SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

al

Decomposing
onto different

processors

e Direct summation (N?) - each
particle needs to know about

all other particles
* No locality possible

* Inherently a difficult problem
to parallelize in distributed
memory

SGFNE.-t

Make a particle
MPI type

* We're going to be passing
particle information back and
forth quite a bit

* Make an MPI type at start so
things are easier

 May want to adjust this later;
then just change type

-

#ifdef USEFLOAT
tvpedef float NTvpe;
#define MPI_MNTvpe MPI_FLOAT
#elze
tvpedef double NTvype;
#define MPI_MTwpe MPI_DOUEBLE_PRECISION

pca utils.h

#endif

typedef struct nbody_struct_s {
MType x[MDIM]; A¥the particle positions*®/
MTwpe w[NDIM]; J¥the particle velocities*/
NTwpe f[WDIM]; A¥the forces on the particles*/
NTvpe mass;
NTvpe PE; ¥ potential energy */

T NBody ;

MPI_Datatvpe MPI_Particle; /% deriwved data tyvpe for above */

A* Create Particle Twpe */

MPI_Type_contiguous(3#*NDIM+2, MPI_NTwpe, EMPI_Particle);
MPI_Type_commit { SMPI_Particle };

SCiflet

First go:
Everyone sees
everything

* Directly analogous to
OpenMP approach

* Just work on our own
particles

e Send everyone our particles

q| afterwards

Sciet

Terrible ldea (l)

e Requires the entire problem to
fit in the memory of each node.

* |n general, you can’t do that
(10911 particle simulation; Pen)

* No good for MD, astrophysics
but could be useful in other areas
(few bodies, complicated
interactions) - agent-based
simulation

* Best approach depends on your
w problem

w

SCilet

Terrible Idea

(1)

N
Tcomp ™~ Cgrav <_ NCcomp ' I IEBE BE BE BE BE

P olo|o|e
N2
— Cgrav C’(:omp
P
N
Tcomm ™~ Cparticle? (P — 1) Ocomm
~ CparticleNCcomm
~ Cparticle 1 pCComm Since N is fixed, as P
Cgrav IV Ccomp goes up, this fraction
gets worse and
worse

Sciet

Terrible ldea

(1)

* Wastes computation.

e Proc 0 and Proc 2 both
calculate the force between

particle | and particle |1.

Sciet

Canaddress () , . ,
a little C—© G

4+ e +
e Collecting everyone’s data is 5
I|ke 1 gIObaI sum [e]e[e[ef[ee]e]e] + [eefee[e]ele]e]

e (Concatenation is the sort of
operation that allows
reduction)

e GATHER operation

e Send back the results:

[e[e[e[e][e[e[e[efe[efe]e[e]e o]

Avg Message Length =
(N/2 log,P)/(P-1)
~N + N/P log(P)

ALLGATHER
e 2 (P-1) vs P> messages, but Total sent ~
length differs 2 N log2(P) vs N P
A

SG-FNet

Canaddress () , . ,
a little (0—) (3

-+ +
[sTeleTs][s[s[sTs] + |-|-|-|-»1-|-1-1-|
N2
Tcomp — Cgrav?ccomp CEEEEEEEEEEEEEET
log, P
Tcomm ™ CparticlezN J2 Ccomm
Tcomm - Cparticle 2 lOg (P) Ccomm
~ 2
Tcomp Cgrav N Ccomp

|

Sciet

Anhother
collective

0 I 2 3
operation) ()
4 [Glere +

[e]e[e]e[[e[e]e]e] ofefefofo[e]e o]

-4

Stuff you’re CLEBEIEEEEFEEEEEETR
sending How Much What Type

int MPI Gather {(wvoid *sendbuf, int sendent, MPI Datatype sendtype,

oid *recvbuf, int recvecount, MPI Datatype recvtype,
int root, MPI Comm comm)

Place you're 0
receiving

= ' Who's getting all
v the data

Sciet

Another
collective v

operation c—© G

NBody justmydatal[4];
NBody globaldata[l6];
MPI Datatype MPI Particle;

