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The Blue Genet/L computer is a massively parallel supercomputer
based on IBM system-on-a-chip technology. It is designed to scale
to 65,536 dual-processor nodes, with a peak performance of 360
teraflops. This paper describes the project objectives and provides
an overview of the system architecture that resulted. We discuss
our application-based approach and rationale for a low-power,
highly integrated design. The key architectural features of Blue
Gene/L are introduced in this paper: the link chip component and
five Blue Gene/L networks, the PowerPCt 440 core and floating-
point enhancements, the on-chip and off-chip distributed memory
system, the node- and system-level design for high reliability, and
the comprehensive approach to fault isolation.

Introduction

A great gap has existed between the cost/performance

ratios of existing supercomputers and that of dedicated

application-specific machines. The Blue Gene*/L (BG/L)

supercomputer was designed to address that gap by

retaining the exceptional cost/performance ratio between

existing supercomputer offerings and that obtained by

dedicated application-specific machines. The objective

was to retain the exceptional cost/performance levels

achieved by application-specific machines, while

generalizing the massively parallel architecture enough

to enable a relatively broad class of applications. The goal

of excellent cost/performance meshes nicely with the

additional goals of achieving exceptional performance/

power and performance/volume ratios.

Our design approach to accomplishing this was to use

a very high level of integration that made simplicity in

packaging, design, and bring-up possible. This follows

the approach of a number of previous special-purpose

machines, such as QCDSP [1], that succeeded in achieving

exceptional cost/performance. Advances include the areas

of floating-point, network, and memory performance,

as described in the QCDSP/QCDOC paper [2] in this

issue of the IBM Journal of Research and Development

dedicated to BG/L. To achieve this level of integration,

we developed the machine around a processor with

moderate frequency, available in system-on-a-chip (SoC)

technology. The reasons why we chose an SoC design

point included a high level of integration, low power, and

low design cost. We chose a processor with modest

performance because of the clear performance/power

advantage of such a core. Low-power design is the key

enabler to the Blue Gene family. A simple relation is

performance

rack
¼ performance

watt
3

watt

rack
:

The last term in this expression, watt/rack, is

determined by thermal cooling capabilities and can be

considered a constant of order 20 kW for an air-cooled

rack. Therefore, it is the performance/watt term that

determines the rack performance. This clearly illustrates

one of the areas in which electrical power is critical to

achieving rack density.

We have found that in terms of performance/watt, the

low-frequency, low-power, embedded IBM PowerPC*

core consistently outperforms high-frequency, high-

power microprocessors by a factor of 2 to 10. This is one

of the main reasons we chose the low-power design point

for BG/L. Figure 1 illustrates the power efficiency of some

recent supercomputers. The data is based on total peak

floating-point operations per second divided by total

system power, when that data is available. If the data is

not available, we approximate it using Gflops/chip power.

Using low-power, low-frequency chips succeeds only if

the user can achieve more performance by scaling up to
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a higher number of nodes (processors). Our goal was to

address applications that have good scaling behavior

because their overall performance is enhanced far more

through parallelism than by the marginal gains that can

be obtained from much-higher-power, higher-frequency

processors.

The importance of low power can be seen in a number

of ways. The total power of a 360-Tflops computer based

on conventional high-performance processors would

exceed 10 megawatts, possibly approaching 20 megawatts.

For reference, 10 megawatts is approximately equal to

the amount of power used in 11,000 U.S. households

[3]. Clearly, this is a fundamental problem that must

be addressed. This power problem, while easy to

illustrate for a 360-Tflops system, is also of great

concern to customers who require high-performance

computing at almost all scales. The rate of electrical

infrastructure improvements is very slow and the cost is

high, compared with those of the computing performance

enhancements that have been achieved over the last four

decades. Across the industry, technology is leading to

further density improvements, but scaling improvements

in the power efficiency of computing are slowing

dramatically. This portends a difficult future, in which

performance gains will have to be made through

enhancements in architecture rather than technology.

BG/L is an example of one approach to achieving higher

performance with an improved power/performance ratio.

A number of challenges had to be overcome to realize

good performance using many processors of moderate

frequency. These were addressed by assessing the impact

on application performance for a representative set of

applications. The BG/L networks were designed with

extreme scaling in mind. Therefore, we chose networks

that scale efficiently in terms of both performance and

packaging. The networks support very small messages

(as small as 32 bytes) and include hardware support for

collective operations (broadcast, reduction, scan, etc.),

which will dominate some applications at the scaling

limit.

The other critical issue for achieving an unprecedented

level of scaling is the reliability, availability, and

serviceability (RAS) architecture and support. A great

deal of focus was placed on RAS support for BG/L so

that it would be a reliable and usable machine, even at

extreme scaling limits. Dealing with the sheer scale of

supercomputers, whether based on clusters or on custom

solutions, has long been one of the most difficult

challenges for the entire industry and is likely to become

more difficult as the scale of these systems grows. Since

we were developing BG/L at the application-specific

integrated circuit (ASIC) level, we were able to integrate

many features typically found only on high-performance

servers. This is an area in which BG/L can be clearly

differentiated from commodity cluster solutions based

on nodes that were not designed to reach the levels of

scalability of supercomputers and therefore do not have

the necessary RAS support for extreme scaling.

Another area of critical importance is system software

and monitoring. The scalability of the system software

and the availability of standard libraries and performance

tools is essential for users to achieve the full potential of a

massively parallel computer [4].

BG/L was designed to efficiently utilize a distributed-

memory, message-passing programming model. While

there are a number of message-passing models, Message

Passing Interface (MPI) [5] has emerged as the dominant

one. Many applications have now been ported to, or

developed for, the MPI model, making optimization of

its performance a necessity for the BG/L architecture.

Hardware features have been added, and functional

parameters tuned, to give good performance for MPI

applications. The BG/L MPI implementation and its

performance are described in [6] in this issue. Application

development is a significant portion of the cost of

supercomputing. Therefore, BG/L support of the MPI

standard and of the standard programming languages C,

Cþþ, and Fortran significantly helps keep the cost/

performance ratio low when total costs are taken into

account.

One of the fundamental sources of complexity in

supercomputers is power. By targeting a low-power

design point, we dramatically reduced complexity in

many areas. This low-power focus has been critical to

the success of BG/L in that it simplified the design,

verification [7, 8], and bring-up [9] of the machine,

and enabled a dense, efficient packaging design.

