
N-Body II:
MPI

Decomposing
onto different

processors
• Direct summation (N2) - each

particle needs to know about
all other particles

• No locality possible

• Inherently a difficult problem
to parallelize in distributed
memory

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

Make a particle
MPI type

• We’re going to be passing
particle information back and
forth quite a bit

• Make an MPI type at start so
things are easier

• May want to adjust this later;
then just change type

pca_utils.h

First go:
Everyone sees

everything
• Directly analogous to

OpenMP approach

• Just work on our own
particles

• Send everyone our particles
afterwards

Terrible Idea (I)
• Requires the entire problem to

fit in the memory of each node.

• In general, you can’t do that
(1010-11 particle simulation; Pen)

• No good for MD, astrophysics
but could be useful in other areas
(few bodies, complicated
interactions) - agent-based
simulation

• Best approach depends on your
problem

Terrible Idea
(1I)

Tcomp ∼ cgrav

(
N

P

)
NCcomp

= cgrav
N2

P
Ccomp

Tcomm ∼ cparticle
N

P
(P − 1) Ccomm

≈ cparticleNCcomm

Tcomm

Tcomp
≈ cparticle

cgrav

1
N

P
Ccomm

Ccomp

Since N is fixed, as P
goes up, this fraction

gets worse and
worse

Terrible Idea
(III)

• Wastes computation.

• Proc 0 and Proc 2 both
calculate the force between
particle 1 and particle 11.

Can address (II)
a little

• Collecting everyone’s data is
like a global sum

• (Concatenation is the sort of
operation that allows
reduction)

• GATHER operation

• Send back the results:
ALLGATHER

• 2 (P-1) vs P2 messages, but
length differs

0 1 2 3

+ +

+

Avg Message Length =
(N/2 log2P)/(P-1)
~N + N/P log2(P)

Total sent ~
2 N log2(P) vs N P

Can address (I)
a little

0 1 2 3

+ +

+

Tcomp = cgrav
N2

P
Ccomp

Tcomm ∼ cparticle2N
log2 P

P
Ccomm

Tcomm

Tcomp
≈ cparticle

cgrav

2
N

log2 (P)
Ccomm

Ccomp

Another
collective
operation

0 1 2 3

+ +

+

Stuff you’re
sending

How Much
What Type

Place you’re
receiving

Who’s getting all
the data

Another
collective
operation

0 1 2 3

+ +

+
NBody justmydata[4];
NBody globaldata[16];
MPI_Datatype MPI_Particle;

MPI_Gather(justmydata, 4, MPI_Particle,
 globaldata, 4, MPI_Particle,

 3, MPI_COMM_WORLD);

MPI_Allgather(justmydata, 4, MPI_Particle,
 globaldata, 4, MPI_Particle,

 MPI_COMM_WORLD);

Another
collective
operation

0 1 2 3

+ +

+
NBody data[4*size];
int mystart=4*rank;
MPI_Datatype MPI_Particle;

MPI_Gather(&(data[mystart]), 4, MPI_Particle,
 data, 4, MPI_Particle,

 3, MPI_COMM_WORLD);

MPI_Allgather(&(data[mystart]), 4, MPI_Particle,
 data, 4, MPI_Particle,

 MPI_COMM_WORLD);

What if not
same # of
particles?

0 1 2 3

+ +

+
• When everyone has same # of

particles, easy to figure out
where one processor’s piece
goes in the global array

• Otherwise, need to know how
many each has and where
their chunk should go in the
global array

What if not
same # of
particles?

0 1 2 3

+ +

+
= =

=

Array of counts; eg {6,4,4,4}
Where they should go; eg

{0,6,10,14}

How would we
get this data?

Allgather!
0 1 2 3

+ +

+
= =

=
int counts[size], disp[size];
int mystart=..., mynump=...;

MPI_Allgather(&mynump, 1, MPI_INT,
 counts, 1, MPI_INT, MPI_COMM_WORLD);
disp[i]=0;
for (i=1;i<size;i++) disp[i]=disp[i-1]+counts[i];

MPI_Allgatherv(&(data[mystart]), mynump, MPI_Particle,
 data, counts, disp,

 MPI_COMM_WORLD);

Other stuff
about the nbody

code
• At least plotting remains easy.

• Generally n-body codes keep
track of things like global
energy as a diagnostic

• We have a local energy we
calculate on our particles;

• Should communicate that to
sum up over all processors.

Problem (I)
remains --
memory

• How do we avoid this?

• For direct summation, we
need to be able to see all
particles;

• But not necessarily at once.

0 1 2 3

Pipeline
• 0 sends chunk of its particles

to 1, which computes on it,
then 2, then 3

• Then 1 does the same thing,
etc.

• Size of chunk: tradeoff -
memory usage vs. number of
messages

• Let’s just assume all particles
go at once, and all have same
of particles (bookkeeping)

0 1 2 3

Pipeline
• No need to wait for 0s chunk

to be done!

• Everyone sends their chunk
forward, and keeps getting
passed along.

• Compute local forces first,
then start pipeline, and
foreach (P-1) chunks compute
the forces on your particles by
theirs.

0 1 2 3

Pipeline
• Work unchanged

• Communication - each
process sends (P-1) messages
of length (N/P)

0 1 2 3

Tcomp = cgrav
N2

P
Ccomp

Tcomm = cparticle(P − 1)
N

P
Ccomm → cparticleNCcomm

Tcomm

Tcomp
≈ cparticle

cgrav

1
N

P
Ccomm

Ccomp

Pipeline
• Back to the first approach.

