present in parallel programs that are written in a bulk-
synchronous manner [14], many other programs such as the HPL
benchmark [20] and some of the NAS Parallel Benchmarks do not
have global barriers except in their initialization code.

A different approach to CPR, developed by the distributed sys-
tems community, issystem-level checkpointing (SLC), in which all
the bits of the computation are periodically saved on stable stor-
age. This is the approach used in the Condor system [18] for taking
uniprocessor checkpoints, for example. The amount of saved state
can be reduced by using incremental state saving. For parallel pro-
grams, the problem of taking a system-level checkpoint reduces to
the uniprocessor problem if there are global barriers where state can
be saved and there are no messages in flight across these barriers.
Without global synchronization, it is not obvious when the state
of each process should be saved so as to obtain a global snapshot
of the parallel computation. One possibility is to use coordination
protocols such as the Chandy-Lamport [8] protocol.

The advantage of SLC is that unlike ALC, it requires no effort
from the application programmer. A disadvantage of SLC is that
it is very machine and OS-specific; for example, the Condor docu-
mentation states that “Linux is a difficult platform to support...The
Condor team tries to provide support for various releases of the Red
Hat distribution of Linux [but] we do not provide any guarantees
about this.” [9]. Furthermore, by definition, system-level check-
points cannot be restarted on a platform different from the one on
which they were created. It is also usually the case that the sizes of
system-level checkpoints are larger than those produced by manual
application-level checkpointing.

In principle, one could get the best of both worlds withauto-
matic application-level checkpointing. This requires a precompiler
that can automatically transform a parallel program into one that
can checkpoint its own state and restart itself from such a check-
point. Compiler analysis is needed to identify that part of the state
of the computation that needs to be saved, and code needs to be
inserted to recompute the rest of the state of the computation from
that saved state on recovery. To handle programs without global
barriers, we need a protocol for coordinating checkpointing by dif-
ferent processes.

In this paper, we describe the implementation of such a system,
and evaluate its performance on large multiprocessor platforms. We
have not yet implemented the compiler analysis to reduce the size
of the saved state, so our results should be viewed as a base line for
application-level checkpointing.

Figure 1 is an overview of our approach. TheC3 (Cornell Check-
point (pre)Compiler) reads almost unmodified C/MPI source files
and instruments them to perform application-level state-saving; the
only additional requirement for programmers is that they must in-
sert a#pragma ccc checkpoint at points in the application
where checkpoints might be taken. At runtime, some of these prag-
mas will force checkpoints to be taken at that point, while other
pragmas will trigger a checkpoint only if a timer has expired or
if some other process has initiated a global checkpoint. The out-
put of this precompiler is compiled with the native compiler on
the hardware platform, and linked with a library that constitutes a
co-ordination layer for implementing the non-blocking coordina-
tion. This layer sits between the application and the MPI library,
and intercepts all calls from the instrumented application program
to the MPI library. Note that MPI can bypass the co-ordination
layer to read and write message buffers in the application space
directly. Such manipulations, however, are not invisible to the pro-
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Figure 1: System Architecture

tocol layer. MPI may not begin to access a message buffer until
after it has been given specific permission to do so by the applica-
tion (e.g. via a call toMPI Irecv). Similarly, once the application
has granted such permission to MPI, it should not access that buffer
until MPI has informed it that doing so is safe (e.g. with the return
of a call toMPI Wait). The calls to, and returns from, those func-
tions are intercepted by the protocol layer.

This design permits us to implement the coordination protocol
without modifying the underlying MPI library. This promotes mod-
ularity and eliminates the need for access to MPI library code,
which is proprietary on some systems. Furthermore, instrumented
programs are self-checkpointing and self-restarting on any plat-
form. The entire runtime system is written in C and uses only a
very small set of system calls. Therefore, theC3 system is easily
ported among different architectures and operating systems; cur-
rently, it has been tested on x86 and PPC Linux, Sparc Solaris, x86
Win32, and Alpha Tru64. This facile portability is in contrast to
a typical system-level CPR system, which needs to deal with the
specifics of machine architectures, operating systems, and compil-
ers.

The rest of this paper is organized as follows. In Section 2,
we enumerate some of the problem involved in providing ALC for
MPI applications. In Section 3, we present our basic protocol for
non-blocking, coordinating ALC. This protocol is based on results
in our earlier papers [5, 6], but it incorporates several significant
improvements and extensions that were developed during our first
complete implementation. In particular, the approach to coordinat-
ing checkpoints is completely different. In Section 4, we expand
the basic protocol to cover advanced features of MPI. In Section 5,
we describe how each process saves its computational state. In
Section 6, we present performance results for theC3 on two large
parallel systems. In Section 7, we compare our work with related
work in the literature. Finally, in Section 8, we present our conclu-
sions and discuss our future work.

2. DIFFICULTIES IN APPLICATION-
LEVEL CHECKPOINTING OF MPI PRO-
GRAMS

In this section, we describe the difficulties with implementing
application-level, coordinated, non-blocking checkpointing for MPI
programs. In particular, we argue that existing protocols for non-



blocking parallel checkpointing, which were designed for system-
level checkpointing, are not suitable when the state saving occurs at
the application level. In Section 3, we show how these difficulties
are overcome with our approach.

2.1 Terminology
In our system, a global checkpoint can be initiated by any pro-

cess in the program. To participate in taking the global checkpoint,
every other process saves its local computational state, together
with some book-keeping information, on stable storage. The col-
lection of local computational states and book-keeping information
is called arecovery line.

In our approach, recovery lines do not cross each other. The exe-
cution of the program can therefore be divided into a succession of
epochs where an epoch is the interval between two successive re-
covery lines (by convention, the start of the program is assumed to
begin the first epoch). Epochs are labeled successively by integers
starting at zero, as shown in Figure 2.
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Figure 2: Epochs and message classification

It is convenient to classify an application message into three cat-
egories depending on the epoch numbers of the sending and receiv-
ing processes at the points in the application program execution
when the message is sent and received respectively.

DEFINITION 1. Given an application message from process A
to process B, let eA be the epoch number of A at the point in the ap-
plication program execution when the send command is executed,
and let eB be the epoch number of B at the point when the message
is delivered to the application.

• Late message:If eA < eB , the message is said to be a late message.
• Intra-epoch message:If eA = eB , the message is said to be an

intra-epoch message.
• Early message:If eA > eB , the message is said to be an early

message.

Figure 2 uses the execution trace of three processes namedP , Q
and R to show examples of these three kinds of messages. The
source of the arrow represents the point in the execution of the
sending process at which control returns from the MPI routine that
was invoked to send this message. Similarly, the destination of the
arrow represents the delivery of the message to the application pro-
gram. An important property of the protocol described in Section 3
is that an application message can cross at most one recovery line.
Therefore, in our system,eA andeB in Definition 1 can differ by
at most one.

In the literature, late messages are sometimes calledin-flight
messages, and early messages are sometime calledinconsistent mes-
sages. This terminology was developed in the context of system-
level checkpointing protocols; in our opinion, it is misleading in
the context of application-level checkpointing.

2.2 Delayed State-saving
A fundamental difference between system-level checkpointing

and application-level checkpointing is that a system-level check-
point may be taken at any time during a program’s execution, while
an application-level checkpoint can only be taken when program
execution encounters accc checkpoint pragma.

