
Blue Gene/L
programming
and operating
environment

J. E. Moreira
G. Almási
C. Archer

R. Bellofatto
P. Bergner

J. R. Brunheroto
M. Brutman

J. G. Castaños
P. G. Crumley

M. Gupta
T. Inglett
D. Lieber

D. Limpert
P. McCarthy
M. Megerian

M. Mendell
M. Mundy

D. Reed
R. K. Sahoo
A. Sanomiya

R. Shok
B. Smith

G. G. Stewart

With up to 65,536 compute nodes and a peak performance of more
than 360 teraflops, the Blue Genet/L (BG/L) supercomputer
represents a new level of massively parallel systems. The system
software stack for BG/L creates a programming and operating
environment that harnesses the raw power of this architecture
with great effectiveness. The design and implementation of
this environment followed three major principles: simplicity,
performance, and familiarity. By specializing the services provided
by each component of the system architecture, we were able to
keep each one simple and leverage the BG/L hardware features to
deliver high performance to applications. We also implemented
standard programming interfaces and programming languages that
greatly simplified the job of porting applications to BG/L. The
effectiveness of our approach has been demonstrated by the
operational success of several prototype and production machines,
which have already been scaled to 16,384 nodes.

Introduction

The Blue Gene*/L supercomputer has been developed by

IBM in collaboration with Lawrence Livermore National

Laboratory (LLNL). Several installations of Blue Gene/L

(BG/L) are currently planned, both in the United States

and abroad. The flagship system, with 65,536 compute

nodes and more than 360 teraflops of peak computing

power, will be located at LLNL in Livermore, California.

With its extreme scalability and raw performance, BG/L

represents a new level of massively parallel systems.

The system software team faced a major challenge in

designing and implementing a programming and

operating environment that could harness the power

of this new architecture.

In designing the BG/L system software, we followed

three major principles: simplicity, performance, and

familiarity. Because we targeted BG/L primarily for

scientific computations, we kept the system software

simple for ease of development and to enable high

reliability. For example, we impose a simplifying

requirement that the machine be used only in a strictly

space-sharing mode—only one (parallel) job can run at a

time on a BG/L partition. Furthermore, we support only

one thread of execution per processor. Another major

simplification is the preclusion of demand paging support

in the virtual memory system, thus limiting the virtual

memory available per node to the physical memory size.

These simplifications lead directly to performance

benefits that allowed us to take advantage of hardware

features and deliver a high-performance system with no

sacrifice in stability and security. For example, strict

space-sharing enables us to use efficient, user-mode

communication without protection problems. It also

ensures that there is always a dedicated processor

behind each application-level thread, which leads to

more deterministic execution and higher scalability. The

simplified virtual memory system ensures that there are

no page faults or translation lookaside buffer misses

during program execution on the compute nodes, leading

to higher and more deterministic performance.

Finally, we developed a programming environment

based on familiar languages and libraries without

penalizing simplicity or performance. This adherence to

language and Message Passing Interface (MPI) library

standards has enabled the porting of several large scientific

applications to BG/L with relatively modest efforts.

Critical to our system software strategy (and to the

whole project strategy) is the concept of specialization

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 J. E. MOREIRA ET AL.

367

0018-8646/05/$5.00 ª 2005 IBM

of services by different components of the system

architecture. A complete BG/L system consists of a

computational core, a file server, a set of front-end nodes,

and a service node. The computational core is the BG/L

machine proper, whose hardware was developed entirely

from the ground up to support efficient execution of

massively parallel message-passing applications. The

computational core consists of a large number of compute

nodes (65,536 in the case of LLNL) and a somewhat

smaller number of input/output (I/O) nodes (1,024 in the

case of LLNL). The file server, front-end nodes, and

service node are commercially available machines that

respectively provide file services, program development

services, and control services to the computational core.

This separation and specialization of services allowed us

to optimally design the BG/L computational core for the

execution of parallel applications.

Our system software strategy reflects the system

organization described above in many of its aspects.

To implement the system software stack, we leveraged

existing components in support of our three major

principles—simplicity, performance, and familiarity—

while judiciously implementing critical components from

a clean slate. For example, we use standard IBM XL

compilers for PowerPC*, thus providing optimizing

solutions for Fortran, C, and Cþþ. The compilers

run on the front-end nodes and are augmented with a

back end that takes advantage of the new floating-point

architecture in our chips. Similarly, we use Linux** on

the I/O nodes to provide a rich functional interface

to the machine, while writing our own kernel for the

performance-critical compute nodes. Our MPI solution

leverages the MPICH2 library [1] from Argonne National

Laboratory (ANL) to produce an MPI implementation

that exploits the communication hardware of our compute

nodes. The control system for the core runs on the service

node and uses a commercially available database, IBM

DB2*, as a repository for static and dynamic system states.

