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This paper describes partition allocation for parallel jobs in the
Blue Genet/L supercomputer. It describes the novel network
architecture of the Blue Gene/L (BG/L) three-dimensional (3D)
computational core and presents a preliminary analysis of its
properties and advantages compared those of with more traditional
systems. The scalability challenge is solved in BG/L by sacrificing
granularity of system management. The system is treated as a
collection of composite allocation units that contain both
processing and communication resources. We discuss the ensuing
algorithmic framework for computational and communication
resource allocation and present results of simulations that explore
resource utilization of BG/L for different workloads. We find that
utilization depends strongly on both the predominant partition
topology (mesh or torus) and the 3D shapes requested by the
running jobs. When communication links are treated as dedicated
resources, it is much more difficult to allocate toroidal partitions
than mesh ones, especially for jobs of more than one allocation unit
in each dimension. We show that in these difficult cases, the
advantage of BG/L compared with a 3D toroidal machine of
the same size is very significant, with resource utilization better
by a factor of 2. In the easier cases (e.g., predominantly mesh
partitions), there are no disadvantages. The advantage is primarily
due to the BG/L novel multi-toroidal topology that permits
coallocation of multiple toroidal partitions at negligible additional
cost.

Introduction
The growing computational requirements of modern

science, engineering, and finance pose significant

challenges for high-performance computing. Large-

scale massively parallel computations have become

commonplace in science and engineering, supplementing

and often supplanting traditional analytical and

semianalytical methods.

Large-scale, high-precision parallel computations

are commonly performed on tightly coupled parallel

multicomputer systems. The computing core of a

multicomputer consists of a collection of nodes. Each

node has one or several central processing units (CPUs),

memory, and network interfaces. A parallel job runs on a

set of nodes, called a partition, connected (usually via a

special-purpose high-performance network) in such a way

that it provides a computational and communication

infrastructure suitable for efficient numerical solution of

the problem in question. Thus, a typical parallel job will

specify not only the number of nodes (or CPUs) required

to provide the necessary degree of parallelism, but

possibly also a particular shape of the partition and a

topology of the interconnect. For instance, the required

partition may be specified as a three-dimensional (3D)

rectangular block wired as a mesh or torus. The size,

shape, and network topology are determined by the

problem being solved, the numerical scheme chosen for

the computation, the degree of precision, the time horizon
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of the solution sought, the type of problem boundary

conditions, and other factors.

To satisfy these requirements, the job-management

system of a multicomputer has to perform two related

tasks: allocate a partition to each arriving job and

schedule the waiting jobs optimally to maximize machine

utilization and reduce the job response times. To this end,

the system must take into account two classes of input:

the requirements of the waiting jobs and the current state

of the machine, including its static configuration and

the resources allocated to the jobs already running.

The Blue Gene*/L (BG/L) supercomputer [1], built at

IBM Research for the Lawrence Livermore National

Laboratory, represents a new level of scalability for

tightly coupled parallel multicomputers. With 216

dual-CPU nodes and a target peak performance of

360 teraflops, it is a leap of at least an order of

magnitude in size and speed from the fastest

supercomputers of today. Naturally, the job- and

resource-management system has a prominent place

among the challenges for system design.

The design of the individual components of BG/L, such

as nodes and network links, has been described elsewhere

[1]. In this paper, we present the global design of the BG/L

computational core and its network topology, and the

operation of the job-scheduling and partition-allocation

system. We focus on the operational requirements and

assumptions of the job-management system, relevant

algorithms, and the implications for projected system

resource utilization and job response times. We also

demonstrate some of the advantageous characteristics

of the BG/L novel multi-toroidal network architecture.

The high-performance network that connects the nodes

in parallel multicomputers is designed with the job

topology requirements in mind. A frequently used

interconnect topology is a 3D mesh or torus, in which

every node is connected to its six neighbors, two in each

dimension (a torus differs from a mesh in that the six

edges are connected in a wraparound fashion). This

interconnect topology is simple and scalable (the number

of links grows linearly with the machine size), and it suits

many types of real-world computations. Examples of 3D

toroidal parallel systems are the Cray T3D** and the

Cray T3E** machines [2–4]. Blue Gene/L is a departure

from this tradition: its core network, described in detail in

the next section, is the first implementation of a variant of

multi-toroidal topology [5] that has distinct advantages

in terms of efficient job allocation.