MPI Gather(justmydata, 4, MPI Particle,
globaldata, 4, MPI Particle,
3, MPI COMM WORLD);

MPI Allgather(justmydata, 4, MPI Particle,
globaldata, 4, MPI Particle,
MPI COMM WORLD) ;

et

Another

collective o , 3
operation (o) ()
4 e -+

NBody data[4*size];
int mystart=4*rank;
MPI Datatype MPI Particle;

MPI Gather(&(data[mystart]), 4, MPI Particle,
data, 4, MPI Particle,
3, MPI COMM WORLD) ;

MPI Allgather(&(data[mystart]), 4, MPI Particle,
data, 4, MPI Particle,
MPI COMM WORLD) ;

vvhat It not
same # of

particles!? (>—) ()

lelslslels] = -+
* When everyone has same # of o
Part|C|eS, easy to ﬁgure out [e[e[e[e[e]e][e[e[e]e] + [efefee[e[e[o]e]

where one processor’s piece
goes in the global array

[e]e[eeJe][e[e[e[e][e[e]o]o|e]

e Otherwise, need to know how
many each has and where
their chunk should go in the
global array

.

SCiet

vvhat It not
same # of

particles? Q Q Q @

lels[slels] = + |
p— =
[SIs[s[elsTel[eTe eTe] 4+ FEEEEEET

[e]e[eJeefe|[e[e[e[e[e[o]e]e]e o e

int MPI Allgatherv { woid *sendbuf, int sendcount, MPI Datatype sendtype,
vold *recvbuf, int *recvcounts, int *displs,
MPI Datatype recvixpe, MPI Comm comm) ?

Array of counts; eg {6,4,4,4}

- . Where they should go; eg
. 1 {CLIS’I()’|A1}

Sciet

Fow would we
get this data!’ :
Allgather! &

lelelelele] ==

2 3

O—

noooit Mooogl

o

int counts([size], disp[size];
int mystart=..., mynump=...;

MPI Allgather(&mynump, 1, MPI INT,

counts, 1, MPI INT, MPI COMM WORLD);
disp[1]=0;
for (i=1;i<size;i1++) disp[i]=disp[i-1]+counts[i];

.NET;AJlgatherv(&(data[mystart]), mynump, MPI Particle,
data, counts, disp,
MPI COMM WORLD) ;

Other stuff
about the nbody
code

o At IeaSt PIOtting I"emainS eaS)’. wigiciasicicsicic|e(le|e|e

* Generally n-body codes keep
track of things like global
energy as a diagnostic

* We have a local energy we
calculate on our particles;

e Should communicate that to
sum up over all processors.

|

Sciet

rroblem (1)
remains --
memory

e How do we avoid this?

O -
O -
O~
10 -

¢ For direct summation, we
need to be able to see all
particles;

e But not necessarily at once.

|

Sciet

5

Pipeline

0 sends chunk of its particles
to |, which computes on it,
then 2, then 3

Then | does the same thing,
etc.

Size of chunk: tradeoff -
memory usage vs. number of
messages

Let’s just assume all particles
go at once, and all have same
of particles (bookkeeping)

/EQ °

O -

O~
O%

SCiflet

Pipeline

e No need to wait for Os chunk
to be done!

* Everyone sends their chunk
forward, and keeps getting
passed along.

e Compute local forces first,
then start pipeline, and
foreach (P-1) chunks compute
the forces on your particles by

.“ theirs.

I 2 3

O O O O

[c[eeTo]l—0p [eTe[eTe]mmmp[ele[e 0]y, [oTee]e]
[eleTeTe]=—— [c]e[e]e]y, [sTeTeTe] ——ple[eTe]e]
[e[e[eTe] ——p[eTe[eTe]— [[o[Te]l— 0y

SCiflet

I 2 3

Pipeline (O) O O O

[oefefe [o[o[e]e]
* Work unchanged EEET—y GEEE—pEEEE— 5 FEER
T — N_ZC [sleleTe]——>p [T-[<T-]l— 3 [eTe[e]e] mmp[TeTeT¢]
comp grav P comp EEEE — >EEEE—» EEEE, GEEE
e Communication - each
process sends (P-1) messages
of length (N/P) N
Tcomm — Cparticle(P _ 1)Fccomm — CparticleNCcomm