It communicates with the core through a special-purpose

control network with proprietary protocols.

The validity and effectiveness of our approach to a

programming and operating environment for BG/L has

been demonstrated by success with several prototypes:

a 4,096-compute-node system operating at 500 MHz

(pass 1 chips), a 2,048-compute-node system operating

at 700 MHz (pass 2 chips), and a 16,384-compute-node

system operating at 700 MHz (pass 2 chips). The last

prototype received the award for number one position in

the TOP500 list [2] of the most powerful computers in

the world when it achieved more than 70 Tflops in

the Linpack benchmark. We also successfully ported a

variety of production applications to BG/L, including

SAIC** Adaptive Grid Eulerian (SAGE), FLASH [3],

and Parallel Dislocation Simulator (ParaDiS) [4]. (These

applications are discussed below in the experience

section.) Results from additional benchmarks and

applications in BG/L are presented in [5]. The porting

efforts typically took only a few days each, and the

applications displayed good performance and scalability

on BG/L. In late 2004, IBM also completed the

installation of the first phase (16,384 compute nodes)

of the LLNL machine.

This paper is organized as follows. We describe the

overall organization of the BG/L system, explaining the

roles of the different components from a system software

perspective. We then present the system software

components for the I/O nodes and compute nodes. (That

is, the software components for the computational core.)

This is followed by sections describing the system

software components for the front-end nodes and for the

service node. After presenting a brief summary of the

experience we have had operating the prototype

machines, we present our conclusions.

Overall organization
A high-level architectural view of a complete BG/L

system is shown in Figure 1. The BG/L machine proper is

the computational core of the system, comprising 65,536

compute nodes and 1,024 I/O nodes. A Gigabit Ethernet

(functional) network connects the computational core to

a service node (for control of the machine), front-end

nodes (where users compile, submit, and interact with

their jobs), and parallel file servers. The service node also

connects to the computational core through a separate

(control) Gigabit Ethernet network that is used for direct

manipulation of the hardware, as explained below.

The computational core of 65,536 compute nodes is

partitioned into 1,024 logical processing sets, called psets.

Each pset consists of one I/O node running Linux and 64

compute nodes running a custom compute node kernel

Figure 1

High-level architectural view of a complete Blue Gene/L system.

Front-end
nodes

File
servers

Service
node

Compute
nodes

(65,536)

I/O
nodes

(1,024)

Gigabit
Ethernet

(functional)

Gigabit Ethernet
(control)

J. E. MOREIRA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

368

(CNK). Psets are not physical entities in the architecture.

They are assembled logically from the compute and I/O

nodes of a partition by assigning compute nodes to a

particular I/O node. There is a certain degree of flexibility

in assigning nodes to a pset, and their configuration is

part of machine setup. In particular, alternative

configurations are possible, with a ratio of I/O-to-

compute nodes from 1:8 to 1:128. That is, psets can be as

small as eight compute nodes and as large as 128 compute

nodes (conditional upon appropriate hardware being

present).

From the system software perspective, the machine can

be divided into three major components: a computational

volume, a functional surface, and a control surface, each

with its dedicated hardware for execution. We note that

this approach of specialized hardware and software

functions is similar to that adopted in ASCI Red [6]. A

high-level view of the BG/L system software architecture

is shown in Figure 2.

The computational volume is implemented by kernels

and runtime libraries for the compute nodes that support

the execution of user applications. The compute nodes of

a pset are viewed as computational engines attached to

their I/O node, which acts as the head of the pset.

The functional surface supports application

compilation, job launch and control, application

debugging, and I/O operations of running applications.

The I/O nodes, front-end nodes, and service node all run

system software that implements this functional surface

and exposes the machine to the outside world. All

interactions of the outside world to and from the

computational processes running on the compute nodes

go through the I/O nodes and the functional Gigabit

Ethernet network.

The control surface is implemented exclusively in the

service node. Operations such as machine booting,

monitoring of environmental data (temperature,

voltages), and critical error reporting are performed

through the control surface. A single multiprocessor

service node implements all of the control services for

a 65,536-compute-node system, including services that

would be performed by embedded service processors in

conventional machines.