Job partitions on BG/L must be isolated; i.e., the

network links connecting the partition nodes must be

dedicated to the partition and used by no more than one

job at a time. This requirement stems primarily from the

particular security needs of BGL, given the sensitive

nature of some of the jobs likely to run on the machine,

but it has other benefits as well. In particular, isolation

means that there is no congestion associated with

messages belonging to different jobs passing through

shared communication links, and it simplifies allocation

algorithms.

The simplest way to allocate isolated partitions is to

allocate nodes contiguously; i.e., each partition consists

of nodes that are geometrically adjacent in the 3D

representation of the machine. Therefore, each partition

has the shape of a contiguous 3D rectangle, a natural

shape for most parallel jobs related to such general

computational tasks as solutions to ordinary or partial

differential equations, linear algebra problems, and

the like.

The particular shape of the rectangle, i.e., its size

in each dimension, may also be specified by the job

according to the dimensions of the original problem,

the desired numerical precision, the requirements of the

particular numerical scheme, and so on. Therefore, while

the system may sometimes be free to choose the partition

shape as long as enough nodes are allocated, in many

cases it may be required to allocate a particular number

of nodes in each dimension. This may impose additional

restrictions on partition-allocation algorithms and may

adversely affect resource utilization.

Another important parameter of a parallel job is the

required partition topology. Many jobs require a mesh

interconnect that provides direct communication links

between adjacent nodes. Sometimes a job may require a

toroidal connection whereby the opposite faces of a 3D

mesh must be connected to each other in all or some of

the dimensions. Requirements for toroidal connections

are more difficult to satisfy because additional links are

needed to close the torus. If the links are treated as

dedicated resources, as is the case in BG/L, this may

prevent allocation of other partitions that could otherwise

use those links. We show that the novel network topology

of Blue Gene/L offers significant advantages for toroidal

partition allocation compared with the traditional mesh

and torus machines, at negligible cost.

The requirements for size, shape, and topology of

partitions must be satisfied in such a way that the

utilization of the system resources—primarily nodes and

network links—is maximized, while the job response time

is minimized. Successful partition-allocation algorithms

must be able to perform this task while confronting the

growing scalability challenges presented by newer, larger

systems. The scalability challenge of BG/L is particularly

difficult because of the order-of-magnitude or greater

increase in size compared with the current generation

of parallel multicomputers.

The design of BG/L solves the scalability problem by

trading off the granularity of management. From the

system management point of view, the computational
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core is organized into sets of 64 nodes, each of which

constitutes a single autonomous entity. Therefore, rather

than managing 216 individual nodes, one has to deal only

with 210 subsystems [6].

The job-management system takes a similar scalability

at the expense of granularity approach to partition

allocation. The system is divided into allocation units,

each of which is a mesh-connected rectangular set of

nodes. This arrangement allows us to significantly reduce

the complexity of the partitioning algorithms. It also has

a very important property: The topology (mesh or torus)

of a rectangular partition created from such allocation

units is the same as the topology of the underlying

collection of nodes that form the partition. This is the

foundation for partition allocation at the granularity level

of allocation units instead of individual nodes. The basic

tradeoff is that only full allocation units can now be

allocated, so if a particular job can run in a partition

comprising a noninteger number of allocation units, some

resources will be wasted.

In the five sections that follow, we describe the

architecture of Blue Gene/L and its particular properties

related to partition allocation, the allocation principles

and algorithms, our simulation environment, some

simulation results demonstrating BG/L projected

performance for allocation of different kinds of jobs,

and conclusions.

Blue Gene/L topology
Blue Gene/L is a 3D machine of 643 323 32

(= 64K = 216) nodes. The nodes are grouped into

512-node units called midplanes. Inside a midplane,

each node is directly connected to its six nearest

neighbors, forming an 83 83 8 3D mesh. Each

midplane is connected to other midplanes through

three network switches, one per dimension, forming

a 3D machine of 83 43 4 midplanes.

