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Abstract

Because of increasing hardware and software complexity,
the running time of many computational science applica-
tions is now more than the mean-time-to-failure of high-
peformance computing platforms. Therefore, computational
science applications need to tolerate hardware failures.

In this paper, we focus on the stopping failure model in
which a faulty process hangs and stops responding to the
rest of the system. We argue that tolerating such faults is
best done by an approach called application-level coordi-
nated non-blocking checkpointing, and that existing fault-
tolerance protocols in the literature are not suitable for im-
plementing this approach.

In this paper, we present a suitable protocol, and show
how it can be used with a precompiler that instruments
C/MPI programs to save application and MPI library state.
An advantage of our approach is that it is independent of the
MPI implementation. We present experimental results that
argue that the overhead of using our system can be small.

1 Introduction

Fault-tolerant programming has been studied extensively in
the context of distributed systems [6]. In contrast, the high-
performance parallel computing community has not devoted
much attention to this problem because hardware failures in
parallel platforms were not frequent enough to be a cause
for concern. Most high-performance computing was done
on ”big-iron platforms”: monolithic vector or parallel com-
puters that were designed, built, and maintained by a single
vendor. Because these machines cost many millions of dol-
lars, vendors could afford to design reliable components and
integrate them carefully to produce relatively robust com-
puting platforms. Moreover, unlike distributed systems pro-
grams such as air-traffic control systems that must run with-
out stopping, most computational science programs ran for
durations that were much less than the mean-time-between-
failure (MTBF) of the underlying hardware.

0This work was supported by NSF grants ACI-9870687, EIA-9972853,
ACI-0085969, ACI-0090217, ACI-0103723, and ACI-0121401.
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Figure 1: Hierarchy of different fault tolerance techniques

Recent changes in the high-performance parallel comput-
ing world are bringing the issue of fault-tolerance to the front
and center. First, the number of processors in big-iron ma-
chines is increasing rapidly: the recently announced Blue
Gene/L will have over 130,000[18]. Anecdotal evidence
is that such a machine loses a processor every few hours;
increasing the number of processors increases the overall
performance, but it also increases the number of points of
failure. Second, parallel computing is shifting from ex-
pensive monolithic hardware systems to low-cost, custom-
assembled clusters of processors and communication fab-
ric. The recent trend towards Internet-wide grid-computing
is another change in the hardware picture that increases the
probability of hardware failures during program execution.
Third, many computational science programs are now de-
signed to run for days or even months at a time; some exam-
ples are the ASCI stockpile certification programs[13] and
ab initio protein-folding programs such as IBM’s Blue Gene
[9] codes which are intended to run for months.

Therefore, the running times of many applications are
now significantly longer than the MTBF of the underlying
hardware. Computational science programs must tolerate
hardware failures.

1.1 Problem Definition

To address this problem, it is necessary to define the fault
model. Two common classes of models are Stopping and



Byzantine [11]. In a Stopping model, a faulty process hangs
and stops responding to the rest of the system, neither send-
ing nor receiving messages. Byzantine faults permit a faulty
process to perform more damaging acts such as sending cor-
rupted data to other processes.

In this paper, we focus our attention on stopping pro-
cesses. As we discuss in this paper, there are many inter-
esting problems to be solved even in this restricted domain.
Moreover, a good solution for this failure model can be a
useful mechanism in addressing the more general problem
of Byzantine faults.

In general, good abstractions are key to effective han-
dling of failures. In this spirit, we make the standard assump-
tion that there is a reliable transport layer for delivering ap-
plication messages, and we build our solutions on top of that
abstraction. One such reliable implementation of the MPI
communication library is Los Alamos MPI (LA-MPI) [7].

We can now state the problem we address in this paper.
We are given a long-running MPI program that must run on
a machine that has (i) a reliable message delivery system, (ii)
unreliable processors which can fail silently at any time, and
(iii) a mechanism such as a distributed failure detector [8]
for detecting failed processes. How do we ensure that the
program makes progress inspite of these faults?

1.2 Solution space

Figure 1 classifies some of the ways in which programs can
be made fault-tolerant. An excellent survey of these tech-
niques can be found in [6].

Checkpointing techniques periodically save a description
of the state of a computation to stable storage; if any process
fails, all processes are rolled back to the last checkpoint, and
the computation is restarted from there. Message-logging
techniques in contrast require restarting only the computa-
tion performed by the failed process. Surviving processes
are not rolled back but must help the restarted process by re-
playing messages that were sent to it before it failed. The
simplest implementation of message logging requires every
process to save a copy of every message it sends. A more
sophisticated approach might try to regenerate messages on
demand using approaches like reversible computation. Al-
though message-logging is a very appealing idea which has
been studied intensively by the distributed systems commu-
nity [5, 10, 16], our experience is that the overhead of sav-
ing or regenerating messages tends to be so overwhelming
that the technique is not competitive in practice. This may
be because parallel programs communicate more data more
frequently than distributed programs [17].

We therefore focus on checkpointing.
Checkpointing techniques can be classified along two in-

dependent dimensions.
(1) The first dimension is the abstraction level at which

the state of a process is saved. In system-level checkpoint-

ing, the bits that constitute the state of the processm such
as the contents of the program counter, registers and mem-
ory, are saved on stable storage. Examples of systems that do
system-level checkpointing are Condor[12] and Libckpt[14].
Some systems like Starfish[1] give the programmer some
control on what is saved. Unfortunately, complete system-
level checkpointing of parallel machines with thousands of
processors can be impractical because each system check-
point can require thousands of nodes sending terabytes of
data to stable storage. For this reason, system-level check-
pointing is not done on large machines such as the IBM Blue
Gene or the ASCI machines.