System software for the I/O nodes
The I/O nodes run Linux and play two roles in BG/L.

First, they are responsible for implementing job launch

and control in their respective psets. Second, they are also

the primary offload engines for most system services

required by running applications. User code never

executes directly on the I/O nodes.

The Linux kernel that executes in the I/O nodes

(currently Version 2.4.19) is based on a distribution for

IBM PowerPC 440GP (PPC440) processors. Although

Figure 2

Database

High-level view of the Blue Gene/L system software architecture.

Scheduler

File servers

Collective

Collective

Torus

Torus

Torus Torus

JTAG

JTAG

CIOD

Linux

CIOD

Linux

User
applications

User
applications

User
applications

User
applications

Compute
node kernel

(CNK)
CNK

CNKCNK

Control–FPGA

pset 0

pset 1,023

I/O node 0

I/O node 1,023

Compute node 0 Compute node 63

Compute node 0 Compute node 63

Midplane
monitoring
and control

system
(MMCS)

Service node

Control–
FPGA
library

MMCS
library

MMCS
library

Console
front end

Control
Ethernet

Functional
Ethernet

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 J. E. MOREIRA ET AL.

369

BG/L uses standard PPC440 cores, the overall chip and

system design required changes in the booting sequence,

interrupt management, memory layout, floating-point

unit (FPU) support, and device drivers of the standard

Linux kernel. There is no basic I/O system (BIOS) in

the BG/L nodes; thus, the configuration of a node after

power-on, as part of the initial program load (IPL), is

initiated by the service node through the control network.

We modified the interrupt and exception-handling code

to support the custom BG/L interrupt controller (BIC).

The implementation of memory management services in

the Linux kernel for the I/O nodes remaps the torus and

collective network devices of BG/L to user space. The

kernel also supports the new Gigabit Ethernet media

access controller (EMAC4) through the appropriate

device drivers and has been extended to save and restore

the double FPU registers (specific to BG/L) in each

context switch.

The nodes in the BG/L machine are diskless; thus, the

initial root file system is provided by a ramdisk loaded

into the memory of an I/O node during IPL time. The

ramdisk contains shells, simple utilities, shared libraries,

and network clients such as ftp and nfs. After the Linux

kernel boots with the ramdisk, it can use the nfs client

to mount file systems from the file servers.

Because the level 1 (L1) caches of the two processors

in an I/O node are not coherent, the current version of

Linux runs on only one of the PPC440 cores. The second

central processing unit (CPU) is captured at boot time in

an infinite loop, and stays out of the way. We are still

evaluating mechanisms to leverage the second processor

in an I/O node, pursuing two strategies: symmetric

multiprocessor (SMP) mode and virtual device mode.

We have successfully compiled an SMP version of the

kernel after reimplementing all required interprocessor

communication mechanisms, because the BG/L BIC is

not compliant with the OpenPIC Standard [7]. In this

mode, the L1 caches are disabled in kernel mode and

processes have affinity to one CPU. Forking a process in

a different CPU requires additional parameters to the

system call. The performance and effectiveness of this

solution is still an open issue. A second, more promising

mode of operation runs Linux in one of the CPUs, while

the second CPU implements a virtual network interface.

In this scenario, the torus and collective devices are

handled by the second processor and are not directly

visible to the Linux kernel. Transfers between the two

processors appear as virtual directmemoryaccess transfers.

Program launch, signaling, termination, and file I/O

are accomplished using point-to-point messages between

the compute node and its I/O node over the collective

network. This functionality is provided by the control

and I/O daemon (CIOD) running in the I/O nodes. CIOD

provides job control and I/O management on behalf of all

of the compute nodes in the pset. When launching a job,

CIOD loads the executable code on all of the compute

nodes of the pset and then sends a start message to the

CNKs in those nodes. After the processes are running,

CIOD listens for messages from the CNKs that contain

descriptions of I/O operations to be performed by CIOD

on behalf of processes running on the compute nodes.

Messaging between CIOD and CNK is synchronous.

All file and socket I/O operations are blocking on the

application side.

System software for the compute nodes

Compute nodes execute a single-user, dual-threaded (one

thread per processor), minimalist custom kernel, the

CNK. The CNK accomplishes a role similar to that of

PUMA [8] in ASCI Red by controlling the Blue Gene/L

compute nodes. It provides a simple, flat, fixed-size 512-

MB address space with no paging. (The LLNL machine

is configured with 512 MB per compute node. Other

configurations, with more or less memory, are possible.)