• But can do much bigger
problems

• If we’re filling memory, then N
~ P, and Tcomm/Tcomp is constant
(yay!)

• With previous approach,
maximum problem size is
fixed by one processor’s
memory.

0 1 2 3

Pipeline
• Sending the messages: like one

direction of the guardcell fills
in the diffusion eqn; everyone
sendrecv’s.

• Periodic or else 0 would never
see anyone elses particles!

• Copy your data into a buffer;
send it, receive into another
one.

• Compute on received data

• Swap send/recv and continue.

0

send
recv

Compute(recv)

send
recv

send
recv

Pipeline
• Good: can do bigger

problems!

• Bad: High communication
costs, not fixable

• Bad x 2: still doing double
work.

0 1 2 3

Pipeline
• Double work might be fixable

• We are sending whole particle
structure when nodes only
need x[NDIMS], mass.

• Option 1: we could only send
chunk half way (for odd #
procs); then every particle has
seen every other

• If we update forces in both,
then will have computed all
non-local forces...)

0 1 2

Pipeline
• Option 2: we could proceed

as before, but only send the
essential information

• Cut down size of message by
a factor of 4/11

• Which is better?

0 1 2

Displaying Data
• Now that no processor owns

all of the data, can’t make plots
any more

• But the plot is small; it’s a
projection onto a 2d grid of
the 3d data set.

• In general it’s only data-sized
arrays which are ‘big’

• Can make it as before and
Allreduce it (like map!)

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

Overlapping
Communication
& Computation
• If only updating local forces,

aren’t changing the data in the
pipeline at all.

• What we receive is what we
send.

• Could issue send right away,
but need to compute...

0

send
recv

Compute(recv)

send
recv

send
recv

Non-blocking Sends!
MPI_Request request, request2;
MPI_Status status;
int tag;

...

MPI_Irecv(buffer, 10, MPI_INT, leftneigh, tag, MPI_COMM_WORLD,
 &request);
MPI_Isend(buffer2, 10, MPI_INT, rightneigh, tag, MPI_COMM_WORLD,

&request2);

/* do stuff.... */
MPI_Wait(&request, &status);
MPI_Wait(&request2, &status);

Overlapping
Communication
& Computation
• Now the communications will

happen while we are
computing

• Significant time savings! (~30%
with 4 process)

0

send
recv

Copy recv;
swap buffers

Start isend/irecv

send
recv

send
recv

Compute

Grid-Particle
codes

• For some purposes (FFT,
multigrid gravity) a grid is
imposed on the particle
distribution, and the
processors ‘own’ the particles

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

0 1 2

3..

8

Grid-Particle
codes

• Up to now, we have decided
ourselves which processor
gets which piece of the
domain; but MPI actually has
some routines for this.

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

0 1 2

3..

8

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

0 1 2

3..

8

• Calculates neighbors, etc for
you

• And calculates where you are
in the grid of processes

• Saves some bookkeeping, and
might do a better job...

Grid-Particle
codes

• But what happens when a
particle moves?

• Has to be a mechanism for
moving the particle to the
appropriate processor.

• Tricky. Can’t just tell your
neighbor; how do they know
to listen for you?

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

Grid-Particle
codes

• Could create list -- number of
processors who has particles
for processor i

• Allreduce sum it

• Then i knows to wait for that
many messages

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

Grid-Particle
codes

• But particles probably don’t
move much

• Do ‘shifting’. If anyone has
particles that need to be
moved in X direction, shift all
particles to be moved in X;
pull of right ones

• Then Y, then Z.

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

Grid-Particle
codes

• This is implemented in nbody-
gridparticles

• Executable in
completedexcutables

• Try running it...

• Fairly quickly gets very slow.
Why?

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

Homework (hw7)

• Code skeleton for these parallelizations
exist in sourcecode/nbody.

• Parallelize allgather, and blocking pipeline

• Run some timing tests

• Figure out which of two optimizations to
do for blocking pipeline

Allgather

• Need to figure out your start/end particle,

• Sum total energies,

• And make the allgatherv call.

• (Look for HW in the source code).

Pipeline

• Get the plot all data working

• Implement pipeline

• Do off-process force calculation

• (Again, look for HW in the source code
nbody-pipeline.c)

Timings

• On cluster, qsub some batch scripts and make
timing comparisions. Could be anything - scaling
test (how does it perform w/ different # of
procs?), algorithm comparision (pipeline vs. non-
blocking pipeline?) Can use executables in
completedexecutables

Timings

• Finally, of the two discussed optimizations for the
(blocking pipeline) how much does each effect
communication cost? Computation cost?

• Which is more likely to be useful? Why?

• blocking-optimizations.txt

C syntax
MPI_Status status;

ierr = MPI_Allgather (sendptr, sendcount, MPI_TYPE,
 recvptr, recvcount, MPI_TYPE, Communicator);
ierr = MPI_Allgatherv(sendptr, sendcount, MPI_TYPE,
 recvptr, recvcounts, displacements,
 MPI_TYPE, Commuicator);
int MPI_Cart_create (MPI_Comm comm_old, int ndims, int *dims,

 int *periods, int reorder,
 MPI_Comm *comm_cart);

int MPI_Cart_shift (MPI_Comm comm, int direction, int displ,
 int *source, int *dest);

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR...
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