One alternative which is popular is application-level
checkpointing. Applications can obtain fault-tolerance by
providing their own checkpointing code[3]. The application
is written such that it correctly restarts from various posi-
tions in the code by storing certain information to a restart
file. The benefit of this technique is that that the program-
mer needs only save the minimum amount of data necessary
to recover the program state. For example, in an ab initio
protein folding code, it suffices to save the positions and ve-
locities of the various bases, which is a small fraction of the
total state of the parallel system. The disadvantage of this
approach to implementing application-level checkpointing
is that it complicates the coding of the application program,
and it is one more chore for the parallel programmer.

In this paper, we explore the use of compiler technology
to automate application-level checkpointing.

(2) The second dimension along which checkpointing
techniques can be classified is the technique used to coor-
dinate parallel processes when checkpoints need to be taken.
In uncoordinated checkpointing, each process saves its state
whenever it wants to without coordinating with other pro-
cesses. Although this is simple, restart can be problematic
due to exponential rollback, which may cause the computa-
tion to roll so far back that is makes no progress [6]. For this
reason, uncoordinated checkpointing has fallen out of favor.

Coordinated checkpointing can be divided into block-
ing and non-blocking checkpointing. Blocking techniques
bring all processes to a stop before taking a global check-
point. Hardware blocking was used on the IBM SP-2 to take
system-level checkpoints. Software blocking techniques ex-
ploit barriers - when processes reach a global barrier, each
one saves its own state on stable storage. This is essentially
the solution used today by applications programmers who
roll their own application-level state-saving code. However,
this solution can fail for some MPI programs since MPI al-
lows messages to cross barriers. These messages would not
be saved with the global checkpoint. Moreover, new data-
driven programming styles are eschewing the global barri-
ers, ubiquitous in BSP-style bulk-synchronous programs, in
favor of fine-grain, data-oriented synchronization. Such pro-
grams may not have barriers, and there may be no safe places
in the code in which barriers can be inserted without creating
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Figure 2: System Architecture

deadlocks.
For these reasons, non-blocking coordinated checkpoint-

ing is an interesting alternative. In this approach, a global
coordination protocol, implemented by exchanging special
marker or control tokens, is used to orchestrate the saving
of the states of individual processes and the contents of cer-
tain messages, to provide a global snapshot of the computa-
tion from which the computation can be restarted. A distin-
guished process called the initiator is responsible for initiat-
ing and monitoring the protocol; to take a local checkpoint,
an application process may communicate with other applica-
tion processes but it makes no assumptions about the states
of other processes. The Chandy-Lamport protocol is perhaps
the most well-known non-blocking protocol [4]. Unfortu-
nately, these protocols were designed to work with system-
level checkpointing — as we discuss in Section 3, there are
fundamental difficulties in using them for application-level
checkpointing.

Therefore, we have developed a new protocol for non-
blocking coordination that works smoothly with application-
level state-saving.

1.3 Overview of our approach

In this paper, we discuss the use of compiler technology
to implement application-level, coordinated, non-blocking
checkpointing of MPI programs.

Figure 2 is an overview of our approach. The CCIFT
(Cornell Compiler for Inserting Fault-Tolerance) precom-
piler reads almost unmodified single-threaded C/MPI source
files and instruments them to perform application-level
state-saving; the only additional requirement for the pro-
grammer is that he insert calls to a function called
PotentialCheckpoint at points in the application
where the programmer wants checkpointing to occur. We
have not yet implemented optimizations to reduce the
amount of state that is saved, so the instrumented code saves
the entire state when it takes a checkpoint. The output of

this precompiler is compiled with the native compiler on the
hardware platform, and is linked with a library that consti-
tutes a protocol layer for implementing the non-blocking co-
ordination. This layer sits between the application and the
MPI layer, and intercepts all calls from the instrumented ap-
plication program to the MPI library1

This design permits us to implement the coordination
protocol without modifying the underlying MPI library,
which promotes modularity and eliminates the need for ac-
cess to MPI library code which is proprietary on some sys-
tems. Further, it allows us to easily migrate from one MPI
implementation to another.

The rest of this paper is organized as follows. We intro-
duce some notation and terminology in Section 2. In Sec-
tion 3, we discuss the main hurdles that must be overcome
to implement our solution, and argue that the coordination
protocols in the literature cannot be used for our problem.
In Section 4, we present our solutions to these problems.
In particular, we describe a new coordination protocol that
supports with application-level checkpointing. We have im-
plemented this approach on a Windows 2000 cluster at the
Cornell Theory Center. In Section 5, we discuss how we
save and restore the state of the application and the MPI li-
brary. In Section 6, we measure the performance overheads
of our approach by running a number of small benchmarks
on this platform. The full paper will present more detailed
measurements of these and larger benchmarks. We conclude
in Section 7 with a discussion of future work.

2 Terminology

In this section, we introduce the terminology and notation
used in the rest of the paper. Following usual practice, we as-
sume that the system does not initiate the creation of a global
checkpoint before all previous global checkpoints have been
created and commited to global storage.

The execution of an application process can therefore be
divided into a succession of epochs where an epoch is the
period between two successive local checkpoints (by con-
vention, the start of the program is assumed to begin the first
epoch). Epochs are labeled successively by integers starting
at zero, as shown in Figure 3.

It is convenient to classify an application message into
three categories depending on the epoch numbers of the
sending and receiving processes at the points in the appli-
cation program execution when the message is sent and re-
ceived respectively.