The kernel and application program share the same

address space, with the kernel residing in protected

memory at address 0, and the application program image

loaded above, followed by its heap and stack. The kernel

protects itself by appropriately programming the PPC440

memory management unit. Physical resources—torus and

collective networks, locks, barriers, and scratchpad—are

partitioned between application and kernel. The entire

torus network is mapped into user space to obtain better

communication efficiency, while one each of the two

collective channels is made available to the kernel and

user application.

The CNK presents a familiar Portable Operating

System Interface Standard (POSIX) interface. We have

ported the GNU glibc runtime library and provided

support for basic file I/O operations through system calls.

The I/O operations are not performed by CNK directly.

Rather, they are shipped to the CIOD in the I/O node of

the pset for execution, and the results are received back

(see the preceding section on I/O node system software).

Multiprocessing services, such as fork and exec,

are meaningless in this kernel and have not been

implemented.

The message-passing software that allows application

processes running on different compute nodes to

communicate with one another is organized in three layers:

� The packet layer, a thin software library that provides

functions to directly access BG/L network hardware.
� The message layer, which provides a low-latency,

high-bandwidth point-to-point message-delivery

system.

J. E. MOREIRA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

370

� The Message Passing Interface (MPI), the

application-level communication library. This

software is described in further detail in [9, 10].

We support two modes of execution for a compute

node in CNK: coprocessor mode and virtual node mode.

In coprocessor mode, a single dual-threaded process runs

on the compute node, with access to the entire address

space of the node. The main application thread runs in

a non-preemptible manner on the main processor. The

coprocessor is used as an offload engine for the main

processor that can be exploited by user-level code. In

particular, it performs many of the message-passing

services necessary for internode communication. The

user application can also offload computations to the

coprocessor using a coroutine programming model. The

coroutine model is implemented by two function calls

from the main thread. The co_start call starts the

execution of a function in the coprocessor and then

continues the main thread. The co_join call waits for

a previously started coprocessor function to terminate.

Because the L1 caches of the two processors are not

coherent, all coherence has to be handled explicitly in

software by user code.

In virtual node mode, two single-threaded processes

run on the compute node, one bound to each processor.

Each process has access to half of the node memory,

and the processes share the torus and collective

communication devices. The two processes can

communicate only through message passing, just

as if they were running on distinct compute nodes.

Coprocessor and virtual node modes can be chosen on a

per-partition basis, and the machine can be divided to

run multiple jobs simultaneously, each in its own mode.

In the case of the LLNL machine, if it were running

entirely in virtual node mode, the machine would appear

to effectively have 131,072 compute nodes.

In both coprocessor and virtual node modes, intranode

communication between the two processors is performed

through a non-L1-cached region of shared memory.

This allows us to circumvent the lack of coherence in

the L1 caches of both processors. In coprocessor mode,

the intranode communication is used to implement

the offload mechanisms for communication and

computation. In virtual node mode, the intranode

communication is used to implement virtual torus and

collective networks, so that the two processes inside a

node can communicate just as they would with processes

in different nodes.

System software for the front-end nodes
Compilers and debuggers run on the front-end nodes,

which are the only nodes where users log in. Job

submission is also performed from the front-end nodes,

although the job launch and control facilities run on the

service node.

Blue Gene/L presents a familiar programming model

and a standard set of tools. We have ported the GNU

tool chain (binutils,1 gcc, glibc, and gdb) to BG/L and

set it up as a cross-compilation environment. There are

two cross-targets: Linux for I/O nodes and the CNK for

compute nodes. The compiler team from the IBM

Toronto Laboratory has ported the XL compiler suite to

provide advanced optimization support for languages

such as Fortran 90, C, and Cþþ. In particular, the

compilers support automatic code generation to exploit

the two-way single-instruction multiple-data (SIMD)

FPU attached to each processor in the compute node.

The compilers are further described in [11].

System software for the service node

The control infrastructure is a critical component of

our design. It provides a separation between execution

mechanisms in the BG/L core and policy decisions in

external nodes. The BG/L node operating systems (Linux

for I/O nodes and CNK for compute nodes) implement

services and are responsible for local decisions that do not

affect the overall operation of the machine. A global

operating system makes all global and collective decisions,

interfaces with external policy modules (e.g., job

schedulers), and performs a variety of systemmanagement

services, including machine booting, system monitoring,

and job launching. The global operating system runs on

the service node and is called the core management and

control system (CMCS).