Figure 1(a) shows a midplane with its switches. As

shown in Figure 1(b), each switch has three input ports

and three output ports. One of the input ports and one

of the output ports are connected to the opposing sides

(‘‘faces’’) of the midplane in the corresponding dimension.

The remaining ports may be connected to ports of other

switches by communication links (hereafter referred to as

external interswitch links) or may be left unused. Only one

link can be connected to each port, and one end of each

link is connected to an output port and the other end to

an input port. These external links are static, but each

switch can create dynamic internal connections between

any of its input ports and any of its output ports. Each

external link and each internal connection in a switch

can carry the traffic of 64 internode links, allowing the

connectivity to be extended beyond a single midplane.

The combination of static external links and dynamic

internal connections is what ultimately facilitates the

creation of dynamic partitions of different topologies that

consist of one or more midplanes.

The external interswitch links determine the

interconnect topology of the machine. In BG/L, there

are no links between switches that belong to different

dimensions. This separation permits a view of the 3D

machine as a collection of independent 1D ‘‘lines’’

(hereafter, x-line, y-line, and z-line). Moreover, all of the

lines that belong to the same dimension are identical.

Using dimension x as an example, links exist only

between switches that belong to the same x-line, and

all x-lines have the same link configuration.

As noted above, the external interswitch links and the

internal switch connections together allow connecting

midplanes as meshes or tori. Since each midplane is a 3D

mesh of nodes, the topology of a collection of midplanes

and the topology of the constituent nodes will be

identical. This property transforms the 64K-node

machine into a more manageable and scalable 128-

midplane machine. It is also clear that a midplane is the

smallest unit that can be connected as a torus by creating

the appropriate internal connections in its three switches.

In what follows, we describe the network topology of

Blue Gene/L. Figure 2(a) shows the external links in a

BG/L x-line of eight midplanes and eight switches.

Clearly, the x-line has a multitoroidal topology [5]; i.e.,

multiple toroidal partitions can coexist in it. Figure 2(b)

illustrates this property by way of an example. Note that

this is achieved by modifying the traditional toroidal

interconnect in only a few places (between midplanes) in

each line. Thus, although there are 16 x-lines, the cost of

such modification is low, and unlike the full crossbar

topology, this kind of interconnect is scalable and

remains practical, even for a very large machine.

Note that for various practical and engineering

reasons—for example, physical limitations on the number

and length of wires—BG/L does not implement the

regular multi-toroidal network presented in [5]. We

describe the actual BG/L topology and analyze its

Figure 1

A midplane and its switches: (a) the three switches; (b) switch I/O 
ports.
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properties with respect to efficient allocation of partitions

of various types. The analysis is therefore the first

practical application of the theoretical study presented in

[5]. We show that the BG/L multi-toroidal core network

follows the same principles and enjoys the same

advantages as the idealized network discussed therein.

Figure 2(b) is an example of two toroidal partitions

that coexist in one x-line. One partition f0, 1, 2g consists

of midplanes 0, 1, and 2, ordered 0!2!1 and back to 0,

wired via the blue dotted links. The second partition is

composed of midplanes f3, 4g wired with the red dashed

links. Note that in both cases we are required to use

switches that do not belong to the constituent midplanes.

For this x-line topology, it is possible to develop a set

of linking rules to guarantee that there will be sufficient

external links to connect all possible sets of contiguous

partitions. We omit this set of rules here because of its

complexity. They are similar in spirit to the rules defined

in [5]. Instead, the next section presents a general

algorithmic framework that covers this and other, more

complicated configurations.

Figure 3(a) illustrates a BG/L y-line, which is simpler

than the x-line of Figure 2(a). The y-line switches form

a single torus, 0!1!3!2!0. The deviation from the

‘‘natural’’ increasing order (0!1!2!3!0) is due simply

to a physical limitation on the length of the cables and

is not essential. The z-lines are identical to the y-lines.

In all of the dimensions, multiple mesh partitions can

coexist in a single line. Toroidal partitions that consist

of one midplane each can coexist peacefully as well; to

create one, it is enough to use an internal link between

the two switch ports that are connected to the midplane.