1Note that MPI can bypass the protocol layer to read and write message
buffers in the application space directly. Such manipulations, however, are
not invisible to the protocol layer. MPI may not begin to access a message
buffer until after it has been given specific permission to do so by the ap-
plication (e.g. via a call to MPI Irecv). Similarly, once the application
has granted such permission to MPI, it should not access that buffer until
MPI has informed it that doing so is safe (e.g. with the return of a call to
MPI Wait). The calls to, and returns from, those functions are intercepted
by the protocol layer.
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Figure 3: Epochs and message classification

Definition 1 Given an application message from process A
to process B, let eA be the epoch number of A at the point in
the application program execution when the send command
is executed, and let eB be the epoch number of B at the point
when the message is delivered to the application.

• Late message: If eA < eB , the message is said to be a
late message.

• Intra-epoch message: If eA = eB , the message is said
to be an intra-epoch message.

• Early message: If eA > eB , the message is said to be
an early message.

Figure 3 shows examples of the three kinds of messages,
using the execution trace of three processes named P , Q and
R. MPI has several kinds of send and receive commands,
so it is important to understand what the message arrows
mean in the context of MPI programs. The source of the
arrow represents the point in the execution of the sending
process at which control returns from the MPI routine that
was invoked to send this message. Note that if this routine
is a non-blocking send, the message may not make it to the
communication network until much later in execution; nev-
ertheless, what is important for us is that if the system tries to
recover from global checkpoint 2, it will not reissue the MPI
send. Similarly, the destination of the arrow represents the
delivery of the message to the application program. In par-
ticular, if an MPI_Irecv is used by the receiving process to
get the message, the destination of the arrow represents not
the point where control returns from the MPI_Irecv rou-
tine, but the point at which an MPI_Wait for the message
would have returned.

In the literature, late messages are sometimes called in-
flight messages, and early messages are sometime called in-
consistent messages. This terminology was developed in the
context of system-level checkpointing protocols but in our
opinion, it is misleading in the context of application-level
checkpointing. In particular the name ”inconsistent mes-
sage” comes from the fact that a recovery line that is crossed
by such a message represents a state where a message has
been received but not yet sent, a situation that can never hap-
pen in a real execution. However, the fact that application-
level checkpointing allows us to take checkpoints only at
specific spots means that in this problem domain we can-

not avoid recovery lines with inconsistent messages. Thus
they are a completely natural feature of the problem and we
renamed them to make this difference clear.

3 Difficulties in Application-level Checkpointing
of MPI programs

In this section, we describe the difficulties with imple-
menting application-level, coordinated, non-blocking check-
pointing for MPI programs. In particular, we argue that the
existing protocols for non-blocking parallel checkpointing,
which were designed for system-level checkpointers, are not
suitable when the state saving occurs at the application level.

3.1 Delayed state-saving

A fundamental difference between system-level check-
pointing and application-level checkpointing is that a
system-level checkpoint may be taken at any time dur-
ing a program’s execution, while an application-level
checkpoint can only be taken when a program executes
PotentialCheckpoint calls.

System-level checkpointing protocols, such as the
Chandy-Lamport distributed snapshot protocol, exploit this
flexibility with checkpoint scheduling to avoid the creation
of early messages — during the creation of a global check-
point, a process P must take its local checkpoint before it
can read a message from process Q which Q sent after tak-
ing its own checkpoint. This strategy does not work for
application-level checkpointing, because process P might
need to receive an early message before it can arrive at a
point where it may take a checkpoint.

Therefore, unlike system-level checkpointing protocols,
application-level checkpointing protocols must handle both
late and early messages.

3.2 Handling late and early messages

We use Figure 3 to illustrate the issues associated with late
and early messages. Suppose that one of the processes in
this figure fails after the taking of Global Checkpoint 2. On
restart, each processes will resume execution from its state
as saved in the checkpoint. For process Q to recover cor-
rectly, it must obtain the late message that was sent to it by
process P prior to the failure. However, process P will not
resend this message because the send occurred before P took
its checkpoint. Therefore, we need mechanisms for (i) iden-
tifying late messages and saving them along with the global
checkpoint, and (ii) replaying these messages to the receiv-
ing process during recovery. Late messages must be handled
by system-level checkpointing protocols as well.

Early messages, such as the message sent from process Q
to process R pose a different problem. Process R received
this message before taking its checkpoint; after recovery it
does not expect to be resent this message. For the application



to be correct, therefore, process Q must suppress resending
this message. To handle this, we need mechanisms for (i)
identifying early messages, and (ii) ensuring that they are
not resent during recovery.

Early messages also pose a separate and more subtle
problem. The saved state of process R at Global Checkpoint
2 may depend on the data contained in the early message
from process Q. If that data was a random number generated
by Q, R’s state would be dependent on a non-deterministic
event at Q. If the number was generated after Q took its
checkpoint, then on restart, Q and R may disagree on its
value.

In general, we must ensure that if a global checkpoint de-
pends on a non-deterministic event, that event will re-occur
after restart. Therefore, mechanisms are needed to (i) log the
non-deterministic events that a global checkpoint depends
on, so that (ii) these events can be replayed during recovery.

3.3 Non-FIFO message delivery at application
level

Many system-level protocols assume that the communica-
tion between a pair of processes behaves in a FIFO manner.
For example, in the Chandy-Lamport protocol, a process P
that takes a checkpoint sends a marker token to other pro-
cesses, informing them of what it has done. The protocol
relies on the FIFO assumption to ensure that these other pro-
cesses must receive this token before they can receive any
message sent by P after it took its checkpoint.

In an MPI application, a process P can use tag match-
ing to receive messages from Q in a different order than
as they were sent. Therefore, a protocol that works at the
application-level, as would be the case for application-level
checkpointing, cannot assume FIFO communication. It is
important to note that this problem has nothing to do with the
FIFO (or lack of) behavior of the underlying communication
system; rather, it is a property of a particular application.