System-level checkpointing protocols, such as the Chandy-
Lamport distributed snapshot protocol, exploit this flexibility with
checkpoint scheduling to avoid the creation of early messages—
during the creation of a global checkpoint, a processP must take
its local checkpoint before it can read a message from processQ
that was sent afterQ took its own checkpoint. This strategy does
not work for application-level checkpointing, because processP
might need to receive an early message before it can arrive at a
point where it may take a checkpoint.

Therefore, unlike system-level checkpointing protocols, which
typically handle only late messages, application-level checkpointing
protocols must handle both late and early messages.

2.3 Handling Late and Early Messages
We use Figure 2 to illustrate how late and early messages must

be handled.
Suppose that one of the processes in this figure fails after Global

Checkpoint 2 is taken. For processQ to recover correctly, it must
obtain the late message that was sent to it by processP prior to
the failure. Thus, we need mechanisms for (i) identifying late mes-
sages and saving them along with the global checkpoint, and (ii)
replaying these messages to the receiving process during recovery.

In principle, the epoch number of the sending process can be
piggybacked on each application message to permit the receiver to
determine if that message is a late, intra-epoch, or early message.
Since messages do not cross more than one recovery line in our
protocol, it is actually sufficient to piggyback just a couple of bits
to determine this information, as we discuss in Section 3.

To replay late messages, each process uses aLate-Message-
Registry to save late messages. Each entry in this registry con-
tains the message signature(< sending node number, tag,
communicator >) and the message data. There may be multi-
ple messages with the same signature in the registry, and these are
maintained in the order in which they are received by the applica-
tion. Once recording is complete, the contents of this registry is
saved on stable storage.

Early messages, such as the message sent from processQ to pro-
cessR pose a different problem. On recovery, processR does not
expect to be resent this message, so processQ must suppress send-
ing it. To handle this, we need mechanisms for (i) identifying early
messages, and (ii) ensuring that they are not resent during recovery.

In our implementation, each process uses aEarly-Message-
Registry to record the signatures of early messages. Once all
early messages are received by a process, theEarly-Message-
Registry is saved on stable storage. During recovery, each pro-
cess sends all entries of itsEarly-Message-Registry to the
processes that originally sent the corresponding messages. Each
process constructs aWas-Early-Registry from the informa-
tion it receives from all other processes, and suppresses the match-
ing message sends during recovery.

Early messages pose another, more subtle, problem. In Figure 2,
the saved state of processR at Global Checkpoint 2 may depend on
data contained in the early message from processQ. If the contents
of that message depend on the result of a non-deterministic event
at Q, such as a wild-card receive, that occurred afterQ took its
checkpoint, that event must be re-generated in the same way during
recovery.



Therefore, mechanisms are needed to (i) record the non-determin-
istic events that a global checkpoint depends on, so that (ii) these
events can be replayed during recovery.

In our benchmarks, the only non-determinism visible to the ap-
plication arises from wild-card receives in MPI, and these are han-
dled correctly by our protocol layer as described in Section 3. Some
of the benchmarks have pseudo-random number generators, but
these do not require any special treatment because they produce
deterministic sequences of pseudo-random numbers starting from
some seed value.

2.4 Problems Specific to MPI
In addition to the problems discussed above, problems specific

to MPI must be addressed.
Many of the protocols in the literature such as the Chandy-

Lamport protocol assume that communication between processes
is FIFO. In MPI, if a process P sends messages with different tags
or communicators to a process Q, Q may receive them in an order
different from the order in which they were sent. It is important
to note that this problem has nothing to do with FIFO behavior or
lack thereof in the underlying communication system; rather, it is a
property of the order in which an application chooses to receive its
messages.

MPI also supports a very rich set of group communication calls
called collective communication calls. These calls are used to do
broadcasts, perform reductions, etc. In MPI, processes do not need
to synchronize to participate in any collective communication call
other than barrier. Therefore, the problem with collective calls is
that in a single collective call, some processes may invoke the call
before taking their checkpoints while other processes may invoke
the call after taking their checkpoints. Unless something is done,
only a subset of the processes will re-invoke the collective call dur-
ing recovery, which would be incorrect.

Finally, the MPI library has internal state that needs to be saved
as part of an application’s checkpoint. For example, when a pro-
cess posts a non-blocking receive, the MPI library must remember
the starting address of the buffer where the data must be written
when it arrives, the length of the buffer, etc. If a process takes
a checkpoint in between the time it posts a non-blocking receive
and when the message is actually received by the application layer,
the checkpoint must contain relevant information about the pending
non-blocking receive so that the message can be received correctly
after recovery. Previous work has investigated modifying the MPI
library code [23], or providing a specifically designed implementa-
tion of the library [1], but these strategies are not portable.

3. A NON-BLOCKING, COORDINATED
PROTOCOL FOR APPLICATION-
LEVEL CHECKPOINTING

We now describe the coordination protocol we use for coordi-
nated, application-level checkpointing. The protocol is indepen-
dent of the technique used by processes to save their computational
state. To avoid complicating the presentation, we first describe the
protocol for blocking point-to-point communication only. In Sec-
tion 4, we describe how advanced features of MPI such as asyn-
chronous communication, arbitrary datatypes, and collective com-
munication can be handled by using these mechanisms.

3.1 High-level Description of Protocol
At any point during execution, a process is in one of the states

shown in the state transition diagram of Figure 3. We call these
statesmodes in our description. Each process maintains variables
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Figure 3: State transitions of a process

namedEpoch andMode to keep track of its current epoch and
mode.

In addition, each process maintains a number of variables to
capture the state of the communication operations to determine
whether it has received all outstanding messages from other pro-
cesses. Each process maintains an arraySent-Count containing
one integer for each process in the application;Sent-Count[Q]
is the number of messages sent from the local process to Q in the
current epoch. Furthermore, a process maintains a set of coun-
ters to capture the number and type (late, intra-epoch, early) of all
received messages. These variables are updated at every communi-
cation operation as shown in Figure 4, and are explained later.

The square boxes in Figure 3 show the actions that are executed
by a process when it makes a state transition; pseudo-code for these
actions is shown in Figure 5. These states and transitions are de-
scribed in more detail next.

Run During normal execution, a process is in theRun mode. As
described above, it incrementsSent-Count[Q] when it
sends a message to process Q; when it receives an early mes-
sage, it adds it to itsEarly-Message-Registry.

A process takes a checkpoint when it reaches a pragma that
forces a checkpoint. Alternatively, it may get a control mes-
sage calledCheckpoint-Initiated from another process which
has started its own checkpointing; in this case, the process
continues execution until it reaches the next pragma in its
own code, and then starts its checkpoint. These conditions
are described in the code for the pragma shown in Figure 5.

To take a checkpoint, the function calledchkpt
StartCheckpoint in Figure 5 is invoked. For now, it is
sufficient to note that this function saves the computational
state of the process, and itsEarly-Message-Registry
on stable storage, and sends aCheckpoint-Initiated message
to every other process Q, sending the value of
Sent-Count[Q] with this message. It then re-initializes
the Sent-Count array and theEarly-Message-
Registry, and transitions to theNonDet-Logstate, begin-
ning a new epoch.