CMCS contains two major processes that exploit

different paths into the system. The midplane monitoring

and control system (MMCS) uses the restricted control

network to directly manipulate hardware for

configuration, initialization, and operation. The control

and I/O manager (CIOMAN) uses the functional

Ethernet to interface with the local operating systems to

support job execution. System monitoring is performed

by a combination of MMCS and CIOMAN services, and

services in the I/O nodes. For security and reliability

reasons, the control paths into the core are not accessible

to user processes running in the compute or front-end

nodes. MMCS operations over the control network

include the following:

� Low-level hardware operations, such as turning on

power supplies, monitoring temperature sensors and

fans, and reacting accordingly (i.e., shutting down

a machine if temperature exceeds some threshold).

1BINary UTILities, which support the GNU compilers by providing programs that
manipulate binary (machine-readable but not human-readable) object code and
executable files.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 J. E. MOREIRA ET AL.

371

� Configuring and initializing the control–FPGA and

the link and BG/L chips.
� Reading and writing configuration registers, static

random access memory (SRAM), and resetting the

cores of a BG/L chip. These operations can be

performed with no code executing in the nodes, which

permits machine initialization and boot, nonintrusive

access to performance counters, and post-mortem

debugging.

At the core of the control system is a DB2 relational

database. Databases naturally provide scalability,

reliability, security, and logging. The control system

database contains static state (i.e., the physical

connections between hardware components) and dynamic

state (i.e., machine partitions, partition configuration,

partition assignment, and node state). The database is

both a repository for read-only configuration information

and an interface for all of the visible states of a machine.

External entities (such as a job scheduler) can manipulate

this state by changing the data in the database, which

in turn invokes functions in the CMCS processes.

Machine initialization and booting

The machine initialization and boot process is performed

through the restricted control network. It consists of

partition allocation, followed by booting the nodes in

the partition.

Partition allocation identifies a set of unused nodes

as a candidate for a new partition. The control system

computes a personality for each component node: torus

coordinates, collective address, routing information,

memory sizes, and other information. The personality

information replaces the static BIOS information in

traditional architectures.

Next, MMCS uses the JTAG path to write the

personality and a small boot loader into each

component of the partition. It then uses a

communication protocol over JTAG with the boot

loader to load the appropriate boot image for each

node. We use one boot image for all of the compute

nodes and another boot image for all of the I/O nodes.

The boot image for the compute nodes contains the

code for the CNK and is approximately 128 KB in size.

The boot image for the I/O nodes contains the code for

the Linux operating system (approximately 0.5 MB in

size) and the image of a ramdisk that contains the root

file system for the I/O node (also approximately 0.5 MB

in size). After an I/O node boots, it can mount

additional file systems from external file servers. Since

the same boot image is used for each node, additional

node-specific configuration information—such as torus

coordinates, collective addresses, media access control or

Internet Protocol (IP) addresses—must be loaded into

the personality area of each node. On I/O nodes, the

personality is exposed to user processes through an entry

in the proc file system. On compute nodes, a system call

is provided to request the node personality.

System monitoring

BG/L system monitoring is accomplished through a

combination of I/O node and service node functionality.

Each I/O node is a full Linux machine and uses Linux

services to generate system logs.

A complementary monitoring service for BG/L is

implemented by the service node through the control

network. Device information, such as fan speeds and

power-supply voltages, can be obtained directly by the

service node through the control network. The compute

and I/O nodes use a communication protocol to

report events that can be logged or acted upon by the

service node. This approach establishes a completely

separate monitoring service independent of any other

infrastructure (collective and torus networks, I/O nodes,

and Ethernet networks) in the system. Therefore, it can be

used to retrieve important information, even in the case

of many system-wide failures.

Job execution

Job execution is accomplished through a combination

of I/O nodes and service-node functionality. When

submitting a job for execution, the user specifies the

desired shape and size of the partition to execute that job.

The scheduler selects a set of compute nodes to form the

partition. The compute (and corresponding I/O) nodes

selected by the scheduler are configured into a partition

by the service node using the control network. We

developed techniques applicable to Blue Gene/L to

efficiently allocate nodes in a toroidal machine [12]. Once

a partition is created, a job can be launched through the

I/O nodes in that partition using the CIOD–CIOMAN

path, as explained above.