The packaging constraints in a supercomputer are

typically severe as a result of the need for extensive

Figure 1

Power efficiencies of recent supercomputers. (Blue � IBM machines, 
black � other U.S. machines, red � Japanese machine.)
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internode bandwidth coupled with a great number of

high-performance nodes. These constraints typically

result in a large demand for overall power, a large

number of racks, and a large communication switch

infrastructure. Low power has enabled us to integrate

1,024 dual-processor compute nodes into a rack 0.9 m

wide, 0.9 m deep, and 1.9 m high that consumes 27.5 kW

of total power. Because of the large number of nodes in a

single rack, more than 85% of the internode connectivity

is contained within the racks. The corresponding

dramatic reduction in connectivity across racks allows

for higher density, higher reliability, and a generally

more manageable system.

From a user perspective, the full-size BG/L

supercomputer appears as 216 = 65,536 nodes. Each node

has its own 512-MB memory (architecturally expandable

to 2 GB) and a complete set of network resources. The

architectural size limit to a BG/L machine is, in fact,

much larger than 65,536.

Application-based architectural approach
The BG/L architecture was developed by addressing the

needs of applications. It was very important to choose

those applications and architectural features that we

could support in a cost-effective way [10–13]. The

fundamental goal of BG/L was to develop an extremely

cost-effective supercomputer. In this pursuit, we chose

not to build a machine that would necessarily be

appropriate for all applications; rather, our goal was

to build an architecture that would achieve superior

cost-effectiveness for a broad class of applications.

Our approach, therefore, was to restrict ourselves to

innovations that enhance scalability with little cost

impact. In this way, we were able to hold the cost for the

machine at a level competitive with those for cluster

and other commodity solutions, while offering many

features typically found only in high-end computing

environments.Twogoodexamplesof this are the integrated,

high-performance networks and the RAS system.

Limits to scalability

One of the fundamental issues addressed was scaling.

Because we were targeting an unprecedented level of

scaling, it was important to address the different scaling

behaviors of applications.

In general, scaling is bounded by two different scaling

limits: the weak and the strong. Weak scaling relates to

scaling the application in such a way that the local data

volume remains relatively fixed as the number of nodes

is increased. Strong scaling refers to holding the total

problem size fixed by reducing the local volume in each

node as the node count is increased. In practice, most

applications fall somewhere between these limits.

Applications from the national laboratories tend more

toward the weak scaling limit, while commercial high-

performance computing (HPC) applications tend more

toward strong scaling.

Scalability is the largest concern for most parallel

applications. The different scaling limitations for both

strongly and weakly scaled applications are summarized

in Table 1.

In the table, entries with a check mark indicate

potential limitations to scaling. A survey of the

applications has shown that while there are multiple

possible limitations for the two scaling behaviors, only

some limitations dominate the application space. The

check marks in color indicate the limitations that are

most commonly seen in the application space we have

surveyed. It is important to understand how to address

these scaling limitations so that we can achieve maximal

scalability for this broad class.

A number of interesting observations can be

formulated from the table. In particular, Amdahl’s law

(which states that even a small percentage of serial code

can greatly inhibit the speed increase of a program as

the number of parallel processors is increased), while

certainly a concern, plays a small role in the limitation of

current applications. This is likely due to evolution over

time, which has resulted in a portfolio of applications that

no longer retain serial components. To reach the levels

of scalability that have already been achieved by other

supercomputers, algorithms must already have reduced

their serial computation component to less than 1/1,000,

a level at which it is perhaps simpler to eliminate it

completely.

Table 1 Limitations to application scaling.

Application

scaling

behavior

Scaling limitations

Amdahl Problem

segmentation

limits

Surface-to-volume

communication

dominates

Load

imbalance

Small

messages

Global

communication

dominates

Memory

footprint

File

I/O

Strong scaling � � � � � � �

Weak scaling � � � � � �
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Another concern is memory footprint. This constraint

is more of a limitation for scaling down than for scaling

up, since, in general, the working set per node decreases

as one scales up. There are exceptions in which

applications keep information or tables that scale with the

number of nodes, thereby resulting in memory limitations

at large scales. In general, this is seen in few applications,

or it has been alleviated by the application developers.

For weakly scaling applications, we see that load

imbalance and global communications dominate the

scalability of most applications. Load imbalance is

usually inherent in the algorithm, and there is little

opportunity to ease this effect through machine

architecture. The most assistance we can provide is an

efficient network to redistribute the computational load,

since the cost of redistribution can sometimes limit

performance. With respect to global communications, we

chose to add considerable support to significantly reduce

and in some cases virtually remove the impact of such

communications. This is particularly important for

BG/L, since scaling to a large number of nodes with

moderate performance stresses the global communication

capabilities. To address this, we added two additional

networks. The collective network allows for low-latency

global communications, including global arithmetic

operations, such as global summation; and the global

barrier network allows for barriers and notifications over

the entire machine, propagated through combinatorial

logic, resulting in extremely low latency.

Small messages are both a bandwidth and a latency

issue for strongly scaling applications. For such

applications, one finds that the message size falls linearly

for most clustered point-to-point communications, while

it is closer to falling quadratically with respect to the node

number for global all-to-all-type communication

patterns. For example, doubling the number of nodes

with an all-to-all-type communication pattern would

translate into each node sending twice as many messages,

each one-quarter the previous size, while the total volume

would remain roughly unchanged. Ideally, one would like

the communication time to fall linearly with the number

of nodes in a manner similar to the behavior of the

computation. For this reason, we have supported very

small messages in hardware (as small as 32 bytes) with

minimal latencies. We have also included hardware

support for multicast, which can greatly reduce the

number of messages that have to be sent for collective

operations on groups of nodes.

For strongly scaling applications, we have the

additional issue of surface-to-volume effects. This refers

to a common application development model in which

each node is responsible for a small subvolume of the

full multidimensional problem. The subvolume is often

represented by a multidimensional cell configuration. In

this case, each node updates the parameters associated

with its own local cells. This computational stage is

usually proportional to the number of cells. The total

number of cells can be referred to as the volume. After the

computation, there is often a communication stage during

which information about the cells on the surface of the

multidimensional local volume is communicated to the

neighbors. Because this communication is proportional to

the number of cells on the surface, it has the effect that the

communication-to-computation ratio increases as the

problem is spread over more nodes.

Classes of applications under consideration

The classes of applications that we addressed can be

broadly separated into three categories:

� Simulations of physical phenomena.
� Real-time data processing.
� Offline data analysis.