NonDet-Log In this mode, the process updates counters and reg-
istries as in theRun mode, but it also saves late messages



and non-deterministic events in theLate-Message-
Registry for replay during recovery. As part of the lat-
ter, we save the signatures (but not the data) of each intra-
epoch message received by a
wildcard receive (i.e., a receive that usesMPI ANY SOURCE
and/orMPI ANY TAG). This enables the non-determinism of
wild-card receives to be replayed correctly on recovery.

When the process gets aCheckpoint-Initiated message from
all other processes, it knows that every process has started a
new epoch, so any message it sends from that point on will
not be an early message. Therefore, it terminates the logging
of non-deterministic events and transitions to the
RecvOnly-Log mode. It must also perform this transi-
tion if it receives a message from a process Q that has itself
stopped logging non-deterministic events; intuitively, this is
because it knows that Q knows that all processes have taken
their local checkpoints.

The second condition for performing the transition is a lit-
tle subtle. Because we make no assumptions about message
delivery order, it is possible for the following sequence of
events to happen. Process P stops logging non-deterministic
events, makes a non-deterministic decision, and then sends a
message to process Q containing the result of making this de-
cision. Process Q could use the information in this message
to create another non-deterministic event; if Q is still logging
non-deterministic events, it stores this event, and hence, the
saved state of the global computation is causally dependent
on an event that was not itself saved. To avoid this problem,
we require a process to stop logging non-deterministic events
if it receives a message from a process that has itself stopped
logging non-deterministic events.

RecvOnly-Log In this state, the process continues to log only late
messages in theLate-Message-Registry.

When the process receives all late messages from the previ-
ous epoch, it invokeschkpt CommitCheckpoint, which
is shown in Figure 5. This function writes theLate-
Message-Registry to stable storage. The process then
transitions back to theRun state.

Restore A process recovering from failure starts in theRestore
state, and invokeschkpt RestoreCheckpoint, which
is shown in Figure 5. It sends every other process Q the sig-
natures of all early messages that Q sent it before failure, so
that these sends can be suppressed during recovery. Each
process collects these signatures into aWas-Early-
Registry. During recovery, any message send that matches
a signature in this registry is suppressed, and the signature is
removed from the registry.

Similarly, if a message receive matches a message in the
Late-Message-Registry, the data for that receive is
received from this registry, and the entry for that message is
removed from the registry. In addition, the signatures stored
in theLate-Message-Registry are used to fill in any
wild-cards to force intra-epoch messages to be received in
the order that they were received prior to failure.

When the Was-Early-Registry and the Late-
Message-Registryare empty, recovery is complete, and
the process transitions to theRun state.

chkpt MPI Send()

If (Mode=NonDetLog)
Check for control messages
If (all nodes have started checkpoints)

Mode:=RecvOnly-Log

If (Mode!=Restore)
PiggyBackData:=(Mode,Epoch)
MPI Send(<original send parameters>)
Sent-Count[Target]++

Else /* Mode must beRestore*/
If (parameters match entry in Was-Early-Registry)

Remove entry from Was-Early-Registry
If (Late-Message-Registry is empty) and

(Was-Early-Registry is empty)
Mode:=Run

return MPISUCCESS
Else

PiggyBackData:=(Mode,Epoch)
MPI Send(<original send parameters>)
Sent-Count[Target]++

chkpt MPI Recv()

If (Mode!=Restore)
If (Mode=NonDetLog)

Check for control messages
If (all nodes have started checkpoints)

Mode:=RecvOnly-Log

MPI Recv((<original recv parameters>)

If (MsgType=Early)
Early-Received-Counter[Source]++
Add to Early-Message-Registry

If (MsgType=Intra-epoch)
Received-Counter[Source]++
If (Sender is Logging) and (mode=NonDetLog)

Add signature to Late-Message-Registry
If (MsgType=Late)

Late-Received-Counter[Source]++
Add message to Late-Message-Registry

Else /* Mode must beRestore*/
If (parameters match a message in Late-Message-Registry)

Restore message from disk
Delete entry in Late-Message-Registry
If (Late-Message-Registry is empty) and

(Was-Early-Registry is empty)
Mode:=Run

Else
If (parameters match an entry in Late-Message-Registry)

Restrict parameters to those in the registry
Delete entry in Late-Message-Registry
If (Late-Message-Registry is empty) and

(Was-Early-Registry is empty)
Mode:=Run

MPI Recv(<modified recv parameters>)
Else

MPI Recv(<original recv parameters>)
Received-Counter[Source]++
If (Message is from next epoch,i.e., is early)

Early-Received-Counter[Source]++
Add Message to Early-Message-Registry

Else
Received-Counter[Source]++

Figure 4: Wrapping Communication calls



#pragma ccc checkpoint

If (mode=Run)
Check for control messages
If (checkpoint forced) or

(timer expired) or
(at least one other node has started a checkpoint)

Call chkpt StartCheckpoint
If (all nodes have started checkpoint)

If (no late messages expected)
Mode:=Run

Else
Mode:=Recv-Log

Else
Mode:=NonDet-Log

chkpt StartCheckpoint()

Advance Epoch
Create checkpoint version and directory
Save application state
Save basic MPI state

Number of nodes, local rank, local processor name
Current epoch
Attached buffers

Save handle tables
Includes datatypes and reduction operations

Save and reset Early-Message-Registry
SendCheckpoint-Initiated messages to every node Q with Sent-Count[Q]
Prepare counters

Copy Received-Counters to Late-Received-Counters
Copy Early-Received-Counters to Received-Counters
Reset Early-Received-Counters

chkpt CommitCheckpoint()

Save and reset Late-Message-Registry
Commit Checkpoint to disk
Close checkpoint

chkpt RestoreCheckpoint()

Initialize MPI
Query last local saved checkpoint committed to disk
Global reduction to find last checkpoint committed on all nodes
Open Checkpoint
Mode:=Restore

Restore basic MPI state
Number of nodes, local rank, local processor name
Current epoch
Attached buffers

Restore handle tables
Includes datatypes and reduction operations

Restore message registries
Restore Late-Message-Registry
Restore Early-Message-Registry
Distribute Early-Message-Registry entries to respective
target nodes to form Was-Early-Registry
Reset Early-Message-Registry

If (Late-Message-Registry is empty) and
(Was-Early-Registry is empty)

Mode:=Run

. . . jump to checkpointed location . . .

. . . resume execution . . .

Figure 5: Protocol actions

3.2 Piggybacked Information on Messages
Because MPI does not provide any FIFO guarantees for mes-

sages with different signatures, the protocol layer must piggyback
a small amount of information on each application message to per-
mit the receiver of a message to determine the state of the sending
process at the time the message was sent. These piggybacked val-
ues are derived from theEpoch andMode variables maintained
by each process. The protocol layer piggybacks these values on all
application messages. The receiver of the message uses this piggy-
backed information to answer the following questions.

1. Is the message a late, intra-epoch, or early message?
This is determined by comparing the piggybacked epoch with
the epoch that the receiving process is in, as described in Def-
inition 1.

2. Has the sending process stopped logging non-determinstic
events?
No, if the piggybacked mode isNonDet-Log, and yes other-
wise.