3.4 Collective communication

The MPI standard includes collective communications func-
tions such as MPI_Bcast and MPI_Alltoall, which
involve the exchange of data among a number of proces-
sors. However, most checkpointing protocols in the litera-
ture, which were designed in the context of distributed com-
puting, ignore the issue of collective communication.

The difficulty presented by such functions occurs when
some processes make a collective communication call be-
fore taking their checkpoints, and others after. We need to
ensure that on restart, the processes that reexecute the calls
do not deadlock and receive correct information. Further-
more, MPI_Barrier guarantees specific synchronization
semantics, which must be preserved on restart.

3.5 Problems Checkpointing MPI Library State

The key issue in performing application-level checkpointing
of the state of the MPI library is that we do not assume to
have access to its source code. While it would be possi-
ble for us to add application-level checkpointing methods to
an existing MPI implementation, this would limit the porta-
bility of our checkpointer and would keep the programmer
from using vendor-provided, platform-optimized implemen-
tations of MPI. Thus, our problem is to record and recover
the state of the MPI library using only the MPI interface.

The library state can be broken up into three categories:

• Library message buffers. At the application-level,
messages are invisible until they are received by the ap-
plication. Therefore, at checkpoint time, the applica-
tion cannot distinguish whether a given message is sit-
ting in a network buffer on the sending processor, being
transmitted, or sitting in a network buffer on the desti-
nation processor. All such messages are equivalently
“in-flight” from the application’s perspective. There-
fore, we do not need to checkpoint the library’s com-
munication buffers.

• MPI’s opaque objects. Such objects are internal
to the MPI library but are visible to application
may via handles. These objects include request ob-
jects (MPI_Request), communicators (MPI_Comm),
groups (MPI_Group), data types (MPI_Datatype),
error handlers (MPI_Errhandler), user defined op-
erators (MPI_Op), and key-value pairs.

• State internal to the MPI library. There is certain
state in the MPI library, such as message queues, timers
and the network addresses of processors, that is com-
pletely hidden to the application. Since this state cannot
be manipulated via MPI’s interface, it is impossible for
us to save or restore it. However, this is not required for
correctness. All that is required is that the application’s
view of the library remains consistent before and after
restart.

4 A Non-Blocking, Coordinated Protocol for
Application-level Checkpointing

We now describe the coordination protocol for global check-
pointing. The protocol is independent of the technique used
by processes to take local checkpoints. To avoid complicat-
ing the presentation, we first describe the protocol for point-
to-point communciation only. Then, we show that collective
communication can be handled elegantly using the mecha-
nism in place for point-to-point communication.

4.1 High-level description of protocol

Phase #1 To initiate a distributed snapshot, the initiator
sends a control message called pleaseCheckpoint to all ap-
plication processes. Each application process must take a



local checkpoint at some time after it receives this request,
but it is free to send and receive as many messages as it likes
between the time it is asked to take a checkpoint and when it
actually complies with this request.

Phase #2 When an application process reaches a point in
the program where it can take a local checkpoint, it saves its
local state and the identities of any early messages on stable
storage. It then starts writing a log of (i) every late message
it receives, and (ii) the result of every non-deterministic de-
cision it makes. Once a process has received all of its late
messages2, it sends a control message called readyToSto-
pLogging back to the initiator, but continues to write non-
deterministic decisions to the log.

Phase #3 When the initiator gets a readyToStopLogging
message from all processes, it knows that every process has
taken its local checkpoint. Since every process has transi-
tioned to the new epoch, any message sent by any processor
after the initiator has acquired this knowledge cannot be an
early message. Therefore, all processes can stop logging. To
share this information with the other processes, the initia-
tor sends a control message called stopLogging to all other
processes.

Phase #4 An application process stops logging when (i)
it receives a stopLogging message from the initiator, or (ii) it
receives a message from a process that has stopped logging.

The second condition is a little subtle. Because we make
no assumptions about message delivery order, it is possible
for the following sequence of events to happen.

1. Process P receives a stopLogging message from the ini-
tiator, and stops logging.

2. P makes a non-deterministic decision.
3. P sends a message containing this decision to process

Q which is still logging.
4. Process Q uses this information to create an event that

it logs.

When Q saves its log, we have a problem: the saved state
of the global computation is causally dependent on an event
that was not itself saved. To avoid this problem, we require
a process to stop logging if it receives a message from a pro-
cess that has itself stopped logging. These conditions for
terminating logging can be described quite intuitively as fol-
lows: a process stops logging when it hears from the initiator
or from another process that all processes have taken their
checkpoints.

Once the process has saved its log on disk, it sends a
stoppedLogging message back to the initiator. When the ini-
tiator receives a stoppedLogging message from all processes,
it records on stable storage that the checkpoint that was just
created is the one to be used for recovery, and terminates the
protocol.

2We assume the application code receives all messages that it sends.

4.2 Piggybacked information on messages

To implement this protocol, the protocol layer must piggy-
back a small amount of information on each application mes-
sage. The receiver of a message uses this piggybacked infor-
mation to answer the following questions.

1. Is the message a late, intra-epoch, or early message?
2. Has the sending process stopped logging?
3. Which messages should not be resent during recovery?

The piggybacked values on a message are derived from
the following values maintained on each process by the pro-
tocol layer.

• epoch: This integer keeps track of the epoch in which
the process is. It is initialized to 0 at start of execu-
tion, and incremented whenever that process takes a lo-
cal checkpoint.

• amLogging: This is a boolean that is true when the pro-
cess is logging, and false otherwise.

• nextMessageID: This is an integer which is initialized
to 0 at the beginning of each epoch, and is incremented
whenever the process sends a message. Piggybacking
this value on each application message in an epoch en-
sures that each message sent by a given process in a
particular epoch has a unique ID.