However, in y-lines and z-lines, only one toroidal

partition containing two or more midplanes can exist at

any one time. For example, partition f0, 1g in Figure 3(b)

can be connected as a torus only by using all of the links

in the line. Therefore, this partition cannot coexist with

an additional torus or mesh partition of size two in the

same y-line. As Figure 2(b) shows, the multitoroidal

x-lines are much more flexible.

Figure 2

(a) Blue Gene/L x-line. (b) Two toroidal partitions in a single x-line.

1 2 3 4 5 6 70

1 2 3 4 5 6 70

1 2 3 4 5 6 70

1 2 3 4 5 6 70

(a)

(b)

Figure 3

(a) Blue Gene/L y-line (z-lines are identical to the y-lines). (b) 
Toroidal partition of two midplanes {0, 1} in a y-line. 

1 2 30

1 2 30

(a)

(b)
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Allocation algorithms
Blue Gene/L can be managed at different levels of

granularity. At the finest level, it is a machine of

64332332 nodes. Any job scheduler that operates at this

level of granularity consumes considerable computational

power and requires a very long time to reach a scheduling

and allocation decision. For example, the projection of

partitions (POP) algorithm [7]—which scans for the

largest free rectangular partition—requires anO(M5) time

to reach a decision for a machine size of M3M3M.

Obviously, fine-grained management and machine

scalability are conflicting goals. For a very large machine

such as BG/L, we will have to resort to heuristics to

produce output in a reasonable time and may derive

suboptimal decisions.

The solution is to forego granularity and manage the

machine—and the jobs—at a coarser level. A natural

granularity scale is that of midplanes. Treating midplanes

as atomic allocation units allows the scheduler to operate

on a machine of effective size 83 43 4 and run its

allocation algorithms in a reasonable time.

Coarse management solves the scalability problem, but

it has its price. Since the minimal allocation unit is now

a midplane, any job requesting a noninteger number of

midplanes will keep some of the nodes idle. Exploring the

tradeoff between scalability and management granularity

is beyond the scope of this paper and is a part of our

future research agenda. For now, we assume that each job

utilizes an integer number of midplanes, so resources are

not wasted. From the user perspective, the restriction

means some extra precision provided by the numerical

scheme used, at little or no runtime cost for a fully

parallelized computation. For our analysis, allocating

midplanes has an additional advantage because a

midplane can be wired as a mesh or a torus, thus

easing the comparison between jobs of the same

shape but different topology.

In the following sections, we describe an algorithmic

framework for computational and network resource

allocation. It is important to note that this framework

is significantly more general than is necessary for the

purposes of this paper. The presented algorithm works

for any network configuration as long as the dimensions

are independent and all of the lines of a given dimension

are identical. It also works for the allocation of partitions

containing noncontiguous midplanes.

Two-phase partition allocation

The scheduler must allocate a torus or mesh partition

according to the job requirements. We divide the

resource-allocation process into two successive phases:

the first phase selects free midplanes that can be allocated

to the job, and the second phase complements the first by

finding free links to connect the midplanes as requested.

This corresponds directly to the two distinct types

of resources that must be allocated: computational,

represented by nodes (at the granularity level of

midplanes), and communication, represented by

interswitch links.

An advantage of this approach is its conceptual

simplicity; each phase is independent of the other and can

be replaced or tuned separately for optimal performance.

The two-phase approach enables us to perform a

comprehensive search and examine all of the candidate

partitions.

Our primary concern here is optimizing the resource

utilization rather than making the allocation process

efficient. By sacrificing granularity, we have gained the

advantage of running the algorithms on an effectively

small system so that their asymptotic complexity is no

longer an issue. It is also clear that the runtime of the

algorithms will be short compared with the typical

runtime of large parallel jobs.

The allocation procedure works as follows. First, the

machine is scanned for all 3D rectangular and spatially

contiguous sets of free midplanes that match the shape of

the job, including possible rotations. Then, for each of the

found sets, we search for an available set of free links

to connect them as a mesh or torus according to the

job specification.

A candidate partition is a set of free midplanes that can

be connected via available free links into a free partition

that fits the job requirements. Once the scheduler creates

a list of all candidate partitions, it assigns a merit value

to each of the candidates and chooses the ‘‘best’’

partition for the job according to the (flexible) merit

criteria. If more than one candidate has the same

merit value, the first one found is chosen.