A detailed examination of the protocol shows that further econ-
omy in piggybacking can be achieved if we exploit the fact that a
message can cross at most one recovery line. If we imagine that
epochs are colored red, green, and blue successively, we see that
the integerEpoch can be replaced byEpoch-color, which can
be encoded in two bits. Furthermore, a single piggybacked bit is
adequate to encode whether the sender of a message has stopped
logging non-deterministic events. Therefore, it is sufficient to pig-
gyback three bits on each outgoing message. For simplicity, we do
not show these optimizations in the pseudo-code.

4. ADVANCED MPI FEATURES
The basic protocol described in Section 3 applies to all blocking

point-to-point communication. In this section, we describe how
we extend these mechanisms to implement advanced MPI features
such as non-blocking communication, complex datatypes, and col-
lectives.

4.1 Non-blocking Communication
MPI provides a set of routines to implement non-blocking com-

munication, which separates the initiation of a communication call
from its completion. The objective of this separation is to permit
the programmer to hide the latency of the communication opera-
tion by performing other computations between the time the com-
munication is initiated and the time it completes. MPI provides
non-blocking send and receive calls to initiate communication, and
it provides a variety of blocking wait or non-blocking test calls to
determine completion of communication requests.

Extending the Basic Protocol
Non-blocking communication does not complete during a single
call to the MPI library, but is active during a period of time between
the initiation and the completion of the communication. This is true
for both the sending and receiving process, as shown in Figure 6.
During these time periods, MPI maintains a request object to iden-
tify the active communication. If a checkpoint is taken between the
time the process initiates a non-blocking communication and the
time that this communication completes, the protocol layer has to
ensure that the corresponding request object is restored correctly
during recovery.

To extend our protocol to non-blocking communication, we need
to apply the base protocol to the points in the application that re-
semble the actual message transfer, i.e., from the point where the
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mination

application hands the message buffer to MPI (the beginning of the
send interval) to the point where the application is able to read the
received data (at the end of the receive interval). This is also illus-
trated in Figure 6.

Based on this observation, non-blocking send operations execute
the send protocol described in Section 3, while the receive proto-
col is executed within theTest andWait calls. To handleTest
andWait calls, we must store additional information in the re-
quest objects created by the non-blocking receive calls. To stay
independent of the underlying MPI implementation, we implement
a separate indirection table for all requests. For each request allo-
cated by MPI, we allocate an entry in this table and use it to store
the necessary information, including type of operation, message
parameters, and the epoch in which the request has been allocated.
In addition, we store a pointer to the original MPI request object.
The index to this table replaces the MPI request in the target appli-
cation. This enables our MPI layer to instantiate all request objects
with the same request identifiers during recovery.

At checkpoint time, the request table on each node contains all
active requests crossing the recovery line and hence all requests
that need to be restored during a restart from that recovery line.
However, at this time we do not know which of the open receive
requests will be completed by a late message. This is important,
since late messages are replayed from the log during restart and
hence should not be recreated. Therefore, we delay the saving of
the request table until the end of the checkpoint period when all
late messages have been received. During the logging phase, we
mark the type of message matching the posted request during each
completedTest orWait call. In addition, to maintain all relevant
requests, we delay any deallocation of request table entries until
after the request table has been saved.

During recovery, all requests allocated during the logging phase,
i.e., after the recovery line, are first deleted to roll the contents of
the request table back from the end of the checkpoint period to the
recovery line. Then, all requests that have not been completed by a
late message are recreated before the program resumes execution.

Dealing with Nondeterminism
As described in Section 3, our protocol contains a phase that logs
any potential non-determinism. For non-blocking communication,
this has to include the correct recording of the number of unsuc-
cessful tests as well as the logging of the completed indices in calls
containing arrays of requests.

For this purpose, we maintain a test counter for each request to
record the number of unsuccessfulTest or Wait operations on
this request. This counter is reset at the beginning of each check-
pointing period and saved at the end of the checkpointing period
as part of the request table. At recovery time, aTest call checks
this counter to determine whether the same call during the original
run was successful. If not, i.e., the counter is not zero, the counter
is decremented and the call returns without attempting to complete
the request. If, however, the original call was successful, i.e., the

counter has reached zero, the call is substituted with a correspond-
ing Wait operation. This ensures that theTest completes as in
the original execution. Similarly, this counter is used to log the
index or indices ofMPI Wait any andMPI Wait some and to
replay these routines during recovery.

Note that this replacement ofTest calls withWait calls can
never lead to deadlock, since theTest completed during the orig-
inal execution, and hence a corresponding message either has al-
ready arrived or is expected to arrive. TheWait is therefore guar-
anteed to complete during recovery.

4.2 Handles for Datatypes
MPI provides routines to define application-specific datatypes.

These datatypes can then be used during communication requests
to specify message payloads. To support datatypes in our protocol,
we use an indirection table similar to the request table to store both
the original MPI datatype handle and the information that was used
during the creation of that datatype. During recovery, this infor-
mation is used to recreate all datatypes before the execution of the
program resumes.

This process is complicated by the fact that MPI datatypes can be
constructed using other, previously constructed datatypes, resulting
in a hierarchy of types. We keep track of this hierarchy within the
datatype table by storing the indices of the dependent types with
each entry. In addition, we ensure that table entries are not actu-
ally deleted until both the datatype represented by the entry and all
types depending on it have been deleted. This ensures that during
a restore all intermediate datatypes can be correctly reconstructed.
Note, that even tough the table entry is kept around, the actual MPI
datatype is being deleted. This ensures that resource requirements
within the MPI layer are not changed compared to a native, non
fault-tolerant execution of same application.

The information about the datatype hierarchy is also used for
any message logging or restoration. This is necessary, since MPI
datatypes can represent non-contiguous memory regions. In both
cases, the datatype hierarchy is recursively traversed to identify and
individually store or retrieve each piece of the message.

4.3 Collective Communication
MPI offers a variety of collective communication primitives. The

main problem with collective communication calls is that some
processes may execute the call before taking their checkpoints while
other processes may execute the call after taking their checkpoints.
Unless something is done, only a subset of the processes will there-
fore participate in the collective communication call during recov-
ery, which is erroneous.

Although we could convert each collective communication call
to a set of point-to-point messages and apply the protocol described
in Section 3 to these messages, we do not do this because it is im-
portant to permit the application to use the native, optimized col-
lective calls.

Handling Collective Communication
The approach we take is similar to our approach for non-blocking
communication calls in the sense that we apply the base proto-
col to the start and end points of each individual communication
stream within a collective operation, without affecting the actual
data transfer mechanisms in the underlying MPI layer.

We show an example of this approach in Figure 7.MPI Gather
aggregates data from all processors (marked as “In”) into a single
buffer on one node (marked as “Out”). At the call site on each pro-
cess, we first apply the send protocol shown in Figure 4. After the
necessary protocol updates have been made, the protocol layer uses
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Figure 7: Example of collective communication:MPI Gather

the originalMPI Gather operation to carry out the communica-
tion and thereby takes advantage of potential optimizations.

At the root node (in this case process Q), the protocol, after
receiving the communication by callingMPI Gather, performs
counter and registry updates for each communication stream by ap-
plying the receive protocol described in Figure 4. This enables the
protocol to determine if part of the communication is late or early
and apply the necessary protocol mechanisms only to those mes-
sage parts, as shown on the right of Figure 7 for the late communi-
cation from P to Q.