A simple implementation of the protocol can piggyback
all three values on each message that is sent by the applica-
tion. When a message is received, the protocol layer at the
receiver examines the piggybacked epoch number and com-
pares it with the epoch number of the receiver to determine
if the message is late, intra-epoch, or early. By looking at
the piggybacked boolean, it determines whether the sender
is still logging. Finally, if the message is an early message,
the receiver logs the pair <sender, messageID>. These pairs
are saved to stable storage when the processor takes its lo-
cal checkpoint. During recovery, these pairs are retrieved
from stable storage by the receivers of these messages, and
the senders of these early messages are informed of the mes-
sageIDs so that resending these messages can be suppressed.

Further economy in piggybacking can be achieved if we
exploit the fact that at most one global checkpoint can be
ongoing at any time. This means that the epochs of processes
can differ by at most one. Let us imagine that epochs are
colored red and green alternatively. When the receiver is in
a green epoch, and it receives a message from a sender in a
green epoch, that message must be an intra-epoch message.
If the message is from a sender in a red epoch, the message
could be either a late message or an early message. It is easy
to see that if the receiver is not logging, the message must be
an early message; otherwise, it is a late message. Therefore,
a process need only keep track of the color of its epoch, and
this color can be piggybacked instead of the epoch number.
With this optimization, the piggybacked information reduces



to two booleans and an integer.
Further optimization is possible. If 32-bit integers are

used, the two most significant bits of an integer can be used
to represent the color of the epoch and the state of the am-
Logging flag of the sender, and remaining 30 bits can be used
as the messageID. This solution should work fine because it
is unlikely that a single process will send more than a bil-
lion messages between checkpoints! With this optimization,
the protocol can be implemented by piggybacking a single
integer on the application payload.

4.3 Completion of receipt of late messages

Finally, we need a mechanism for allowing an application
process in one epoch to determine when it has received all
the late messages sent in the previous epoch. Protocols such
as the Chandy-Lamport algorithm assume FIFO communi-
cation between processes, so they do not need explicit mech-
anisms to solve this problem. Since we cannot assume FIFO
communication at the application level, we need to address
this problem.

The solution we have implemented is straight-forward.
In every epoch, each process P remembers how many
messages it sent to every other process Q (call this value
sendCount(P → Q)). Each process Q also remembers
how many messages it received from every other process
P (call this value receiveCount(Q ← P ). When a pro-
cess P takes its local checkpoint, it sends a mySendCount
message to the other processes, which contains the number
of messages it sent to them in the previous epoch. When
process Q receives this control message, it can compare the
value with receiveCount(Q← P ) to determine how many
more messages to wait for.

A minor detail is that a process P actually needs to keep
two receive counts for each process Q that may send it mes-
sages; this is because late messages from P to Q sent in one
epoch may be interspersed with intra-epoch messages from
P to Q sent in the next epoch. In the protocol given below,
these two counters are called previousReceiveCount and
currentReceiveCount.

A more subtle issue is the following: since the value of
sendCount(P → Q) is itself sent in a control message,
how does Q know how many of these control messages it
should wait for? A simple solution is to assume that every
process may communicate with every other process in every
epoch, so a process expects to receive a sendCount con-
trol message from every other process in the system. This
solution works, but if the topology of the inter-process com-
munication graphs is sparse, most sendCount control mes-
sages will contain 0, which is wasteful. If the topology of
this communication graph is sparse and fixed, we can set up
a data structure in the protocol layer that holds this informa-
tion. There are even fancier solutions for the case when the
communication topology is sparse and dynamic, but we do

not present them here. In the pseudo-code of Figure 4, we
assume that the inter-process communication graph is fixed,
and we use the terms senders and receivers to denote the set
of processes that send messages to a given process, and the
set of processes that are sent messages by a given process
respectively.

4.4 Putting it all together

Figure 4 is a synthesis of the mechanisms discussed above
into a single protocol which is executed by the protocol layer
at each processor, p.

Each process maintains the following variables:

• epoch: The current epoch number. Initialized to 0.
• amLogging: whether or not logging of late messages

and non-determinism is occurring. Initialized to false.
• nextMessageID: The ID of the next message sent. Ini-

tialized to 0.
• checkpointRequested: True if a local checkpoint should

be taken at the next call to potentialCheckpoint.
Initialized to false.

• sendCount[q]: Number of messages sent to processor q
during the current epoch. Initialized to 0.

• earlyIDs[q]: ID’s of early messages received from pro-
cessor q. Initialized to nil.

• currentReceiveCount[q]: Number of intra-epoch mes-
sages received from processor q. Initialized to 0.

• previousReceiveCount[q]: Number of late messages re-
ceived from processor q. Initialized to 0.

• totalSent[q]: Number of messages sent by processor q
before it took its last checkpoint. Initialized to∞.

4.5 Collective Communication

We will use MPI_Allreduce to illustrate how collective
communication is handled. In Figure 5, collective commu-
nication call A shows an MPI_Allreduce call in which
processes P and Q execute the call after taking local check-
points, and process R executes the call before taking the
checkpoint. During recovery, processes P and Q will reex-
ecute this collective communication call, but process R will
not. Unless something is done, the program will not recover
correctly.

Our solution is to use the log to save the result of the
MPI_Allreduce call at processes P and Q. During recov-
ery, when the processes reexecute the collective communi-
cation call, the result is read from the log and returned to the
application program. Process R does not reexecute the col-
lective communication call. To make this intuitive idea pre-
cise, we need to specify when the result of a collective com-
munication call like MPI_Allreduce should be logged.