Tcomm - Cparticle 1 Pccomm

q‘ Tcomp Corav N Ccomp

SCiet

I 2 3

Pipeline (O) O O O

[e[ee]e]

e Back to the first approach. FEEE., GEEE— »EEEEy FEEE
* But can do much bigger EEEE— CEEElL—y CEEE—»EEET
problems FEEE —>FEREF— FEEE——y

* If we're filling memory, then N
~ B and Tcomm/ Tcomp is constant

(yay')
* With previous approach,
maximum problem size is

q fixed by one processor’s
‘ memory

SGFN-_:—:t

Pipeline

Sending the messages: like one
direction of the guardcell fills
in the diffusion egn; everyone
sendrecyv’s.

Periodic or else 0 would never
see anyone elses particles!

Copy your data into a buffer;
send it, receive into another
one.

Compute on received data

Swap send/recv and continue.

[e[e]e [o [

Compute(recv)

ScﬁNet

I 2 3

Pipeline (O) O O O

[ofefe]e] (o [e]e]e]

* Good: can do bigger I e e —
problems! - >, s ammm

e Bad: High communication FREE —>EEEE— FEEE—y BEEE

costs, not fixable

e Bad x 2:still doing double
work.

|

Sciet

5

typedet struct nbody_struct_sz {
MTwpe x[MDIM]; J¥the particle positions*/
MType w[MDIM]; A¥the particle velocities®/
MTwpe £ NDIM]; J¥the forcez on the particles*/
NTvpe mass;
MTvpe PE; ¥ potential energy */

Pipeline 1=

MPI_Datatyvpe MPI_Particle; /#* deriwved daota twpe for above */

Double work might be fixable . c.cate particte Type #

We are send |ng Whole Particle MPI_Twpe_contiguous(3#NDIM+2, MPI_NTwpe, &MPI_Particle };

MPI_Twpe_commit (EMPI_Particle };
structure when nodes only
need x[NDIMS], mass.

Option |: we could only send O O O

chunk half way (for odd # s Exms @ WS

procs); then every particle has
seen every other

[Tele[s]— [e[e[e[e]m—p[e]e[e]e]

If we update forces in both,
then will have computed all
non-local forces...)

SCiet

Pipeline

e Option 2: we could proceed
as before, but only send the
essential information

e Cut down size of message by
a factor of 4/1 |

e Which is better?

typedet struct nbody_struct_sz {
MTwpe x[MDIM]; J¥the particle positions*/
MType w[MDIM]; A¥the particle velocities®/

MTwpe £ NDIM]; J¥the forcez on the particles*/
NTvpe mass;
MTvpe PE; ¥ potential energy */

T WBody ;

MPI_Datatyvpe MPI_Particle; /#* deriwved daota twpe for above */

A% Creqte Particle Twpe */

MPI_Twpe_contiguous(3#NDIM+2, MPI_NTwpe, &MPI_Particle };
MPI_Twpe_commit (EMPI_Particle };

OOO

[Tele[s]— [e[e[e[e]m—p[e]e[e]e]

Sciet

|

Displaying Data

* Now that no processor owns
all of the data, can’t make plots
any more

e But the plot is small;it’s a
projection onto a 2d grid of
the 3d data set.

* In general it’s only data-sized
arrays which are ‘big’

¢ Can make it as before and
Allreduce it (like map!)

L e

SCiflet

vverlapping
Communication
& Computation

o[eYe]e]
* |If only updating local forces, R —
aren’t changing the data in the
pipeline at all. —~——> T
* What we receive is what we —

send.
Compute(recv)

* Could issue send right away,
but need to compute... PR —>

i

Sciflet

Non-blocking Sends!

MPI Request request, requestZ;
MPI Status status;
int tag;

MPI Irecv(buffer, 10, MPI INT, leftneigh, tag, MPI COMM WORLD,

&request);

MPI Isend(buffer2, 10, MPI INT, rightneigh, tag, MPI COMM WORLD,
&requestl);

/* do stuff.... */

.MPI_Wait (&request, &status);
MPI Wait(&request2, &status);

o -

SCiet

vverlapping
Communication
& Computation

* Now the communications will
happen while we are
computing

* Significant time savings! (~30%
with 4 process)

.