During recovery, we emulate collectives using point-to-point calls
and apply the protocol as describe above to each individual com-
munication stream within each single collective operation. Once
the complete application has recovered, we switch back to using
the original collective calls. Therefore, any performance penalty is
restricted to the short phase of process recovery.

Reduction Operations
The approach described above cannot be applied directly to re-
duction operations, such asMPI Reduce, MPI Allreduce, and
MPI Scan. These routines aggregate the message payload based
on a user-provided reduction operation before returning the data to
the user. Hence, it is no longer possible to log individual messages,
which is a requirement of the base protocol.

For MPI Allreduce however, it is sufficient to store the fi-
nal result of the operation at each node and replay this from the
log during recovery. This operation involves an all-to-all com-
munication scheme, and as a consequence, each communication
process will have outstanding early and late messages during the
MPI Allreduce call. Hence, all communication is completed
either before a checkpoint or during nondeterministic logging. This
ensures that the complete collective operation is repeated exactly as
during the original run and provides the same result.

Similarly MPI Scan can be implemented by logging the result
of the routine. The use of the prefix operator results in a strictly
ordered dependency chain between processes. This guarantees that
any result ofMPI Scan is either stored in the log or is computed
after the logging of non deterministic events is completed. The
latter ensures that the result can safely recomputed along this de-
pendency chain based on the logged data.

In contrast to these two routines,MPI Reduce does not have
similar properties and hence parts of the communication contribut-
ing to the final result can be intra-epoch messages. The payload
of these messages can change during a restore, and, as a conse-
quence, simply logging the final result and replaying this during
recovery is insufficient. To compensate for this behavior, we first
send all data to the root node of the reduction using an indepen-
dentMPI Gather and then perform the actual reduction. This
provides the protocol with the required individual messages from
all processes and allows a correct replay on recovery.

4.4 Communicators, Groups, and Topologies
Our protocol layer currently does not support arbitrary commu-

nicators, groups, and topologies. An extension providing such sup-
port, however, is straightforward and is currently under develop-
ment. Similarly to datatypes, any creation or deletion has to be
recorded and stored as part of the checkpoint. On recovery, we read
this information and replay the necessary MPI calls to recreate the
respective structures.

4.5 Discussion
The protocol described in this paper differs in a number of ways

from the one described in our earlier work [5, 6]. Some of the key
differences are the following.

• In our earlier protocol, there was a distinguished process
called the initiator that was responsible for initiating and mon-
itoring the creation of a global checkpoint. The protocol de-
scribed here can be initiated by any process.

• In our earlier protocol, there was a single logging phase in
which both non-deterministic events and late messages were
logged. In the new protocol, the logging of non-deterministic
events is separated from the recording of late messages. This
reduces the amount of logging that needs to be done, which
reduces overhead.

• In our earlier protocol, the decision to stop logging was made
by the initiator and communicated to all other processes when
it was informed by all other processes that they had finished
sending all their early messages and received all their late
messages. In the protocol described here, this decision is
made locally by each process based on received checkpoint
initiation and late messages. We believe this makes the new
protocol more scalable.

• Finally, the new implementation separates the implementa-
tion of piggybacking from the rest of the protocol. This al-
lows the implementation of piggybacking to be changed to
match system characteristics without affecting the rest of the
implementation.

5. STATE SAVING
The protocol described in Sections 3 and 4 is independent of the

way in which the local computational state is saved by each pro-
cess. For completeness, we provide a summary of the implementa-
tion of state-saving in our system. More details can be found in our
earlier paper [5].

Roughly speaking, the state of an individual process consists
both of its data and its execution context. To provide CPR, the
C3 system utilizes a precompiler to instrument certain points in an
application’s code where there are changes to either its set of vari-
ables (and objects) or to its execution context.

This inserted code usually consists of a call to a routine in theC3

utility library that registers the change to the application’s state. For
example, as a local variable enters scope, the inserted code passes
a description of that variable to the utility library, where it is added
to the set of variables in scope. When it leaves scope, the variable’s
description is removed from that set. In this manner, the inserted
code, when executed dynamically, serves to maintain an up-to-date
description of the processes’ state.

As mentioned before, theC3 system requires that the program-
mer specify the positions in the application where CPR may occur,
by marking them with a#pragma statement. Because the set of
such locations is necessarily finite, the precompiler only needs to
instrument the code when changes to the application’s state cross
such a position.



When it is time to take a checkpoint, theC3 system uses the
description of the process state that it had maintained to write the
state to the checkpoint file. It then stores the description to the
checkpoint file as well. When restarting, first the description is
read, and then it is used to reconstruct the application’s state from
the information saved within the checkpoint file.

Although the checkpointing mechanism used byC3 is portable,
the checkpoints are not:C3 saves all data as binary, irrespective
of the data’s type. This was the result of a design philosophy that
favors efficiency (not needing to convert data to a neutral format)
and transparency (not confining programmers to a subset of C with
limited pointers) to portability. Because all data is saved as binary,
on restart, theC3 system must ensure that all objects and variables
are restored to their original addresses, otherwise pointers would
no longer be correct after a restart. For stack allocated variables,
this is accomplished by “padding” the stack before handing control
to main. For dynamically allocated objects,C3 provides its own
memory manager.

Thus far in our project, we have not implemented any optimiza-
tions to reduce the amount of saved state. Our ongoing work is in
two categories.

• Currently theC3 system takes full checkpoints. We are in-
corporating incremental checkpointing into our system, which
will permit the system to save only those data that have been
modified since the last checkpoint.

• We are also investigating the use of compiler techniques to
exclude some data from being saved at a checkpoint because
it can be recomputed during recovery. This is in the spirit of
Beck et al, who have explored the use of programmer direc-
tives towards this end [17].

Finally, we are implementing portable checkpointing for use in
grid environments. This requires the applications programmer to
use a subset of C for which portable code can be generated. Our
precompiler analyzes the source program to determine if it con-
forms to these restrictions; if so, it instruments the code to generate
portable checkpoints, and otherwise, it flags the offending parts of
the code to permit the programmer to rewrite those parts appropri-
ately.

6. PERFORMANCE
To evaluate the quality of checkpointing usingC3, we would

have liked to compare its performance with that of a more estab-
lished system for taking parallel checkpoints. However, there is
no other parallel checkpointing system that is available for our tar-
get platforms. Therefore, we performed experiments to answer the
following questions.

• How do checkpoint files produced byC3 compare in size
with those produced by other systems onsequential comput-
ers?

• How much overhead does theC3 system add to a parallel
application when no checkpoints are taken?

• How much overhead does theC3 system add to a parallel
application when checkpoints are taken?

• How much time does it take to restart an application from a
checkpoint?

Our parallel experiments were performed on the following ma-
chines,

Lemieux The Lemieux system at the Pittsburgh Supercomputing
Center consists of 750 Compaq Alphaserver ES45 nodes.
Each node contains four 1-GHz Alpha processors and runs
the Tru64 Unix operating system. Each node has 4 GB of
memory and 38GB local disk. The nodes are connected with
a Quadrics interconnection network.

Velocity 2 The Velocity 2 cluster at the Cornell Theory Center
consists of 128 dual processor 2.4GHz Intel Pentium 4 Xeon
nodes. Each processor has a 512KB L2 cache, and runs
Windows Advanced Server 2000. Each node has 2 GB of
RAM and a 72GB local disk. The nodes are connected with
Force10 Gigabit Ethernet.