The typical applications run in national laboratories

and supercomputer centers fall predominantly into the

first category: simulations of physical phenomena.

Since the application investigations were done in close

collaboration with national laboratories (Lawrence

Livermore Laboratory in particular) and supercomputer

centers (predominantly the San Diego Supercomputer

Center), many of our early application evaluations were

of the simulation type. Applications at the national

laboratories differ from commercial HPC applications in

that they are often scaled in a weak manner, as previously

mentioned.

Simulations of physical phenomena are most

frequently performed by representing the physical

state variables on a lattice. The time evolution of the

simulation is represented by a sequence of time steps

during which the local state variables are updated

according to physical laws. This updating is based on the

values of the state variables on other lattice locations. For

spatial decompositions, communications are often local

in nature (with respect to lattice sites), mirroring the

general short-range behavior of most real physical

systems. Spectral methods often result in long-range

communication requirements between lattice sites, but

such methods sometimes display superior convergence

behavior. Monte Carlo techniques are often used to

generate statistical samples for various initial conditions.

The mapping of the multiple lattice sites onto the

multiple processors of a parallel computer is a fairly

straightforward process. Each node in the parallel

processor is allocated a subset of the total problem.

For spatial decomposition, this leads to each node

communicating with a modest group of other nodes. This

is representative of one of the communication patterns
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seen over a broad range of applications—namely, the

communication of each node with a modest group of

other nodes. Another common communication pattern

is a global reduction associated with a normalization

or decision step in an algorithm.

For BG/L, we chose to address these application

requirements through the use of multiple well-suited

networks. The torus network is especially efficient for

local node communication. This is the case for many

applications, especially those that are spatially

decomposed. In a torus network, locality of

communication can be accomplished through

appropriately assigning processing tasks to processing

nodes in a geometry that mirrors the geometry of the

physical problem. Adaptive mesh refinement techniques

can result in this locality being somewhat compromised,

although a large degree of locality can be accomplished

via a number of techniques, such as task migration, in

which the tasks are incrementally reassigned to processing

nodes when locality is compromised.

BG/L addresses the common need for global

communications by supporting an independent network

to handle global communications and some global

operations. This network, called the collective network,

provides arithmetic support to allow operations such as

global summation and determining a global maximum to

achieve latencies at orders of magnitude faster than most

supercomputers. This is especially important because the

scaling behavior of applications shows that these global

operations are increasingly becoming the critical path and

can limit overall scalability. Similarly, BG/L has an

independent network to address the need for low-latency

global barriers, another concern as applications reach

unprecedented scale.

System components
BG/L is a scalable supercomputer that, when completed,

will be composed of 65,536 nodes, produced in 130-nm

copper IBM CMOS 8SFG technology [14]. Each node

is very simple, consisting of a single ASIC containing

two processors and nine double-data-rate (DDR)

synchronous dynamic random access memory (SDRAM)

chips. Each node can also be assembled with 18 SDRAM

chips per ASIC. The nodes are interconnected through

five networks, the most significant of which is a 643 323

32 three-dimensional torus that has the highest aggregate

bandwidth and handles the bulk of all communication.

There are virtually no asymmetries in this interconnect;

the nodes communicate with neighboring nodes that are

physically close on the same board and with nodes that

are physically far removed on a neighboring rack, with

the same bandwidth and nearly the same latency. This

allows for a simple programming model because there are

no edges in a torus configuration. The SoC ASIC that

powers the node incorporates all of the functionality

needed by BG/L. It also contains 4 MB of extremely high-

bandwidth embedded DRAM [15] that is of the order of

30 cycles from the registers on most L1/L2 cache misses.

The nodes themselves are physically small, allowing for

very high packaging density. High density is important

for reaching an optimum cost/performance point. As

density decreases, system size and cost grow, while

reliability suffers because the number of connectors and

cables increases. Power is a critical parameter because the

densities that we achieve are a factor of 2 to 10 greater

than those available with traditional high-frequency

uniprocessors. In addition, there are serious cost and

reliability issues associated with high-power, high-density

designs.

The system packaging for Blue Gene/L [16] calls for

512 processing nodes, each with a peak performance of

5.6 Gflops, on a doubled-sided board, or midplane, with

dimensions of approximately 20 in. by 25 in. Each node

contains two processors, which makes it possible to vary

the running mode. For instance, each processor can

handle its own communication (virtual node mode), or

one processor can be dedicated to communication and

one to computation (communication coprocessor mode).

In addition to the compute nodes, there are input/

output (I/O) nodes that are used to communicate with the

file system. Each compute node has a small operating

system that can handle basic I/O tasks and all functions

necessary for high-performance code. For file systems,

compiling, diagnostics, analysis, and service of BG/L, an

external host computer (or computers) is required. The

I/O nodes contain a software layer above the layer on the

compute nodes to handle communication with the host.

The choice of host depends on the class of applications

and their bandwidth and performance requirements.

Another important element of the BG/L architecture is

the ability to handle multiple users simultaneously. This is

accomplished by partitioning the machine space in a

manner that enables each user to have a dedicated set of

nodes for their application, including dedicated network

resources. This partitioning is accomplished by using link

chips that also redrive signals at the boundaries of a

midplane. This partitioning is configured via host

software and is static with respect to the user application.

This partitioning is utilized by a resource allocation

system which optimizes the placement of user jobs on

hardware partitions in a manner consistent with the

hardware constraints [17].

Link chip overview

At the midplane boundaries, all BG/L networks pass

through the BG/L link chip. Like the BG/L compute

(BLC) chip, the link chip is also an ASIC in IBM

Cu-11 technology. For the networks and other common
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functions, the link chip and the BLC chip use the same

logic. The link chip serves two functions. First, it redrives

signals over the cables between the midplanes, restoring

the high-speed signal shape and amplitude in the middle

of a long lossy trace–cable–trace connection between

compute ASICs on different midplanes. Second, the link

chip can redirect signals between its different ports. This

redirection function allows BG/L to be partitioned into

multiple logically separate systems.

As illustrated in Figure 2, the link chip has six ports,

four of which are in use at any time. Ports A and B are

connected directly to nodes in a midplane. The other four

ports are connected to cables. The logic inside the link

chip supports arbitrary static routing of any port to any

other port. This routing is set by the host at the time the

partition is created and is static until another partition

is created or reconfigured.