Experience
An analysis of application performance on BG/L is

outside the scope of this paper; we refer the interested

reader to [5]. In this paper, we report qualitatively on a

sample of user experiences with our prototype systems to

demonstrate the effectiveness of our approach. We report

on our own experience with the Linpack benchmark and

the experiences of our collaborators with three important

applications: SAGE, FLASH, and ParaDiS.

Linpack is the first benchmark we run when we

assemble a BG/L prototype system. In fact, we consider

Linpack to be a part of our test and bring-up process.

After assembling a new system, we start a bring-up

process that involves a combination of specialized test

software and the production system software stack. The

J. E. MOREIRA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

372

bring-up process begins with power-on and ends when

we obtain a valid Linpack run under production system

software. For each of the 2,048- and 4,096-compute-node

systems, the entire bring-up process took approximately

one week. We obtained a measured performance of

11.6 Tflops for the 500-MHz, 4,096-compute-node system

and 8.7 Tflops for the 700-MHz, 2,048-compute-node

system, putting both systems among the ten fastest

computers (at the fourth and the eighth position,

respectively) in the TOP500 list of June 2004. Bring-

up for the 16,384-compute-node prototype took

somewhat longer (approximately one month) and

was done concurrently with hardware assembly.

Linpack achieved 70.7 Tflops on that prototype,

placing it in the first position on the TOP500 list

of November 2004.

SAGE is a hydrodynamics code that is representative

of a large fraction of the compute cycles spent by the large

ASCI machines at Los Alamos National Laboratory

(LANL). SAGE was ported to BG/L by the performance

evaluation team from LANL in September 2003, when

our largest system had only 128 compute nodes. SAGE

contains approximately 130,000 lines of code and, despite

problems with our early-generation compilers, was ported

in only two days. More recent measurements on larger

BG/L systems show that SAGE scales better on BG/L

than on state-of-the-art IBM POWER4* systems

(although the per-processor performance is better for

POWER4).

FLASH is an astrophysics code from the Center for

Astrophysical Thermonuclear Flashes at the University

of Chicago that was ported to BG/L in March of 2004. It

took only two days for a joint team from IBM and ANL

to port FLASH, including the time to adjust build files

and port several libraries on which FLASH depended.

During those two days, we also found a few bugs in the

BG/L system software exposed by the port. The FLASH

code itself ran unmodified in BG/L and has demonstrated

perfect scalability up to the maximum system size tested

(16,384 compute nodes).

Finally, ParaDiS—a dislocation dynamics code from

LLNL—is considered one of the most important

applications for their BG/L machine. The code is

relatively new and still evolving; it has been running on

BG/L since the first 32-node prototype was available in

August 2003. Because ParaDiS has been evolving with

BG/L, it is more difficult to quantify the amount of effort

that went specifically into the BG/L port. It has run

successfully on ever-increasing system sizes, up to

2,048 compute nodes. Measurements by LLNL show

that ParaDiS displays per-processor performance and

scalability characteristics on BG/L that are very similar to

those of their flagship Linux Multiprogrammatic

Capability Cluster, which uses much-higher-frequency

(2.4-GHz) Intel Xeon** processors.

Conclusions

We have described the Blue Gene/L system software

architecture, founded on the principles of simplicity,

performance, and familiarity. Partitioning the system

software functionality among dedicated pieces of

hardware—compute nodes, I/O nodes, front-end

nodes, and service node—has allowed us to keep each

component simple and endow it with appropriate

hardware resources for fast execution. As a result, the

organization of the system software with a computational

volume, a functional surface, and a control surface closely

reflects the overall hardware architecture of the BG/L

system.

The BG/L system software stack offers a familiar

programming environment to the application

programmer. The use of standard MPI libraries and

programming languages (Fortran, C, and Cþþ) facilitates
the development of new applications and the porting of

existing ones to BG/L. Our experience with benchmarks

and production applications shows that they can be

ported with modest effort (of the order of days) and

typically achieve very good performance and scalability.

Acknowledgments
The Blue Gene/L project has been supported and

partially funded by the Lawrence Livermore National

Laboratory on behalf of the United States Department of

Energy under Lawrence Livermore National Laboratory

Subcontract No. B517552.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds, Science
Applications International Corporation, Intel Corporation, or Sun
Microsystems, Inc. in the United States, other countries, or both.