CMI The CMI cluster at the Cornell Theory Center consists of 64
dual processor 1GHz Intel Pentium 3 nodes. Each processor
has a 512KB L2 cache, and runs Windows Advanced Server
2000. Each node has 2 GB of RAM and a 18GB local disk.
The nodes are connected with a Giganet switch.

Unless otherwise notes, the experiments under Windows were per-
formed on Velocity 2.

We focused on the NAS Parallel Benchmarks (NPB), which are
interesting to us because with the exception of the MG bench-
mark, they do not contain calls toMPI Barrier in the compu-
tations. Several of the codes callMPI Barrier immediately be-
fore starting and stopping the benchmark timer, but only MG calls
MPI Barrier during the computation. All machines are heavily
used by other users, so we could obtain numbers for only a subset
of the full NAS benchmark set. We will post more results on our
web-site (http://iss.cs.cornell.edu) as they become available. We
also present results for the SMG2000 application from the ASCI
Purple benchmarks [7] and the HPL benchmark [20].

6.1 Checkpoint Sizes
To evaluate the checkpoint sizes taken byC3, we compared the

sizes of the checkpoint files produced byC3 and Condor [18], ar-
guably the most popular SLC system in high-performance comput-
ing. Since Condor only checkpoints sequential applications, we
measured checkpoint sizes produced on uniprocessors.2

Table 1 shows the sizes of the checkpoint files produced byC3

and Condor for the NAS Benchmarks on two different platforms.

Solaris A SUN V210 with a two 1GHz UltraSPARC IIIi proces-
sors, 1 MB L2 cache, and 2 GB RAM, running Solaris 9.

Linux A Dell PowerEdge 1650, with a 1.26GHz Intel Pentium III
processor, 512KB L2 cache, and 512MB of RAM, running
Redhat Linux 8.0.

We haveC3 numbers for other platforms such as Windows, but
we do not show them here since Condor does not run those plat-
forms.

The sizes of the checkpoint files are given in megabytes, and
the column labelled “Reduction” is the relative amount that theC3

checkpoints are smaller than the Condor checkpoiunts.
These results show that in almost all cases, the checkpoints pro-

duced by theC3 system are smaller than those produced by Con-
dor. This is primarily because theC3 system saves only live data
(memory that has not been freed by the programmer) from the heap.
BecauseC3 is an ALC system, the checkpoint files can be further
reduced by applying compiler analysis and optimizations, which

2CoCheck [23] is a SLC system based on Condor for MPI applica-
tions, but it does not run on any of our target platforms.



Code Size
Platform (Class) Condor C3 Reduction

Solaris BT (A) 308.85 306.39 0.80%
CG (B) 429.89 427.44 0.57%
EP (A) 3.46 1.00 71.07%
FT (A) 421.28 418.69 0.61%
IS (A) 100.45 96.00 4.43%

LU (A) 46.99 44.54 5.21%
MG (B) 436.99 435.48 0.34%
SP (A) 82.09 79.63 2.99%

Linux BT (A) 307.13 306.39 0.24%
CG (B) 428.17 427.44 0.17%
EP (A) 1.74 1.00 42.29%
FT (A) 419.43 418.69 0.17%
IS (A) 96.74 96.00 0.76%

LU (A) 45.27 44.54 1.61%
MG (B) 435.24 435.55 -0.07%
SP (A) 80.36 79.63 0.91%

Table 1: Condor andC3 checkpoint sizes in megabytes

are still being implemented in our system. This reduction is not
possible with an SLC system like Condor.

We concluded that the application-level checkpoints taken by
even the currentC3 system without any state-saving optimizations
are roughly the same size as system-level checkpoints taken by
Condor.

6.2 Overhead Without Checkpoints
We now discuss the performance ofC3 on parallel platforms.

Unlike blocking checkpointing, non-blocking checkpointing at the
application level requires some book-keeping as explained in Sec-
tion 3, which adds to the running time of the application even if
no checkpoints are taken. We present numbers that show that this
continuous overhead is small.

Tables 2 and 3 show the running times of some of the NPB’s on
Lemieux and Velocity 2 respectively. The column labelled “Origi-
nal” shows the running time in seconds of the original benchmark
application. The column labelled “C3” shows the running time in
seconds of the application that has been compiled and run using
theC3 system. For these runs, no checkpoints are taken. The col-
umn labelled “Relative” shows the relative overhead of using the
C3 system. This overhead comes from executing the book-keeping
code inserted by the precompiler, and the piggybacking and book-
keeping done by our MPI protocol layer.

The overheads on Lemieux are less than 10% on all codes; for
most codes in fact, the overheads are within the noise margins,
which was around 2-3%. Moreover, there is no particular corre-
lation of overheads to the number of processors, showing that the
protocol scales at least to a thousand processors.

The overheads on Velocity 2 are mostly within the 10% range
as well, except for SMG2000. Since these times are not consistent
with those measured on Lemieux nor with the other times measured
on Velocity 2, we suspect that this behavior is somehow platform-
specific. We are investigating this matter further, but we believe that
overall, the results show that the overhead ofC3 without taking any
checkpoints is acceptable.

6.3 Checkpoint placement
There are tradeoffs that need to be made when inserting poten-

tial checkpoint locations in an application code. On the one hand,
if a checkpoint location is specified inside a computation loop, it
will be encountered frequently. This tends to reduce the amount
of time spent logging since all of the processors are likely to take

Code Procs Runtime Relative
(Class) (Nodes) Original C3 Overhead
CG (D) 64 (16) 1651 1679 1.7%

256 (64) 447 466 4.2%
1024 (256) 207 213 3.0%

LU (D) 64 (16) 1500 1571 4.7%
256 (64) 408 425 4.3%

1024 (256) 126 134 6.3%
SP (D) 64 (16) 3011 3130 4.0%

256 (64) 6423 661 2.9%
1024 (256) 199 205 3.3%

SMG2000 64 (16) 136 143 5.3%
256 (64) 145 156 7.6%

1024 (256) 158 172 8.7%
HPL 64 (16) 280 286 2.2%

256 (64) -∗ -∗ -∗

1024 (256) 379 415 9.6%
∗These results were unavailable at the time of publication

Table 2: Runtimes in seconds on Lemieux without checkpoints

Code Procs Runtime Relative
(Class) (Nodes) Original C3 Overhead
CG (D) 64 (32) 4085 4295 5.1%

128 (64) 1691 1829 8.2%
256 (128) 1651 1815 9.9%

LU (D) 64 (32) 3232 3284 1.6%
128 (64) 1814 1908 5.2%

256 (128) 1074 1108 3.2%
SP (D) 64 (32) 4223 4307 2.0%

144 (72) 2102 2152 2.4%
256 (128) 2564 2680 4.5%

SMG2000 32 (16) 231 340 47.6%
64 (32) 270 420 55.2%

128 (64) 330 487 47.5%
HPL† 32 (16) 3121 3133 0.38%

64 (32) 1776 1780 0.22%
128 (64) 1164 1165 0.11%

†These runs were performed on CMI

Table 3: Runtimes in seconds on Velocity 2 without checkpoints

their checkpoints at roughly the same time. On the other hand, the
checkpointing code inserted by theC3 will add to the execution
time of the computation and may inhibit certain compiler optimiza-
tions.