Each link chip port serves 16 unidirectional torus links

entering and exiting the midplane. A few more signals

serve the collective network and the barrier network,

and provide spares and parity. The six xþ, x�, yþ, y�,
zþ, z� faces of the 8 3 8 3 8 node midplane are each

8 3 8 = 64 nodes in size. Thus, each midplane is

served by 24 link chips. This is implemented using four

identical link cards, each containing six link chips.

The link chips are also used for reliability and

availability of the BG/L machine by reconfiguring a

system following a hardware fault in such a way that the

midplane containing the faulty node is no longer in the

user partition. This reconfiguring is accomplished by

redirecting the port connections within the link chip. This

allows a user application to restart from a checkpoint in

such a manner that the machine appears and behaves

in a way analogous to the way the user partition was

originally configured. The ability of the link chip to

interconnect multiple midplanes while bypassing a fixed

set of midplanes allows for a flexible set of possible user

partitions. More detail on the internal functionality of the

link chips, including the modes illustrated in Figure 2, is

presented in [16] in this issue.

Figure 3 portrays a possible partitioning of the BG/L

system. The lines illustrate some of the cables connecting

the midplanes via the link chips. The thick lines illustrate

cables allowing the x-dimension to be partitioned. The

link chip provides the ability to divide the 64 racks

(128 midplanes) into many user partitions, specified

by the different colors in the figure.

Blue Gene/L networks

The BG/L computer uses five interconnect networks

for I/O, debug, and various types of interprocessor

communication. Gigabit Ethernet is used to support file

system access. Fast Ethernet (100 Mb/s) and JTAG

(IEEE Standard 1149.1, developed by the Joint Test

Action Group) are used for diagnostics, debugging,

and some aspects of initialization. Three types of

high-bandwidth, low-latency networks make up the

interprocessor BG/L ‘‘fabric.’’ In this section, we briefly

explain these networks. Considerably more detail may

be found in the papers in this issue dedicated to the

BG/L networks [18–20]. All network logic is integrated

into the BG/L node ASIC. The three interprocessor

networks are utilized via memory-mapped interfaces

available from user space, allowing for minimal software

overhead.

Figure 2

Blue Gene/L link chip switch function. Four different modes of 
using the link chip.
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Three-dimensional torus

The network used for the majority of application

messaging is the torus network [19]. This network

supports low-latency, high-bandwidth point-to-point

messaging. Through this network, any node can

communicate with any other node without restriction.

Since the physical network comprises a nearest-neighbor

interconnect, communication with remote nodes may

involve transit through many other nodes in the system.

This results in each node sharing its network bandwidth

with cut-through traffic, resulting in a communication-

pattern-dependent ‘‘effective bandwidth.’’ For this reason,

algorithms that keep much of the communication local, in

a three-dimensional (3D) sense, make use of the available

torus bandwidth most effectively. This also requires that a

communication-intensive application be mapped to the

physical BG/L machine in a way that preserves the

locality as much as possible. This is addressed in the

performance papers in this issue [10, 12, 21].

The physical machine architecture is most closely tied

to the 3D torus. Figure 4(a) shows a 2 3 2 3 2 torus—

a simple 3D nearest-neighbor interconnect that is

‘‘wrapped’’ at the edges. All neighbors are equally distant,

except for generally negligible time-of-flight differences,

making code easy to write and optimize. The signaling

rate for the nearest-neighbor links is 1.4 Gb/s in each

direction. Each node supports six independent,

bidirectional nearest-neighbor links, with an aggregate

bandwidth of 2.1 GB/s. The hardware latency to

transit a node is approximately 100 ns. For the full

64Ki-node1 machine configured as 64 3 32 3 32 nodes,

the maximum number of node transits, or hops, is equal

to 32þ 16þ 16 = 64 hops, giving a worst-case hardware

latency of 6.4 ls.
Considerable effort was put into the design of the torus

routing, described in detail in [19]; a few highlights follow.

The torus network supports cut-through routing, which

enables packets to transit a node without any software

intervention. In addition, the routing is adaptive,

allowing for good network performance, even under

stressful loads. Adaptation allows packets to follow any

minimal path to the final destination, allowing packets to

dynamically ‘‘choose’’ less congested routes. Four virtual

channels are supported in the torus network, contributing

to efficient, deadlock-free communication. Another

property integrated in the torus network is the ability

to do multicast along any dimension, enabling low-

latency broadcast algorithms.

Each midplane is an 83838 mesh. The surfaces of the

mesh are all exposed, in terms of cabling, allowing this

mesh to be extended between midplanes in all dimensions.

A torus is formed in the usual way by interleaving

midplanes to avoid the long cabling required at the end of

a long succession of midplanes. The link chips are used to

partition the BG/L machine into multiple user partitions,

each of which has an independent torus.

Collective network

The collective network extends over the entire BG/L

machine, allowing data to be sent from any node to all

others (broadcast), or a subset of nodes, with a hardware

latency of less than 5 ls.2 Every link of this collective

network has a target bandwidth of 2.8 Gb/s, or 4 bits

per processor cycle, in both the transmit and receive

Figure 4

(a) Three-dimensional torus. (b) Global collective network. (c) Blue 
Gene/L control system network and Gigabit Ethernet networks.

Compute nodes

Gigabit Ethernet

Fast Ethernet

I/O node

JTAG

FPGA

(b)

(a)

(c)

1The unit ‘‘Ki’’ indicates a ‘‘kibi’’—the binary equivalent of kilo (K). See http://
physics.nist.gov/cuu/Units/binary.html.

2D. Hoenicke, M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P. Heidelberger,
L.-K. Liu, M. Lu, V. Srinivasan, B. D. Steinmacher-Burow, T. Takken, R. B.
Tremaine, A. R. Umamaheshwaran, P. Vranas, and T. J. C. Ward, ‘‘Blue Gene/L
Global Collective and Barrier Networks,’’ private communication.
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directions. Each node has three links, with one or two

or three physically connected to other nodes. A simple

collective network is illustrated in Figure 4(b).

Arithmetic and logical hardware is built into the

collective network to support integer reduction

operations including min, max, sum, bitwise logical

OR, bitwise logical AND, and bitwise logical XOR. This was

an important design element, since it is recognized that

current applications spend an increasing percentage of

their time performing collective operations, such as global

summation. The latency of the collective network is

typically at least ten to 100 times less than the network

latency of typical supercomputers, allowing for efficient

global operation, even at the scale of the largest BG/L

machine.