A simple solution is to require a process to log the result
of every collective communication call it makes during the



communicationEventHandler()
Application message send to process d:

Piggyback <epoch,amLogging,nextMessageID>
on the message

sendCount[d]++
nextMessageID++

Application message receive from process u:
Remove <epochu,amLoggingu,messageIDu>

from the message
early message://assert not amLogging

append messageIDu to earlyIDs[u]
intra-epoch message:

if (amLogging and not amLoggingu)
finalizeLog()

currentReceiveCount[u]++
late message://assert amLogging

append message to log
previousReceiveCount[u]++
receivedAll?()

Control message: pleaseCheckpoint
checkpointRequested← true

Control message: stopLogging
finalizeLog()

Control message: mySendCount(n) from process u
totalSent[u]← n
if (amLogging)//p has taken its own checkpoint

receivedAll?()

receivedAll?()
if (for all senders u

previousReceiveCount[u] = totalSent[u])
send readyToStopLogging message to initiator
totalSent[u]←∞ for all senders u

finalizeLog()
write log to stable storage
amLogging← false
send StoppedLogging message to initiator

potentialCheckpoint()
if (checkpointRequested = false) return
save node state to stable storage (see Section 5)
epoch++
for each receiver d

send mySentCount(sendCount[d]) to d
for each sender u

previousReceiveCount[u] = currentReceiveCount[u]
currentReceiveCount[u] = length(earlyIDs[u])
save earlyIDs[u] to stable storage
earlyIDs[u]← nil

checkpointRequested← false
amLogging← true
nextMessageID← 0
receivedAll?()

Figure 4: Application-level Checkpointing Protocol

P

Q

R

x

x

x

Global checkpoint

Collective
Communication Call B

logging
ended

Communication Call A
Collective

Figure 5: Collective Communication

time it is logging. Collective communication call B in Fig-
ure 5 illustrates a subtle problem with this solution - process
R executes the MPI_Allreduce after it has stopped log-
ging, so it would be incorrect for processes P and Q to log
the results of their call. This problem is similar to the prob-
lem encountered in the point-to-point message case, and the
solution is similar (and simpler). Each process piggybacks
its amLogging bit on the application data, and the function
invoked by MPI_Allreduce computes the conjunction of
these bits. If any process involved in the collective commu-
nication call has stopped logging, all the other processes get
to know about it, and do not log the result of the call; they
also stop logging.

The elegance of this solution owes much to the decision
to implement the protocol in a layer that sits between the ap-
plication program and the MPI library. Each collective com-
munication call is actually implemented by the MPI layer
using many point-to-point messages. Had the layer been im-
plemented between MPI and the operating system/hardware
layer, the protocol would have had to deal with all these
low-level point-to-point messages, which would be far more
complex.

Most of the other collective communication calls can
be handled in this way. Ironically, the only one that re-
quires special treatment is MPI_Barrier. Suppose that
the collective communication call A in Figure 5 is an
MPI_Barrier. The solution described above will effec-
tively convert the barrier to a no-op during recovery, which
is incorrect since barriers are used to synchronize processes.
The correct solution is to ensure that all processes involved
in a barrier execute it in the same epoch. A simple imple-
mentation is the following. All processes involved in the
barrier execute an all-to-all communication just before the
barrier to determine if they are all in the same epoch. If not,
processes that have not yet taken their local checkpoints do
so, ensuring that the barrier is executed by all processes in
the same epoch. This solution requires the precompiler to
insert the all-to-all communication and the potential check-
pointing calls before each barrier.



5 State Saving

5.1 Application state-saving

The state of the application running on each node con-
sists of its position in the static text of the program, its
position in the dynamic execution of the program, its lo-
cal and global variables, and its heap-allocated structures.
The precompiler modifies the application source so that
this state is correctly saved, and can be restarted, at the
potentialCheckpoint positions in the original code.

The approach that we describe does not currently save
any less data than system-level checkpointing. However, it
is a starting point for optimizing the amount of state that is
saved at a checkpoint. In Section 7, we describe ongoing
work towards this goal.

5.1.1 Checkpointing the application’s position

Checkpointing a process’ position is handled by inserting
labels at the potentialCheckpoint and function call
locations in the original source. We utilize a data structure,
the Position Stack (PS) to record a trace of a program’s ex-
ecution by inserting code to manipulate the PS as labels are
encountered. Figure 6 shows an example of the code inserted
by the precompiler to manipulate the PS.

When a checkpoint is taken, the PS is saved as part of
the checkpoint. If the application is restarted, the PS is re-
stored, and each function jumps to the label that it stored
on the PS. In such a manner, the activation stack is rebuilt
and the program is prepared to resume immediately after the
potentialCheckpoint location where the checkpoint
was taken.

function1()
{

if(restart)
goto (PS.item(i++))

//...
PS.push(1);

label_1:
function2();
PS.pop();

//...
PS.push(2);
potentialCheckpoint();

label_2:
PS.pop();
//...

}

Figure 6: Position Stack manipulation

The precompiler only needs to insert labels
at function calls that can eventually lead to a
potentialCheckpoint location. In order to in-
sure that the PS correctly reflects which function call
is currently active, the precompiler needs to decompose

certain complex statements, such as a statement containing
two calls to checkpointable functions, or a return statement
that makes a call to one.

5.1.2 Checkpointing the application’s data

If we ensure that the processes’ original and recovered stack
always begins at the save virtual address, using the tech-
niques described above will ensure that, after restart, the ac-
tivation stack frames will have same positioning as during
the original run. Therefore, a stack variable will have the
same virtual address both before and after restart.