We count the participating interswitch links for

each candidate partition and use it for the merit

value. Although we could incorporate more complex

criteria, such as the location of the partition and the

fragmentation resulting from its allocation, we observed

that choosing the candidate partition that uses the

minimal number of interswitch links yields good results,

since the lack of available links can prevent future

allocations. Once a partition is chosen for the job,

its midplanes and links are marked as allocated (for

example, with the job identification number) to

prevent their assignment to other queued jobs.

If the list of candidate partitions is empty, it is up to the

scheduler to decide which action to take. On the basis of

the scheduling policy, it can decide to attempt to backfill

[8, 9] other waiting jobs or wait for one or more running

jobs to terminate.

The next two subsections describe in detail the two

phases of partition allocation—the search for free

midplanes and the search for available network resources.
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Search for free midplanes

Various scanning algorithms have been suggested for

finding rectangular free partitions in mesh- or torus-

connected multiprocessor systems [10–16]. They differ in

where the scan starts, the order in which it progresses,

and the data structures used to represent and maintain

the free space in the machine and the candidate

partitions. We search all possible free locations that can

accommodate the requested partition and then choose the

best one according to predefined criteria. The search for a

free partition is done as follows:

Given: 3D shape S ,Sx, Sy, Sz.:

1. For all rotations of shape S (permutations of

,Sx, Sy, Sz.)

2. For all midplane locations ,x, y, z.

3. Consider that midplane as a lower left point

of the partition and check if all midplanes

in the 3D rectangular ,x, y, z. to

,xþSx, yþSy, zþSz. are free.

4. If true

5. Add this collection of midplanes to the

"free midplanes sets list"

For each of the free midplane sets found, we search for

free links to connect it, as described in the following

section. If a suitable link set is found, the partition, together

with its merit value, is added to the candidate partition list.

Search for free network resources

Since there are no links between switches belonging to

different dimensions, the search for the suitable link set

can proceed independently in each dimension and can

focus on a single isolated line. In what follows, we

demonstrate the search procedure for an x-line; a more

interesting case, but the exact same procedure, can also be

applied to the y- and z-lines.

Consider the midplane set that consists of a set of

midplanes with indices hx1; x2; � � � ; xni in the x-lines,

hy1; y2; � � � ; ymi in the y-lines, and hz1; z2; � � � ; zki in the

z-lines. The full set of midplanes is determined by the

Cartesian product of the three lists. Assume that a

toroidal connection is required. For the x dimension, we

need to find a set of links that connect the midplanes

located at hx1;x2; � � � ;xni as a torus along the x-axis for

every x-line, i.e., for every combination of the y and z

coordinates. Formally, for every ðy; zÞ 2 hy1; y2; � � � ; ymi
3 hz1; z2; � � � ; zki; we need to find a link set that connects

the midplanes located at ½x1; y; z�; ½x2; y; z�; � � � ; ½xn; y; z� as
a torus. In the version of the algorithm presented below,

the link sets in all of the x-lines in the partition are

identical. For example, in Figure 4, if link number 10 is

used to wire the partition in one x-line, it is used in all of

the other participating x-lines.

If a midplane is to communicate with other midplanes

along the x dimension, it must use at least one of the two

links that connect it to its x switch. Thus, we can assume

Figure 4

Two link sets suitable for mesh partition {3, 4, 5}.

1 2 30 5 6 74

(2)

(1) (4)

(6) (13)(10)
(a)

(b)

(8)

(5) (9) (12)

1 2 30 5 6 74

(2)

(1) (4)

(6) (13)(10)

(8)

(5) (9) (12)

(0) (3) (7) (11)

(0) (3) (7) (11)
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that these two wires are implicitly allocated whenever

the midplane is allocated, and we need to look only for

a set of interswitch links.

Figure 4 illustrates two link sets that can be used to

connect midplanes 3, 4, and 5 as a mesh. We can use

either links 7 and 10 as in Figure 4(a) or links 5, 4, and 7

as in Figure 4(b).