The collective network is also used for global broadcast

of data, rather than transmitting it around in rings on

the torus. For one-to-all communications, this is a

tremendous improvement from a software point of

view over the nearest-neighbor 3D torus network. The

broadcast functionality is also very useful when there

are one-to-all transfers that must be concurrent with

communications over the torus network. Of course, a

broadcast can also be handled over the torus network,

but it involves significant synchronization effort and has

a longer latency. The bandwidth of the torus can exceed

the collective network for large messages, leading to a

crossover point at which the torus becomes the more

efficient network.

A global floating-point sum over the entire machine

can be done in approximately 10 ls by utilizing the

collective network twice. Two passes are required because

the global network supports only integer reduction

operations. On the first pass, the maximum of all

exponents is obtained; on the second pass, all of the

shifted mantissas are added. The collective network

partitions in a manner akin to the torus network. When

a user partition is formed, an independent collective

network is formed for the partition; it includes all nodes

in the partition (and no nodes in any other partition).

The collective network is also used to forward file-

system traffic to I/O nodes, which are identical to the

compute nodes with the exception that the Gigabit

Ethernet is wired out to the external switch fabric used

for file-system connectivity.

The routing of the collective network is static but

general in that each node contains a static routing table

that is used in conjunction with a small header field in

each packet to determine a class. The class is used to

locally determine the routing of the packet. With this

technique, multiple independent collective networks can

be virtualized in a single physical network. Two standard

examples of this are the class that connects a small group

of compute nodes to an I/O node and a class that includes

all compute nodes in the system. In addition, the

hardware supports two virtual channels in the collective

network, allowing for nonblocking operations between

two independent communications.

Barrier network

As we scale applications to larger processor and node

counts, the latency characteristics of global operations

will have to improve considerably. We have implemented

an independent barrier network to address this

architectural issue. This network contains four

independent channels and is effectively a global OR over

all nodes. Individual signals are combined in hardware

and propagate to the physical top of a combining tree.

The resultant signal is then broadcast down this tree. A

global AND can be achieved by using inverted logic. The

AND is used as a global barrier, while the OR is a global

interrupt that is used when the entire machine or partition

must be stopped as soon as possible for diagnostic

purposes. The barrier network is optimized for latency,

having a round-trip latency of less than 1.5 ls for a
system size of 64Ki nodes. This network can also be

partitioned on the same midplane boundaries as the

torus and collective networks.

Control system networks

The 64Ki-node Blue Gene/L computer contains

more than 250,000 endpoints in the form of ASICs,

temperature sensors, power supplies, clock trees, fans,

status light-emitting diodes, and more, and all must be

initialized, controlled, and monitored [20]. These actions

are performed by an external commodity computer,

called the service node, which is part of the host computer.

The service node accesses the endpoints through a

commodity intranet based on Ethernet. At the board

level, a field-programmable gate array (FPGA) called the

control–FPGA chip converts 100-Mb Ethernet packets to

various control networks, such as I2C. As illustrated in

Figure 4(c), the control–FPGA also converts from

Ethernet to serial JTAG. As described in [20] and [22] in

this issue, JTAG is used for initial program load and

debug access to every node, which makes host control of

the BG/L nodes very simple and straightforward. JTAG

also allows access to the registers of every processor

through, for example, the IBM RiscWatch software

running on the host.

Gigabit Ethernet network

As illustrated in Figure 4(c), I/O nodes also have a

Gigabit Ethernet interface used to access external

Ethernet switches [18]. These switches provide

connectivity between the I/O nodes and an external

parallel file system, as well as the external host. The

number of I/O nodes is configurable, with a maximum
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I/O-to-compute node ratio of 1:8. If BG/L is configured

to a 1:64 ratio with 64 racks, it results in 1,024 I/O nodes,

with an aggregate I/O bandwidth of more than one

terabit per second.

Blue Gene/L node overview
The BLC ASIC that forms the heart of a BG/L node is a

SoC built with the IBM Cu-11 (130-nm CMOS) process.

Integrating all of the functions of a computer into a single

ASIC results in dramatic size and power reductions for

the node. In a supercomputer, this can be further

leveraged to increase node density, thereby improving

the overall cost/performance for the machine. The

BG/L node incorporates many functions into the BLC

ASIC. These include two IBM PowerPC 440 (PPC440)

embedded processing cores, a floating-point core for each

processor, embedded DRAM, an integrated external

DDR memory controller, a Gigabit Ethernet adapter,

and all of the collective and torus network cut-through

buffers and control. The same BLC ASIC is used for both

compute nodes and I/O nodes, but only I/O nodes utilize

the Gigabit Ethernet for host and file system connectivity.

The two PPC440s are fully symmetric in terms of their

design, performance, and access to all chip resources.

There are no hardware impediments to fully utilizing both

processors for applications that have simple message-

passing requirements, such as those with a large compute-

to-I/O ratio or those with predominantly nearest-

neighbor communication. However, for some other

applications, one processor is dedicated to message

handling and the other executes the computation of the

application.

BG/L ASIC block diagram

A block diagram of the BLC ASIC is shown in Figure 5.

The green blocks in the diagram are cores that are

available from the standard IBM ASIC library for use

by internal and external customers. The boxes marked

‘‘Double-hummer FPU’’ are new cores for which there

exist related, previous-generation devices. The double-

hummer FPU consists of two coupled standard floating-

point units (FPUs), giving a peak performance of four

floating-point operations per processor cycle. The tan

blocks represent new additions and were developed

using standard design methodology.

PPC440 core description

Each of the two cores in the BLC ASIC is an embedded

PPC440 core, designed to reach a nominal clock

frequency of 700 MHz (1.4 giga-operations per second).