We utilize another data structure, the Variable Descrip-
tor Stack VDS to save and restore the stack variables’ values.
The VDS stores the address and size of each stack variable.
The precompiler inserts code that manipulates this structure
as variables enter and leave scope. Figure 7 shows such ma-
nipulations.

function(int a)
{

VDS.push(&a, sizeof(a));
int b[10];
VDS.push(&b, sizeof(b));
{

int c;
VDS.push(&c, sizeof(c));
//...
VDS.pop;

}
VDS.pop;
VDS.pop;

}

Figure 7: Manipulating the VDS

The application uses the VDS to save and restore the
stack variables’ values. When a checkpoint is taken, for
every record in the VDS, it copies the specified number of
bytes, from the specified address, into the checkpoint file.
On restart, we first restore the stack using the PS, and then
use the VDS to restore stack variables by copying their value
from the checkpoint to their locations on the stack. The VDS
must be saved and restored as part of the local checkpoint.

A similar mechanism can be used to handle global vari-
ables. In order to discover all of a program’s global variable,
either the precompiler must have access to all source files of
the program at once, or this discovery must be done during
linking. We are currently using the former approach.

5.1.3 Checkpointing the application’s heap

Similar to the stack variables, a heap allocated object, upon
restart, needs to be restored to the same virtual address that
it had in the original process. Additionally, we would also
need to ensure that the heap management structures (ie. the



free list) are restored correctly. Therefore, our precompiler
provides its own heap management system.

This heap management system maintains a Heap Object
Structure, HOS, which is similar to the VDS and contains
the starting address and length of each “live” heap object.
When checkpointing, we use the HOS to copy the heap ob-
jects to the checkpoint file. The HOS, along with some other
heap management structures, is saved with the checkpoint.
On restart, we request the same chunk of virtual address
space, restore the HOS, and use it to copy the objects from
the checkpoint file back onto the heap.

5.1.4 A note on pointers

Because stack variables and heap objects are restored to their
original virtual addresses, we need to make no special con-
sideration regarding data pointers: they are saved as ordinary
data. A valid data pointer in the original process will point
to the same object in the recovered one.

This strategy differs significantly from the one used in
the PORCH ([15]). Because their goal was to create a check-
point file that could be used within a heterogeneous environ-
ment, they could make no assumptions regarding the address
or length of a program’s variables. Instead they were forced
to employ “re-locatable” pointers and to convert values to an
architecture neutral representation when checkpointing.

The disadvantages to such techniques are that a program-
mer is required to work with a subset of the C language that
disallows arbitrary casting, and that there is a performance
cost to be paid when converting values from one representa-
tion to another. Since portability is not one of our goals, and
because we feel that the limitations on programming style
and the added overhead of doing pointer conversion are too
burdensome for our applications, we have chosen not to fol-
low the PORCH approach.

5.2 MPI Library State-Saving

As was already mentioned, our protocol layer intercepts
all calls that the application makes to the MPI library.
Using this mechanism we are able to record the direct
state changes that the application makes (e.g., calls to
MPI_Attach_buffer). In addition, some MPI functions
take or return handles to opaque objects. The protocol layer
introduces a level of indirection so that the application only
sees handles to objects in the protocol layer (hereafter re-
ferred to pseudo-handles), which contain the actual handles
to the MPI opaque objects. On recovery, the protocol layer
must reinitialize the pseudo-handles in such a way that they
are functionally identical to their counterparts in the original
process.

The MPI opaque objects whose handles are stored in the
pseudo-handles can be divided into two types: transient and
persistent. Transient objects come into existence often and

tend to have short lifetimes while persistent objects come
into existence rarely and tend to have long lifetimes. We use
a separate mechanism for reinitializing the pseudo-handles
of each type of MPI opaque object.

The only MPI objects that we consider as transient are
MPI_Request objects. These objects are created by non-
blocking communication functions, such as MPI_Isend
or MPI_Irecv, and are destroyed by functions such as
MPI_Wait. When a MPI_Isend or MPI_Irecv that
creates a MPI_Request object occurs before a checkpoint
and the the call to MPI_Wait that destroys the object occurs
after the checkpoint, then on recovery, the pseudo-handle for
that MPI_Request object must be correctly reinitialized.
This does not necessarily mean that the MPI_Request ob-
ject must be recreated; it means that calling MPI_Waitwith
the pseudo-handle must have the same effect that it did dur-
ing the original execution.

The pseudo-handle for an MPI_Request object cre-
ated by MPI_Isend must be reinitialized so that the call
to MPI_Wait will return immediately, which means that
the send buffer may be reused by the application. This is
because the call to MPI_Isend that created the request ob-
jected occurred before the checkpoint. Either the message
was received before the receiving processor tooks its check-
point, in which case the data is part of the checkpoint, or
after, in which case the message is stored in the receiver’s
logs. In either case, it is safe for the application to reuse the
buffer.

The pseudo-handle for an MPI_Request object cre-
ated by MPI_Irecv must be reinitialized in one of two
ways. If the receive matches a late message in the receiver’s
log, this message may be copied to the receiver buffer and
MPI_Wait may return immediately. If the receive does
not match any late message, then it must match a send that
is issued after checkpointing. In this case, on recovery,
MPI_Irecv must be called again with exactly the same ar-
guments and its handle stored in the pseudo-handle.

All objects besides MPI_Request’s are classified as
persistent opaque objects and are handled as follows. Each
processor records all the function names and arguments of
every call that creates or manipulates these persistent ob-
jects. This record is saved to stable storage as part of the
local checkpoint. On restart, each processor will replay these
calls in order to recreate effectively the same persistent ob-
jects that existed at the time of the checkpoint. The pseudo-
handles are reinitialized with the handles to these new ob-
jects.