A closer observation reveals that for any given set

of midplanes, there is a small number of link sets that

connect these midplanes as a torus or mesh. Since the

interswitch link topology is static and identical for all of

the lines in each dimension, we can precompute a list of

all possible sets of midplanes and all of the corresponding

valid mesh and torus link sets for x-, y-, and z-lines and

store this information in a lookup table. The table is used

for an efficient online search.

The next subsubsection describes the creation of the

lookup tables, followed by a description of the online

search for valid link sets.

Creating lookup tables of link sets

The lookup tables maintain a mapping from all possible

sets of midplanes to all valid mesh and torus link sets.

We generate a separate table for every dimension,

but we need to store information on only a single

representative line in each dimension. Figure 5 presents a

schematic view of the x-line lookup table. The left table

contains an entry for every unordered set of midplanes

from one line (e.g., f1, 2, 3g and f1, 3, 2g share the same

entry). Each such entry points to one or more entries in

the link set table on the right. Each link set connects

the midplane set either as a mesh or as a torus. For

example, midplanes 1, 2, and 3 can be connected as a

mesh using link sets f3, 6g and f1, 2, 3g, and as a torus

using link set f1, 2, 3, 6g. Note that the references can

be ordered according to some criterion—for example,

pointing to the smallest link set first. By doing so, the

online search for a suitable link set is automatically

optimized according to the chosen criterion. The tables

are generated only once, saved in persistent storage, and

can be used even between reboots as long as the link

configuration of the machine does not change.

There are different ways to generate the lookup tables.

One simple method is to represent each line as a graph in

which the midplanes are the nodes and the links are the

arcs. For each legal set of midplanes for each possible

order, we find a path on the graph for the mesh and a

cycle for the torus that connect all of the nodes

representing the participating midplanes. The tables

can be populated the same way for different link

configurations and for noncontiguous partitions.

The lookup tables contain only the static configuration

information. The availability of the links (whether they are

up and free) is kept in a different dynamic data structure.

Online search for link sets

The lookup tables are used for an efficient search for

suitable link sets (LS). The following algorithm describes

the online search procedure for an x-line. The link sets are

identical for all x-lines in a partition, which is not

mandatory but simplifies the search significantly.

Online search for identical x-line link sets:

Given

� a set of midplane locations in the x dimension

hx1; x2; � � � ; xni;
� a set of x-lines, identified by their y and z coordinates

ðy; zÞ 2 hy1; y2; � � � ; ymi3 hz1; z2; � � � ; zki;
� and a requested connectivity pattern (mesh or torus),

find the partition entry in the partition table:

1. for each of its link sets LS f
2. if the LS provides the correct connectivity f
3. for each participating x-line f
4. if not all the links in LS are available

(operational and unallocated)

5. break (move to the next LS)

6. g
7. return LS (this LS can connect all the

x-lines, and has the best merit value)

8. g
9. g
10. return NIL (no suitable link set found)

Figure 5

Lookup table for the x-line link set.

5
6

0, 2
1, 2

14
15

1, 2, 3
0, 1, 2, 3

120 3, 4, 5, 6

Index
Midplane 

sets

Link sets Connection

1
2 Mesh

Mesh

3, 6 Mesh

1, 2, 3 Mesh

1, 2, 3, 6 Torus

0, 1, 3, 6 Torus
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The algorithm shown above is applied for all

dimensions. A positive result is returned only if a suitable

link set is found in every dimension. The algorithm

assumes that the referenced link sets for each midplane

set entry in the table are sorted by the chosen merit

value in decreasing order; i.e., the first suitable LS

found is automatically the best one. For the purpose

of the simulations below, the merit value is calculated

by counting the links in all of the lines in all dimensions

for each link set. The LS is sorted by the number of

links in increasing order.

Simulation environment

Our simulation software models BG/L as a 3D collection

of 128 (83 43 4) midplanes, connected as shown in

Figure 2(a) and Figure 3(a). Submitted jobs are pushed

to the tail of an input queue, and the scheduler is invoked

whenever a new job is submitted or a running job

terminates. We run an aggressive backfill scheduling;

if the job at the head of the input queue cannot be

accommodated, we try to schedule other jobs out of

order.