The core is illustrated in Figure 6. The PPC440 is a high-

performance, superscalar implementation of the full

32-bit Book-E Enhanced PowerPC Architecture*. The

power target of 1 W is internally achieved using extensive

power management. The PPC440 has a seven-stage,

highly pipelined microarchitecture with dual instruction

fetch, decode, and out-of-order issue. It also has out-of-

order dispatch, execution, and completion. A branch

history table (BHT) provides highly accurate dynamic

branch prediction. A branch target address cache

(BTAC) reduces branch latency. The PPC440 contains

three independent pipelines: a load/store pipeline, a

simple integer pipeline, and a combined complex integer,

system, and branch pipeline. The 323 32 general-purpose

register (GPR) file is implemented with nine ports

(six read, three write) and is replicated. Multiply and

multiply–accumulate have single-cycle throughput. The

independent 32-KB L1 instruction and data caches have a

32-byte line and 64-way associativity with round-robin

replacement. The L1 data cache supports write-back and

write-through operations and is nonblocking with up to

four outstanding load misses. The memory management

Figure 5

Blue Gene/L compute (BLC) chip architecture. Green shading 
indicates off-the-shelf cores. ©2002 IEEE. Reprinted with 
permission from G. Almasi et al., “Cellular Supercomputing with 
System-on-a-Chip,” Digest of Technical Papers, 2002 IEEE 
International Solid-State Circuits Conference. 
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unit is a 64-entry fully associative unified translation-

lookaside buffer (TLB) supporting variable page sizes and

four user-definable storage attributes. The PPC440 has

three independent 128-bit interfaces for instruction reads,

data reads, and data writes, collectively known as the

processor local bus (PLB). BG/L uses a central-

processing-unit-(CPU)-to-PLB frequency ratio of 2:1, the

highest supported. The BG/L double FPU, described

in the next section, attaches to the auxiliary processor

unit (APU) port of the PPC440 and uses its 128-bit

load/store capability.

Floating-point enhancements

For Blue Gene/L, there were additional requirements for

floating-point performance: namely, increased floating-

point data bandwidth and the ability to perform two

floating-point multiply–adds per cycle [23, 24]. This

allowed for an additional level of power-efficient

parallelism, achieving a processor with a peak double-

precision performance of 2.8 Gflops. The performance/

watt ratio of this approach compares favorably with the

result that could be achieved by a higher-frequency

approach. Although this approach could be pushed

further to include a wider degree of parallelism, we did

not feel that this would result in significant performance

improvement because of memory system limitations and

the inherent low degree of fine-grained parallelism in

many applications of interest.

As described in [24], the double-hummer FPU

implemented in BG/L has a primary and a secondary

side, each with its own arithmetic pipe and register file.

The 128-bit datapath allows for quadword loads and

stores with single-cycle throughput for floating-point

computations or for general data movement, such as

filling and draining the torus and collective networks.

Two floating-point multiply–add operations can be

dispatched and executed in one cycle by splitting these

execution units into a real and imaginary complex pair.

Newly architected single-instruction multiple-data-like

(SIMD-like) instructions feed this complex pair with the

ability to execute two floating-point multiply–adds per

cycle, while the normal scalar instruction utilizes only the

real or primary side. These microarchitecture changes are

instruction-set extensions beyond the PowerPC Book E

specification and require compiler enhancements and

support. Library routines and ambitious users can also

exploit these enhanced instructions through assembly

language. Detailed use of the double-hummer FPU

is described in [23–26] in this issue.

The FPU specifications are as follows:

� High-performance, dual-issue, superscalar FPU with

SIMD extensions.
� ANSI/IEEE 754-1985-compliant FPU.
� PowerPC Book-E compliant for scalar operations.
� Single-cycle throughput for most instructions.
� Independent load/store and execution units.
� Out-of-order execution and completion.
� 128-bit load/store capability.
� 2.8 Gflops peak performance single-precision/double-

precision at 700 MHz.

Memory system overview

This section describes the architecture of the BG/L

distributed memory system [18], which includes an

on-chip cache hierarchy, an off-chip main store,

and optimized on-chip support for locking and

communication between the two processors. The memory

system is architected for peak performance over the range

of target applications described in the application papers

in this issue and elsewhere [10, 11, 13].

The aggregate memory of the machine is completely

distributed in the style of a multicomputer, with no

hardware sharing between nodes. For the 64Ki-node

BG/L, each node has 512 MB of physical memory,

resulting in a total of 32 TB. The 512 MB is a compromise

between the cost of memory and the demand for memory

exhibited by applications. The physical memory of a node

is shared by the two processors within the ASIC.

Figure 6
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I-cache array
(configurable)

D-cache array
(configurable)

I-cache
controller

D-cache
controller

Load/store
queues

Instruction
shadow

TLB
(4-entry)

Unified
TLB

(64-entry)

Data
shadow

TLB
(8-entry)

Branch
unit

Instruction
unit

Target
address
cache

PLB bus

Cache units

PLB
bus

PLB
bus

L
oa

d/
st

or
e 

pi
pe

Si
m

pl
e 

in
te

ge
r 

pi
pe

C
om

pl
ex

in
te

ge
r 

pi
pe

Issue
1

Issue
0

Memory-
management

unit

PPC440 CPU Support
logic

A
PU

Debug
logic

Interrupt

Timers

JT
A

G

T
ra

ce

MAC

BHT

32 � 32 GRP

A. GARA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

204



Figure 7 shows the basic components of a single-node

memory system. The first-level caches (L1) are contained

within the PPC440 core macro. The second-level caches

(L2R and L2W) are very small and basically serve as

prefetch and write-back buffers for L1 data. The third-

level cache (L3) is large and is expected to provide high-

bandwidth, low-latency access. It is shared by instructions

and data. Finally, the main store is composed of off-chip

DDR SDRAM. The following sections briefly describe

each of the memory system components and various

attributes of the memory system in more detail. These are

covered in much more detail in the memory system paper

[18] in this issue.

Memory system

A great deal of effort was applied to the design of the

BLC memory system. We strove to provide as balanced

a memory system as possible within the constraints

provided by the existing PPC440 core. Our goal was to

provide both high bandwidth and low latency, and the

SoC solution is well suited to this goal. Each PPC440

processor has independent 16-byte read and write data

buses and an independent 16-byte instruction bus.

The bandwidth through the second- and third-level

caches and to external memory is commensurate with

the maximum bandwidth achievable by the PPC440

processor. This nearly flat memory system is very

attractive for many memory-intensive applications.

The sustained bandwidth for random reads from the

various levels of the memory hierarchy is limited by the

PPC440 limit of four outstanding loads before stall. For

sequential access, the L2 can prefetch from any level of

the memory hierarchy nearly as fast as the PPC440 can

consume data from it. The latencies and bandwidths for

these two reference patterns are listed in Table 2. The

latency numbers correspond to the latency associated

with pointer chasing.

The L2 is relatively small (2 KB) and consists of multiple

prefetch engines along with a modest number of prefetch

buffers. The line width of the L2 and L3 is 128 bytes. The

L2 detects streamed data access patterns automatically

and supports multiple simultaneous prefetching streams.

An access from the PPC440 that is a hit in the L2 returns in

approximately two processor cycles from the time the L2

observes the request. The L3 also supports prefetching.

The prefetching modes of the L2 and L3 can be controlled

via user-definable bits in the PPC440 TLB.