6 Performance

6.1 Experimental setup

We performed our experimental evaluation on the CMI clus-
ter at the Cornell Velocity supercomputer. This cluster is
composed of 64 2-way PentiumIII 1Ghz nodes, featuring



2GB of RAM and connected by a Giganet switch. The nodes
have 40MB/sec bandwidth to local disk. Due to hardware
problems, we used only 16 of those processors for our tests;
in the final paper, we will present results for the full ma-
chine. The operating system on the machines was Windows
2000 and we used MPI/Pro 1.6.4 as our MPI implementa-
tion. The applications were compiled using the Microsoft
C/C++ Optimizing Compiler version 12, using the ”Opti-
mized for Speed” optimization setting. We evaluated the
performance of our checkpointer on three codes:

• A dense Conjugate Gradient code from Yingfeng Su of
the University of San Francisco. This code implements
a parallel conjugate gradient algorithm with block row
distribution. The main loop performs a parallel matrix
vector multiply and a parallel dot product, with commu-
nication coming from an allReduce and an allGather,
which are implemented in terms of point-to-point mes-
sages along a butterfly tree. We ran the dense CG code
for 500 iterations.

• A Laplace Solver, by Raghu Reddy from the Pittsburgh
Supercomputing Center. This program uses a n×n grid
of numbers that is distributed by block rows. During
each iteration every grid cell is updated to be the aver-
age of the numbers contained by the neighboring cells
(up, down, left, right) in the previous iteration. The
communication comes from each processor exchanging
border rows with the processor ”above” it and the pro-
cessor ”below” it. We ran the Laplace code for 40000
iterations.

• Neurosys, a neuron simulator by Peter Pacheco of
the University of San Francisco (available publically
at http://nexus.cs.usfca.edu/neurosys/), uses a graph of
neurons which excite and inhibit each other via their
connections. The current state of each neuron is com-
puted by solving a function of the states of the neu-
rons that are connected to it. The evolution of the neu-
ron network through time is computed via the Runge-
Kutta method for differential equations. The program
is parallelized by assigning each processor a block of
neurons to work with. Communication consists of 5
MPI_Allgather’s and 1 MPI_Gather in each loop
iteration. We ran Neurosys for 3000 iterations.

All the checkpoints in our experiments are written to the
local disk, with a checkpoint interval of 30 seconds.

6.2 Performance

The performance of our protocol was measured by recording
the runtimes of each of four versions of the above codes.

1. The unmodified program
2. Version #1 + code to piggyback data on messages
3. Version #2 + protocol’s logs and saving the MPI library

state

4. Version #3 + saving the application state

Experimental results are shown in Figure 8.

• In dense CG, the total overhead for taking full check-
points every 30 seconds is 14% for a 4096x4096 or
8192x8192 matrix. This increases dramatically to 43%
when we move up to 16384x16384. However, since
the overhead is only 4.5% when we do everything but
record the application state, it is clear that the reason for
the increased overhead is that size of application state.

• The addition of checkpointing to the Laplace Solver
adds only 2.1% overhead in the worst case tested. This
can be explained by the fact that even biggest data set
we tested had only 2.1MB of application state, which is
much less than the amount where the dense conjugate
gradient code began slowing down. Furthermore, the
amount of data the Laplace Solver sends per message
is much more than the data that we attach to each mes-
sage, so our piggybacked information adds little over-
head.

• Neurosys does a lot of computation and communica-
tion on a relatively small data set. Its small application
state, which varies from 18KB to 1.24MB, is too small
to cause much overhead from recording the application
state. However, we see another interesting overhead in
the difference between the runtimes of the unmodified
version and the version that uses the protocol layer but
takes no checkpoints. The primary difference between
the two is that the latter piggybacks data on messages.
Neurosys uses 5 MPI_Allgather’s in every it-
eration and in our implementation, each such data
MPI_Allgather is preceeded by a command
MPI_Allgather which sends around the relevant
control information. This accounts for the jump in run-
time which is as high as 160% for 16x16. However, as
the input sizes increases, the message sizes and com-
putation time also increase but the number of messages
does not. Thus, the additional work masks the over-
head associated with passing around control data, lead-
ing this overhead to drop to 85% of the total runtime
for 32x32, 34% for 64x64 and just 2.7% for 128x128.

7 Conclusions and Future Work

In this paper, we have shown that application-level non-
blocking coordinated checkpointing can be used to add fault-
tolerance to C/MPI programs. We have argued that existing
checkpointing protocols are not adequate for this purpose
and we have developed a novel protocol to meet the need.

We have presented a system that can be used to trans-
form C/MPI programs to use our protocol. This system uses
program transformation technology to transform the appli-
cation so that it will save and restore its own state. We have
shown how the state of the underlying MPI library can be
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Figure 8: Performance Charts

reconstructed by the implementation of our protocol.
The goal of our project is to provide a highly efficient

checkpointing mechanism for MPI applications. One way
to minimize checkpoint overhead is to reduce the amount
of data that must be saved when taking a checkpoint. We
are continuing the development of our precompiler so that it
may utilize analysis techniques to determine areas of mem-
ory that can be safely excluded from a checkpoint.

Others have worked on using compiler technologies to
avoid checkpointing dead and read-only variables [2]. Their
work focussed on statically allocated data structures in FOR-
TRAN programs. We would like to extend such work to
handle the dynamically created in C/MPI applications.

Another technique we are developing is the detection of
distributed redundant data. If multiple nodes each have a
copy of the same data structure, only one of the nodes needs
to include it in its checkpoint. On restart, the other nodes
will obtain their copy from the one that saved it.

Both these techniques are actually specializations of a
more general technique that we term recomputation check-
pointing. For some data structures, a compiler might be able
to determine how to recompute their values. If the descrip-
tion of this recomputation requires less space than storing
their data, we should store the description, rather than the
data, in the checkpoint.

We would also like to extend this work to provide fault-
tolerance for other types of high performance computing
systems, such as shared memory machines, and the MPI-2
message passing standard.
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