We based our simulated workloads on the job logs of

real parallel systems: the Cornell Theory Center (CTC)

SP2 and the San Diego Supercomputer Center (SDSC)

SP2. Both logs are publicly available from [17]. The logs

list the size, arrival time, actual and estimated runtimes,

and other descriptive fields for each submitted job. The

CTC log is for a 512-node machine, and the SDSC log is

for a 128-node machine. Therefore, we divided the job

sizes by 4 in the CTC log to scale to our 128-allocation-

unit machine.

The logs do not have any information regarding the

shapes or topologies of the jobs, only scalar sizes, since

neither of the systems in question is a 3D toroidal

machine. Because of the lack of publicly available realistic

workloads that provide useful statistics, we used these

logs but had to simulate the missing parameters. We

transformed the scalar sizes to 3D shapes and specified

the topology (mesh or torus) for each job. For the size

transformation, we computed three integers, a, b, and c,

in the range of 1. . .8, such that a3 b3 c was equal to the

original job size. The calculation found the first match

using three nested loops running from 1 to 8 in one loop

and 1 to 4 in the other two loops. We then set the job

shape to be a3 b3 c. If no combination equal to the job

size was found, we used the first combination for which

a3 b3 c was minimal but still larger than the job size.

Thus, a job of size 6 runs in a partition of 13 13 6, and

a job of size 27 requires a partition of 33 33 3.

Note that this process preferentially generates ‘‘slim’’

jobs (that is, job shapes will likely resemble ‘‘sticks’’ or

‘‘sheets’’). For example, a toroidal partition of size 8 will

be assigned a shape of 13 13 8 and will automatically

consume the minimal number of links. In the x-line, all of

the midplanes are used, so that there is no need for more

links for future allocation. In the y-line and z-line, the

partition is of size 1—that is, no interswitch links are

needed. The situation is similar for jobs of other sizes;

e.g., a job of size 16 acquires a shape of 13 23 8,

occupying two x-lines.

In real life, users may request ‘‘fat’’ jobs; e.g., a job of

size 8 may have a shape of 23 23 2, not necessarily

13 13 8, etc. For many applications, the requested

partition shape is determined by the precision

requirements of the chosen numerical scheme or other

application-specific considerations and cannot be

arbitrarily decided by the job-management system. To

explore how this affects partition allocation on Blue

Gene/L, we chose to fatten job shapes at will in our

simulated workload. For a fat job, the minimal size in

each dimension is 2 (i.e., we do not have any jobs smaller

than 23 23 2). A job larger than 8 is allocated to the

smallest possible partition that has at least two midplanes

in each dimension. We applied the fattening algorithm at

random with probability 0, 0.5, and 1, thus simulating

workloads with mostly slim, mostly fat, and mixed job

shapes.

Figure 6
Job-size histograms for (a) CTC-based workloads; (b) SDSC-based 
workloads.
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Note that fattening affects the distribution of job sizes

as well, since the minimal size of a fat job is 8, and there

are many jobs smaller than 8 in the original workloads.

To illustrate the effect, Figure 6 presents histograms of

job sizes in both CTC and SDSC logs before and after

the fattening process.

To determine the topology, we used a simple

probabilistic model that outputs ‘‘torus’’ with a

probability of Pt and ‘‘mesh’’ with a probability of

(1 � Pt).

Different offered loads were simulated by scaling the

job arrival times by different factors while leaving the job

sizes, shapes, and runtimes unchanged. For each offered

load, we calculated the average system utilization (see

[7] for details) as the main characteristic of the job-

management system performance.

For partition allocation, we used the algorithm

described in the allocation algorithm section. We left

any improvements in spatial allocation, including

noncontiguous partition allocation, for future research.

Simulation results

In this section, we present performance characteristics of

the partition-allocation algorithms on the simulated Blue

Gene/L and a comparison with a 3D toroidal machine of

equal size. The graphs in Figure 7 show BG/L utilization

with different loads (between 20% and 100%, as described

in the section above) and different mixtures of toroidal

and mesh jobs (100% mesh jobs, 50% mesh and 50%

toroidal jobs, and 100% toroidal jobs). The results are

compared with simulations run on a 3D toroidal machine

in which all of the jobs requested toroidal partitions.1

The results in Figure 7(a) are for the slim job

workloads. For the CTC-based log, the utilization for

all of the different experiments is almost identical. The

explanation can be found in the histogram of Figure 6(a).