The L3 is composed of embedded DRAM, described in

[15] in this issue. This 4-MB embedded DRAM can be

segmented into two sections, one of which is memory-

mapped, with the other used as an L3 cache. The relative

size of the sections is adjustable, allowing for additional

flexibility that can be leveraged to enhance overall

memory system efficiency.

A low-latency, high-bandwidth datapath is provided

to a 16-KB SRAM shared between the processors. This

memory is not coherent with respect to the two on-chip

processors, but is expected to be used in conjunction with

a dedicated hardware lock mechanism to exchange packet

descriptors between processors. This dedicated hardware

lock mechanism allows for low-latency locks in hardware.

Coherence

The coherence of the memory system on a BG/L node

warrants some discussion in this overview. Since the

PPC440 cores do not have support for coherence,

software must assist in managing coherence at the L1

level. The L2, L3, and main store levels are sequentially

consistent, with coherence provided by hardware.

The L2 cache is not inclusive of the L1 because the L2

is so small. Furthermore, the L3 cache is not inclusive of

the L1 because it is shared, so that one processor can

cause evictions of lines cached on behalf of the other.

Therefore, both the L2 and L3 caches are designed to

handle higher-level evictions of modified lines that they

may no longer be caching. Because the L1 and L3 caches

can be operated in write-back mode, it is possible for a

modified line to exist at any cache level.

The hardware is designed to support the following

two operational modes, neither of which requires user

applications to manage L1 coherence:

� Communication coprocessor mode: In this mode, one of

the processors is dedicated to messaging and one is

Figure 7
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available for application computation. L1 coherence

can be managed in system-level libraries.
� Virtual node mode: In this mode, the node is logically

separated into two nodes, each of which has a

processor and half of the physical memory. Each

processor can read and write its own memory area

and can read the memory area of the other. This

sharing of read-only data can avoid duplication of

large application tables. In this mode, the node will

run two application processes, one on each processor.

Utilizing the node in a symmetric multiprocessor

fashion has not been ruled out, but the noncoherence at

the L1 clearly presents some difficulty.

Designing BG/L for high reliability
For a machine that is to scale to 64Ki nodes, reliability

issues are paramount and must be considered at all levels

of the system architecture [16].

System-level RAS

Overall system reliability is achieved, first, through a

focus on simplicity. By reducing the number of different

components in the system, we have significantly improved

reliability while significantly reducing cost. In addition,

� Redundancy is included in many areas of the system

design, including the power supplies, which are N þ 1-

redundant, and the cooling fans.

� All DRAM is soldered down to avoid failures

associated with double inline memory module

(DIMM) connectors.
� The cables between racks have spare signals that can be

used to avoid isolated faulty wires.
� The clock distribution comprises a single low-jitter 700-

MHz clock source that is fanned out, utilizing positive

emitter-coupled-logic (PECL) transceivers.
� The positive and negative ends of the differential clock

signal are swapped at every layer of the fan-out,

reducing any systematic duty cycle distortion.
� The clock network is very simple, and there is no

redundancy on its path.

If an individual node on the system fails, the primary

RAS strategy is to isolate and replace the failing node

while restarting the application from a checkpoint on a

set of midplanes that does not contain the faulty node.

Specifically, each 512-node midplane is on a separate

power boundary, with a separate power domain for the

link chips, enabling it to be powered down without

affecting any other midplane. Once powered down, the

two-way card containing the faulty node can be replaced,

and the midplane can be restarted and brought online for

the job scheduling software. Thus, a node failure can

temporarily bring down a 512-node midplane.

However, powering down a midplane is not always

required. For example, the connectively of the collective

network has a great deal of built-in redundancy, allowing

Table 2 Latency and sustained bandwidths for the BLC memory system.

Attribute L1 L2 L3

embedded

DRAM

Scratch

SRAM

Main

memory

Size 32 KiB (I)

32 KiB (D)

per processor

2 KiB per

processor

2 banks of

2 MiB/bank =

4 MiB total shared

by both processors

16 KiB shared by

both processors

512 MiB shared by

both processors

Latency (pclk) 3 11 28/36/40 (hit/miss

precharged/missed

busy)

15 86 (L3 cache

enabled)

Sustained bandwidth:

random quad load access

(B/pclk)

NA NA 1.8/1.2

(hit/miss)

2.0 0.8/0.5 (single/dual

processor)

Sustained bandwidth:

sequential access (B/pclk)

16.0 5.3 5.3/5.3

(hit/miss)

5.3 5.1/3.4 (single/dual

processor)

Line width (B) 32 128 128

Number of lines 1,024 16 32,768

Coherent No Yes

(weakly)

Yes Yes

(weakly)

Yes

Associativity 64 way Fully

associative

8 way/bank

2 banks

NA NA
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isolated bad links to be avoided. Some degree of fault

tolerance in the torus network can be achieved in

software by ensuring that packets are injected in a

manner that forces them to avoid failed nodes; this

requires non-minimal routing and can handle up to three

concurrent failures in a partition provided they are not

colinear. This has both software and performance

impacts, and therefore is not intended for general

application usage. A ‘‘bad’’ node ASIC that still has a

viable torus network interface can be left in the network.

This provides a good solution for a system that has a high

node-failure rate. There are some software restrictions

in this mode of operation, but very little performance

impact. Additional error-detecting mechanisms that allow

us to monitor and isolate faults include the power-supply

monitoring and additional link cyclic redundancy checks

(CRCs).

The availability of BG/L is achieved through the use of

a flexible partitioning scheme and job scheduler along

with the previously mentioned reliability features. The

link chips allow the entire machine to be partitioned in

segments of size 8 along any dimension. This mechanism

allows the BG/L machine to be ‘‘sliced’’ up, while also

maintaining a torus in each of the user partitions.

Midplanes (of size 8 3 8 3 8) need not be physical

neighbors within a single user partition, allowing for

further partitioning flexibility. One can also reduce the

torus requirement and allow for mesh partitions. Because

the placement restrictions for a mesh partition are less

restrictive than those for a torus, the job scheduler has to

be very sophisticated in order to avoid fragmenting the

system in a manner in which only mesh partitions are

available. Because the effective performance for a

torus is greater than twice that of a mesh for some

communication patterns, care must be taken to avoid

this situation. As with all large supercomputers, when

applications are running, checkpoints are regularly

written to disk, allowing for the state of the previous

‘‘good’’ checkpoint to be restored upon a machine

failure.