For these experiments, we have chosen to place checkpoint lo-
cations in a number of different places in the benchmark applica-
tions. We have made no attempt to measure how checkpoint place-
ment impacts performance, although we plan to do so in future
work. Below we summarize for each application where the poten-
tial checkpoint locations are placed.

CG A checkpoint location is placed at the bottom of the main loop
in the routine,conj grad. This loop is the main computa-
tional loop of the application.

LU A checkpoint location is placed at the bottom of theistep
loop in the routine,ssor. Most of the computations are
performed within subroutine calls made within this loop.

SP A checkpoint location is placed at the bottom of thestep loop
in the main routine. Almost all of the computations are per-
formed within a subroutine call made within this loop.



SMG2000 Eight checkpoint locations are placed,

• At the top of thewhile i loop in the routine,hypre
PCGSolve.

• At the top of thefor i loop in the routine,hypre
SMGSolve.

• Five locations are placed in various placed throughout
the main routine.

These locations represent a mixture of locations both inside
and outside main computation loops.

HPL A checkpoint location is placed at the top of the innermost
driver loop (i.e.,indv) in main. Almost all of the computa-
tions are performed within a subroutine call made within this
loop.

6.4 Overhead With Checkpoints
The next set of experiments are designed to measure the addi-

tional overhead of taking checkpoints.
Tables 4 and 5 show the run-times and absolute overheads in

seconds of taking checkpoints for the same applications shown in
Tables 2 and 3. The meaning of the configurations is as follows.

Configuration #1. The run-times of theC3 generated code with-
out taking any checkpoints. These run-times are the same as
shown in column “C3” of Tables 2 and 3.

Configuration #2. The run-times of theC3 generated code when
computing one checkpoint during the run but without saving
any checkpoint data to disk.

Configuration #3. This configuration is the same as #2, except
that it includes the cost of saving application state to the local
disk on each node.

Checkpoint cost This is the cost of initiating and taking a single
checkpoint, where the base line is Configuration #1. There-
fore, this cost does not include the continuous overhead in-
troduced by theC3 system, shown in Tables 2 and 3.

The difference between Configurations #2 and #3 is that #2 in-
cludes the cost of going through the motions of taking a checkpoint
without actually saving anything to disk, whereas #3 includes the
cost of saving the checkpoint data to the local disk on each node.

The numbers in Tables 4 and 5 were measured using a single
experiment for each data point. We would have liked to repeat
each experiment several times and then report the average, but we
were not able to get enough time on the machines to accomplish
this in time. As mentioned before, the noise margin is about 2-3%.
We believe that this accounts for the negative numbers in the last
columns of these tables.

These results show that the cost of taking a checkpoint is small.
To put these results into perspective, if we scale the running times
appropriately, then we see that the maximum overhead when check-
pointing once an hour is less than 4% and the maximum overhead
when checkpointing once a day is less than .2%.

As we mentioned earlier, Configuration #3 measures the cost of
writing the application state to each node’s local disk. In a produc-
tion system, writing checkpoint files to local disk does not ensure
fault-tolerance, because when a node is inaccessible, its local disk
usually is too. However, writing directly to a non-local disk is usu-
ally not a good idea because the network contention and commu-
nication to off-cluster resources can add significant overhead. A

better strategy that is used by some systems is for the application
to write checkpoints to a local disk and then for an external dae-
mon to asynchronously transfer these checkpoints from local disk
to an off-cluster disk. Very often a second, possibly lower perfor-
mance, network is used to avoid contention with the application’s
messages. Such a system has been implemented at the Pittsburgh
Supercomputing Center [24], and we have started work to integrate
C3 with that system.

6.5 Restart Cost
For technical reasons, obtaining accurate measurements of restart

costs for the parallel applications proved to be exceptionally diffi-
cult, and these results were not available at the time of publication.
Nevertheless, we were able to obtain restart costs for single proces-
sor runs of the applications.

To compute the restart cost, we ran each application twice. In the
first run, we measured the elapse time from when the last check-
point isfinished to the end of the application execution. In the sec-
ond run, the application is restarted from this checkpoint, and we
measured the elapse time from when the restart procedure isstarted
to the end of the application execution. The results reported in the
“Restart Cost, absolute” column of Tables 6 and 7 is the difference
of these two times in seconds. To put these results into context,
column “Restart Cost, relative” gives these times as a percentage
of the “Original” runtime of the unmodified application.

These times are, with one exception, all less than 2% of the ex-
ecution time of the program, so we consider the restart costs to be
negligible.

6.6 Discussion
The experiments reported in this section show that the overhead

added by theC3 system as well the cost of taking checkpoints are
fairly small. One reason for this is that the benchmarks considered
here do not save a lot of checkpoint data. For benchmarks that save
a lot of data, the cost of writing the data to disk can be significant,
especially if the disk is on a network. Compiler analysis to reduce
the amount of saved state is one possible solution that we are inves-
tigating.

7. RELATED WORK
While much theoretical work has been done in the field of dis-

tributed fault-tolerance, few systems have been implemented for
actual distributed application environments.
High-availability Systems In the distributed systems community,
fault-tolerance has been studied mainly in the context of ensuring
zero downtime for critical systems such as web-servers and air-
traffic controller systems [16]. The problem of tolerating faults in
the context of high-performance computing is fundamentally dif-
ferent in nature because the objective is to minimize the expected
time to completion of a program, given some probability of failure.
Distributed systems techniques, such as fail-over or replication of
computations, are not useful in this context because they reduce the
resources available to the computation between failures. Alvisi et
al [11] is an excellent survey of techniques developed by the dis-
tributed systems community for recovering from fail-stop faults.
System-level CheckpointingCondor is used widely for sequential
system-level checkpointing on Unix systems [18]. The CoCheck
system [23] provides the functionality for the coordination of dis-
tributed checkpoints, relying on Condor to take system-level check-
points of each process. In contrast to our approach, CoCheck is
integrated with a particular MPI implementation, and assumes that
collective communications are implemented as point-to-point mes-
sages. Because of this, CoCheck cannot be easily migrated to other



Runtime Checkpoint
Code Procs Configurations Size/proc. Cost

(Class) (Nodes) #1 #2 #3 (Mb’s) (secs.)
CG (D) 64 (16) 1679 1703 1705 652.02 26

256 (64) 466 479 511 244.50 45
1024 (256) 213 218 237 123.67 24

LU (D) 64 (16) 1571 1543 1554 190.66 -17
256 (64) 425 425 424 56.83 -1

1024 (256) 134 143 148 18.38 14
SP (D) 64 (16) 3130 3038 3264 422.85 134

256 (64) 661 659 678 133.55 17
1024 (256) 205 215 212 49.27 7

SMG2000 64 (16) 143 143 145 2.88 2
256 (64) 156 160 159 3.24 3

1024 (256) 172 183 183 3.60 11
HPL 64 (16) 286 285 285 0.02 0

256 (64) -∗ -∗ -∗ -∗ -∗

1024 (256) 415 393 396 0.43 -19
∗These results were unavailable at the time of publication