The workload file is dominated by jobs of size 1 that do

not require interswitch links and jobs smaller than eight

midplanes, which are allocated on a single x-line with no

interswitch links in the y, z dimension. The results for the

3D toroidal machine are also very close to the BG/L

results, indicating that there is no shortage of links. For

the SDSC-based workload, some variation exists between

the different sets, but it is still very small. The larger

variation is again explained by comparison between the

size distributions in Figures 6 above; the slim SDSC-

based workload has a higher percentage of large jobs

than the corresponding CTC-based one.

The results in the graphs in Figure 7(b) are the

experiments with fat jobs. It is evident that torus-heavy

Figure 7

System utilization by (a) slim jobs and (b) fat jobs of a simulated Blue Gene/L machine compared with a simulated 3D toroidal machine for 
different mixtures of torus and mesh partitions. 
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1The results for mesh partitions for Blue Gene/L and the 3D torus are very similar,
since mesh partitions do not consume additional links like toroidal partitions.
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workloads result in lower utilization than workloads that

consist only of meshes; the utilization decreases as the

percentage of toroidal jobs in the workload increases. The

reason was explained in the section on topology; toroidal

partitions that contain more than one midplane in a line

can consume many interswitch links, thus preventing

allocation of other partitions in a large fraction of the

remaining free space. Note that the graphs for the

SDSC-based workload lie somewhat lower than the

corresponding graphs for the CTC-based one. Again,

this can be explained by the higher proportion of large

jobs in the SDSC-based workload (compare Figure 6).

A comparison of the BG/L results with those for the

simulated 3D torus (50% compared with 26% for purely

toroidal CTC-based workload and 46% compared with

36% for the corresponding SDSC-based one) emphasizes

the benefits of the multitoroidal topology of BG/L x-lines

for allocation of fat toroidal partitions.

Figure 8 demonstrates the influence of job shapes (slim

compared with fat) on machine utilization. For the

purpose of this comparison, we adjusted the sizes

of the slim jobs in the same way as for the fat jobs, as

described in the previous section. Thus, the distributions

of job sizes are the same in both cases, and only the

partition shapes differ. Note also that all partitions

are toroidal. As can be seen, the fatter the workload

(on average), the worse the system utilization. This

decrease in utilization (up to 40%) is a consequence

of the increasing demand for interswitch links by fat

jobs.

Concluding remarks
In this paper, we have presented the scalable approach

to partition allocation used in the Blue Gene/L job-

management system. By foregoing some degree of system

granularity and treating the machine as a collection of

128 midplanes rather than 64K nodes, we can use

virtually any known partition-allocation algorithm

without undue scalability concerns. We have presented

a generic two-phase resource allocation scheme that

efficiently allocates two different types of resources—

computational (nodes) and communication (links)—

independently. This scheme may serve as an

infrastructure for allocation problems that are more

advanced and sophisticated than those discussed in this

paper, including resource discovery and node and link

failures.

We have presented a detailed description of the BG/L

novel connectivity scheme, which is multi-toroidal in the

longest x dimension and simple toroidal in the other two

dimensions. We have shown that for isolated contiguous

rectangular partitions, the new topology can improve

machine utilization by a factor of 2 (depending on the

workload) compared with the traditional toroidal

interconnect. This improvement is due to the ability to

coallocate multiple toroidal partitions in the x dimension

of the machine. The advantage of the multi-toroidal

interconnect compared with the traditional 3D torus is

especially pronounced for workloads requiring allocation

of fat toroidal partitions that contain more than one

midplane in each dimension.

The multi-toroidal topology of BG/L suggests other

possible advantages, for instance, for noncontiguous

allocations of partitions by leveraging the additional links

to connect nonadjacent nodes. Another advantage is the

degree of redundancy offered by the new topology, which

leads to increased fault tolerance. These are some of

the topics of our ongoing research.
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Figure 8

System utilization of a simulated BG/L machine for different job 
shapes: (a) SDSC; (b) CTC.
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