10 -

[ofe]e]e |m—

—t [[e]e][]

Copy recv;
swap buffers
Start isend/irecv

[eTeTe [o [mmmee—>

[e[e]e]ef=t—>

Compute

= 40000

SCiet

Grid-Particle 771
codes

* For some purposes (FFT, 3
multigrid gravity) a grid is
imposed on the particle

distribution, and the 18
processors ‘own’ the particles '

|

Sciet

Grid-Particle — 17—
codes

* Up to now, we have decided 3
ourselves which processor
gets which piece of the T,
domain; but MPI actually has - 18
some routines for this. '

'il’,,,ﬁ

SCiet

MPI_Caort_create{MPI_COMM_WORLD, MDIM, dims, periodic, 1, &GRID_COMM};
MPI_Cart_get{GRID_COMM, NDIM, dims, periodic, gridcoords);

(i=A; i-MDIM; i++) {
MPI_Cart_shift{GRID_COMM, i, +1, &neighs[i][0], &neighs[i][1]);

e Calculates neighbors, etc for 3.
you

* And calculates where you are ‘
in the grid of processes .18

e Saves some bookkeeping, and
q might do a better job...

SCiet

Grid-Particle
codes

e But what happens when a

particle moves!

e Has to be a mechanism for

|

moving the particle to the
appropriate processor.

e Tricky. Can’t just tell your

neighbor; how do they know
to listen for you!?

o

SCiet

Grid-Particle
codes

e Could create list -- number of
processors who has particles
for processor i

e Allreduce sum it

e Then i knows to wait for that
many messages

|

Sciet

Grid-Particle
codes

e But particles probably don’t

|

move much

e Do ‘shifting’. If anyone has

particles that need to be
moved in X direction, shift all
particles to be moved in X;
pull of right ones

e ThenY, then Z.

o

SCiet

Grid-Particle
codes

* This is implemented in nbody-
gridparticles

* Executable in
completedexcutables

* Try running it...

e Fairly quickly gets very slow.
Why!

-

Sciet

Homework (hw7)

® Code skeleton for these parallelizations
exist in sourcecode/nbody.

® Parallelize allgather, and blocking pipeline

® Run some timing tests

® Figure out which of two optimizations to

qi do for blocking pipeline

SCiflet

Allgather

® Need to figure out your start/end particle,
® Sum total energies,
® And make the allgatherv call.

® (Look for HWV in the source code).

|

Sciet

Pipeline

® Get the plot all data working
® |mplement pipeline
® Do off-process force calculation

® (Again, look for HW in the source code
nbody-pipeline.c)

e

Sciet

Timings

® On cluster, gsub some batch scripts and make
timing comparisions. Could be anything - scaling
test (how does it perform w/ different # of
procs!?), algorithm comparision (pipeline vs. non-

blocking pipeline?) Can use executables in
completedexecutables

.

Sciet

Timings

® Finally, of the two discussed optimizations for the
(blocking pipeline) how much does each effect
communication cost! Computation cost!

® Which is more likely to be useful? Why!?

® blocking-optimizations.txt

T

Sciet

C syntax
MPI Status status;

ierr MPI Allgather (sendptr, sendcount, MPI TYPE,
recvptr, recvcount, MPI TYPE, Communicator);

lerr = MPI Allgatherv(sendptr, sendcount, MPI TYPE,

recvptr, recvcounts, displacements,

MPI TYPE, Commuicator);
int MPI Cart create (MPI Comm comm old, int ndims, int *dims,

int *periods, int reorder,

MPI Comm *comm cart);
int MPI Cart shift (MPI Comm comm, int direction, int displ,

int *source, int *dest);

Communicator -> MPI COMM WORLD
MPI Type -> MPI FLOAT, MPI DOUBLE, MPI INT, MPI CHAR...
MPI OP -> MPI SUM, MPI MIN, MPI MAX,...

Sciet