Table 4: Runtimes in seconds on Lemieux with checkpoints

Runtime Checkpoint
Code Procs Configurations Size/proc. Cost

(Class) (Nodes) #1 #2 #3 (Mb’s) (secs.)
CG (D) 64 (32) 4295 4296 4304 455.60 9

128 (64) 1829 1827 1896 246.84 67
256 (128) 1815 1804 1860 169.25 45

LU (D) 64 (32) 3284 3271 3315 190.57 31
128 (64) 1908 1874 1901 104.86 -7

256 (128) 1108 1121 1146 56.83 38
SP (D) 64 (32) 4307 -∗ 4423 422.76 116

144 (72) 2152 -∗ 2231 217.76 79
256 (128) 2680 -∗ 2688 133.64 8

SMG2000 32 (16) 340 333 338 506.41 -2
64 (32) 420 396 408 510.62 -12

128 (64) 487 493 541 465.65 54
HPL† 32 (16) 3133 3136 3140 0.34 7

64 (32) 1780 1775 1781 0.34 1
128 (64) 1165 1163 1177 0.34 12

∗These results were unavailable at the time of publication
†These runs were performed on CMI

Table 5: Runtimes in seconds on Velocity 2 with checkpoints

Code Runtime Restart Cost
(Class) Original absolute relative
CG (A) 13 0 1.8%
LU (A) 244 -5 -1.9%
SP (A) 405 2 0.4%

SMG2000 83 5 5.3%
HPL 231 0 0.1%

Table 6: Restart costs in seconds on Lemieux

Code Runtime Restart Cost
(Class) Original absolute relative
CG (A) 34 0 0.5%
LU (A) 900 10 1.1%
SP (A) 1283 -5 -0.4%

SMG2000 172 -1 -0.8%
HPL 831 0 0.1%

Table 7: Restart costs in seconds on CMI



MPI implementations, particularly those that do not provide source
code. We believe that our ability to inter-operate with any MPI
implementation is a significant advantage. A blocking coordinated
system-level checkpointing solution is described in [24].
Message-loggingThere is an entire class of recovery protocols
called message-logging protocols, of which Manetho [10] is an
exemplar. In message-logging, processes that survive a hardware
failure are not rolled back; instead, only the failed processes are
restarted, and surviving processes help them recover by replaying
messages they sent to the restarted processes before failure.

Manetho uses an approach called causal message-logging. Be-
cause a Manetho process logs both the data of the messages sent
and the non-deterministic events that these messages depend on, the
size of those logs may grow very large if used with a program that
generates a high volume of large messages, as is the case for most
scientific programs. While Manetho can bound the size of these
logs by occasionally checkpointing process state to disk, programs
that perform a large amount of communication would require very
frequent checkpointing to avoid running out of log space. Manetho
was not designed to work with any standard message passing API,
and thus does not deal with the complex constructs – such as non-
blocking and collective communication – found in MPI.

The Egida system [22] is a fault-tolerant system for MPI, which
is also based on message-logging. There are many message-logging
protocols that have been described in the literature, and Egida per-
mits the application programmer the use the most appropriate one.

MPICH-V2 is another fault-tolerant MPI system that uses sender-
based logging and remote reliable logging of message logical clocks,
together with uncoordinated checkpointing to bound the size of
message logs [4]. MPICH-V2 performs well for applications that
use large messages but the overheads for applications that use many
small messages can be prohibitive. These results are consistent
with our initial investigations at the start of this project. We also
explored the possibility of avoiding the logging of messages by
regenerating messages using reversible computation [19], but the
overhead of book-keeping to enable computations to be reversed
was itself prohibitive. Note that although our protocol, like the
Chandy-Lamport protocol, also records message data, recording
happens only during checkpointing, and not during normal execu-
tion.
Manual Application-level Checkpointing Several systems have
been developed to make ALC easier to program. The Dome (Dis-
tributed Object Migration Environment) system [3] is a C++ library
based on data-parallel objects. SRS [25] allows the programmer to
manually specify the data that needs to be saved as well as its distri-
bution. On recovery the system uses this information to recover the
program’s state and redistribute the data on a potentially different
number of processors.

FT-MPI is a fault-tolerant version of MPI that reports hardware
failures to the application, permitting the application to take action
to recover from the failure [12]. FT-MPI survives the crash of n-1
processes in a n-process job, and, if required, can respawn them.
However, it is still the responsibility of the application to recover
the data-structures and the data on the crashed processes.
Automatic Sequential Application-level Checkpointing The
Porch system [21] supports portable ALC for programs written in
a restricted subset of C. It generates runtime meta-information that
provides size and alignment information for basic types and layout
information, which allows the checkpointer to convert all data to
a universal checkpoint format. The APrIL system [13] uses tech-
niques similar to Porch, but uses heuristic techniques for determin-
ing the type of heap objects.
Reducing Checkpoint SizeBeck and Plank [2] used a context-

insensitive live variable analysis to reduce the amount of state infor-
mation that must be saved when checkpointing. The CATCH [15]
system uses profiling to determine the likely size of the checkpoints
at different points in the program. A learning algorithm is then used
to choose the points at which checkpoints should be taken so that
the size of the saved state is minimized while keeping the check-
point interval optimal.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown that application-level non-blocking

coordinated checkpointing can be used to make C/MPI programs
fault-tolerant. We have argued that existing checkpointing proto-
cols are not adequate for this purpose and we have developed a
novel protocol to meet the need.

We have presented a system that can be used to transform C/MPI
programs to use our protocol. This system uses program transfor-
mation technology to transform the application so that it will save
and restore its own state. We have shown how the state of the un-
derlying MPI library can be reconstructed by the implementation
of our protocol.

The protocol presented in this paper offers significant improve-
ments and enhancements to those presented in [5] and [6]. These
changes came as a result of our first complete implementation of
the protocols. The performance results presented in this paper show
that our implementation delivers scalable performance on two very
different state-of-the-are supercomputing systems.

The ultimate goal of our project is to provide a highly efficient
checkpointing mechanism for MPI applications. One way to mini-
mize checkpoint overhead is to reduce the amount of data that must
be saved when taking a checkpoint. Previous work in the compiler
literature has looked at analysis techniques for avoiding the check-
pointing of dead and read-only variables [2]. This work focused
on statically allocated data structures in FORTRAN programs. We
would like to extend this work to handle the dynamically allocated
memory in C/MPI applications. We are also studying incremental
checkpointing approaches for reducing the amount of saved state.

Another powerful optimization is to trade off state-saving for re-
computation. In many applications, the state of the entire compu-
tation at a global checkpoint can be recovered from a small subset
of the saved state in that checkpoint. The simplest example of this
optimization is provided by a computation in which we need to
save two variablesx andy. If y is some simple function ofx, it is
sufficient to savex, and recompute the value ofy during recovery,
thereby trading off the cost of saving variabley against the cost of
recomputingy during recovery. Real codes provide many oppor-
tunities for applying this optimization. For example, in protein-
folding usingab initio methods, it is sufficient to save the positions
and velocities of the bases in the protein at the end of a time-step
because the entire computation can be recovered from that data.

Whether or not these optimizations prove to be effective, we be-
lieve we have established that application-level checkpointing can
be used to make programs self-checkpointing and self-restarting,
thereby providing fault-tolerance for long-running scientific appli-
cations in a way that makes the fault-tolerant codes as portable as
the original codes themselves, while keeping overheads small.
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