The cornerstone of serviceability for the BG/L system

is, again, simplicity. We have a very simple, homogeneous

packaging structure. Most significantly, compute and I/O

nodes can be replaced without removal or movement of

any cabling. The removal of a compute node or an I/O

node involves first removing the parent node card from

the midplane and then removing the appropriate compute

or I/O card. The compute and I/O cards plug into the

node card in a manner that does not require the

movement of any cards other than the appropriate

compute or I/O card. The time associated with a

compute, I/O, or node card replacement is approximately

ten minutes, allowing for very fast service.

BG/L node reliability

The design of the BLC ASIC warrants special mention.

Because it is the basic building block, much of the

overall system relies on the node being very robust. The

methodology we used to develop the BLC ASIC is closely

aligned with that used in high-end servers. Techniques

we have utilized include the following:

� All SRAMs are either protected by error checking

and correction (ECC) or by a protocol that allows

for retry upon a detected error. Both the Ethernet

subsystem and the L1 cache arrays in the PowerPC 440

processor fall into the latter category. The vast

majority of arrays fall into the former category.
� Network packet transmissions are protected by

multiple levels of error detection combined with

hardware packet resend, thereby providing guaranteed,

reliable network delivery.
� The register arrays in the FPU have been designed

utilizing structures with exceptional rejection of soft

errors.
� The embedded DRAM utilized as an L3 cache has

ECC protection.
� All buses in the ASIC between the functional units are

covered by parity.
� There is extensive use of self-checking mechanisms

within the different functional modules to detect

‘‘illegal’’ states.
� Latches that are otherwise not protected use a higher

power level and are therefore more resilient with

respect to soft errors.
� The external DRAM is protected by ECC with the

capability to correct any four-bit symbol, detect all

double-symbol errors, and detect most other symbol

errors.
� DRAM hardware scrub capability allows for the

continuous reading and writing back of the entire

DRAM memory. This eliminates the likelihood that

two random errors will accumulate in the same DRAM

read line.
� The external DRAM interface contains an extra four

bits (one symbol) of data bus connectivity that can be

used to spare out a known bad symbol. This can be

done in conjunction with counters that trigger sparing

once the number of correctable errors on a given

symbol exceeds a threshold.
� Correctible errors of all types are counted and

monitored, allowing for extensive predictive error

analysis.

These techniques allow for both a low rate of fatal

errors and an excellent fault-isolation capability in the

case of a failure. In addition, having extensive detection

and monitoring of correctable and uncorrectable errors
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allows for a quantitative analysis of the likelihood of

‘‘silent’’ errors.

Fault isolation

Fault isolation is one of the most critical aspects of the

BG/L computer. A comprehensive approach toward

fault isolation has been developed that allows for

an extraordinary ability to detect and isolate failed

components. The approach we adopted has many

layers:

� Extensive data integrity checks allow for immediate

isolation for most fails.
� An additional running CRC is maintained at both ends

of all node-to-node links of the torus and collective

networks, allowing for an independent check of link

reliability and data integrity.
� Link chips contain a parity signal that allows for

determination of the data integrity of each cable hop,

or even multiple cable hops, between neighboring

nodes.
� All compute nodes can accumulate checksums in

hardware for all traffic injected into the torus and

collective networks. These checksums, together with a

user-invoked system call, provide a mechanism for

finding a faulty node by rerunning a failed application

and comparing the checksums. Since the

instrumentation causes little performance degradation,

it is enabled in all runs, including any failed run.

Therefore, fault isolation can be achieved by a single

application run following the failed run. In the past, for

many machines there was a great deal of difficulty

determining the cause of an incorrect run, often

resulting in running them for many days of diagnostics

to try to reproduce the error after instrumentation had

been added.
� The private Fast Ethernet/JTAG control network

provides unfettered access through the ‘‘back door’’

of every BG/L compute and I/O node, allowing the

entire state of any or all nodes to be dumped without

affecting the current state.
� The BLC ASIC and DDR memory of a BG/L node

can be synchronously started for cycle-reproducible

execution. This provides a very controlled environment

for analyzing a fault within a node.
� Prompt system-wide global interrupts allow an entire

user partition as large as 64Ki nodes to be halted in less

than 1.5 ls. This avoids the situation in which the

system continues to run on and leaves virtually every

node in an error state.

Together, these features allow BG/L to achieve fault

isolation at virtually arbitrary scale.

Conclusion
The Blue Gene/L supercomputer was designed to

dramatically improve cost/performance for a relatively

broad class of applications with good scaling behavior.

At a given cost, such applications achieve a dramatic

increase in computing power through parallelism. The

machine supports the needs of parallel applications,

especially in the areas of floating-point, memory, and

networking performance.

Compared with other supercomputers, BG/L has a

significantly lower cost in terms of power (including

cooling), space, and service, while doing no worse in

terms of application development cost. Our approach

to improving the cost/performance was to utilize an

exceptionally high level of integration, following the

approach of a number of previous special-purpose

machines, such as QCDSP. The high level of integration

reduced cost by reducing the overall system size, power,

and complexity, and was achieved by leveraging SoC

technology. This technology provided two main benefits.

First, all of the functionality of a node was contained

within a single ASIC chip plus some external commodity

DDR memory chips. The functionality includes high-

performance memory, networking, and floating-point

operations. Second, the PowerPC 440 embedded

processor that we used has a dramatically better

performance per watt than typical supercomputer

processors. Admittedly, a single PowerPC 440 core has

relatively moderate performance, but the high level of

integration efficiently allows many, many cores to provide

high aggregate performance.

The future promises more and more applications using

algorithms that allow them to scale to high node counts.

This requires nodes to be connected with a sufficiently

powerful network. Low-latency communication becomes

especially important as the problem size per node

decreases and/or as node frequency increases. If such

networks can be provided, users will care less about the

absolute performance of a node and care more about its

cost/performance. Owing to many existing effects, such as

complexity, and new effects, such as leakage, the highest

absolute node performance is diverging from the best

cost/performance. Thus, if sufficiently powerful networks

can be provided, scalable applications will be met by

supercomputers offering more and more nodes.

An emerging trend in computing is one of focusing

on power/performance with respect to the single-node

architecture and design point. Blue Gene/L provides a

clear example of the benefits of such a power-efficient

design approach. Because of future technology scaling

limitations, systems similar to Blue Gene/L are likely

to become commonplace and are likely to replace the

conventional approach toward supercomputing based

on power-inefficient, high-performance nodes.
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