References
1. MPICH and MPICH2 homepage; see http://www-unix.mcs.

anl.gov/mpi/mpich.
2. H.-W. Meuer, E. Strohmaier, and J. Dongarra, TOP500

Supercomputer Sites; see http://www.netlib.org/benchmark/
top500.html.

3. ASC/Alliances Center for Astrophysical Thermonuclear
Flashes, University of Chicago; see http://flash.uchicago.edu/
website/home/.

4. V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes,
T. Pierce, M. Tang, M. Rhee, K. Yates, and T. Arsenlis,
‘‘Scalable Line Dynamics in ParaDiS,’’ Proceedings of SC04,
2004; see paper at http://www.sc-conference.org/sc2004/
schedule/pdfs/pap206.pdf.

5. G. Almási, S. Chatterjee, A. Gara, J. Gunnels, M. Gupta,
A. Henning, J. E. Moreira, B. Walkup, A. Curioni, C. Archer,
L. Bachega, B. Chan, B. Curtis, M. Brodowicz, S. Brunett,
E. Upchurch, G. Chukkapalli, R. Harkness, and W.
Pfeiffer, ‘‘Unlocking the Performance of the BlueGene/L

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 J. E. MOREIRA ET AL.

373

Supercomputer,’’ Proceedings of SC04, 2004; see http://
www.sc-conference.org/sc2004/schedule/pdfs/pap220.pdf.

6. D. S. Greenberg, R. Brightwell, L. A. Fisk, A. B. Maccabe,
and R. E. Riesen, ‘‘A System Software Architecture for
High-End Computing,’’ Proceedings of SC97, 1997, pp. 1–15;
see http://www.sandia.gov/ASCI/Red/.

7. Open Programmable Interrupt Controller (PIC) Register
Interface Specification, Revision 1.2, October 1995, Advanced
Micro Devices and Cyrix Corporation; see http://
www.printk.net/pub/docs/openpic/openpic_specification.pdf.

8. S. R. Wheat, A. B. Maccabe, R. Riesen, D. W. van Dresser,
and T. M. Stallcup, ‘‘PUMA: An Operating System for
Massively Parallel Systems,’’ Proceedings of the 27th Hawaii
International Conference on System Sciences, 1994, pp. 56–65;
see http://www.cs.unm.edu/;jhorey/L4-papers/
puma-overview.pdf.

9. G. Almási, C. Archer, J. Gunnels, P. Heidelberger, X.
Martorell, and J. E. Moreira, ‘‘Architecture and Performance
of the BlueGene/L Message Layer,’’ Proceedings of the 11th
European PVM/MPI Users’ Group Meeting, 2004, pp. 405–
414.

10. G. Almási, C. Archer, J. G. Castaños, M. Gupta, X.
Martorell, J. E. Moreira, W. Gropp, S. Rus, and B. Toonen,
‘‘MPI on BlueGene/L: Designing an Efficient General Purpose
Messaging Solution for a Large Cellular System,’’ Proceedings
of the 10th European PVM/MPI Users Group Meeting, 2003;
see paper at http://www-fp.mcs.anl.gov/;toonen/Papers/
mpich2-bgl-pvmmpi-2003.pdf.

11. L. Bachega, S. Chatterjee, K. A. Dockser, J. A. Gunnels,
M. Gupta, F. G. Gustavson, C. A. Lapkowski, G. K. Liu,
M. P. Mendell, C. D. Wait, and T. J. C. Ward, ‘‘A High-
Performance SIMD Floating Point Unit for BlueGene/L:
Architecture, Compilation, and Algorithm Design,’’
Proceedings of the 13th International Conference on Parallel
Architecture and Compilation Techniques (PACT’04), 2004,
pp. 85–96; see paper at http://www.research.ibm.com/people/g/
gupta/pact04.pdf.

12. E. Krevat, J. G. Castaños, and J. E. Moreira, ‘‘Job Scheduling
for the Blue Gene/L System,’’ Proceedings of the 8th
International Euro-Par Conference, 2002, pp. 38–54.

Received June 7, 2004; accepted for publication
October 5,

José E. Moreira IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(jmoreira@us.ibm.com). Dr. Moreira received B.S. degrees in
physics and electrical engineering in 1987 and an M.S. degree in
electrical engineering in 1990, all from the University of São Paulo,
Brazil. He received his Ph.D. degree in electrical engineering from
the University of Illinois at Urbana–Champaign in 1995. Since
joining IBM in 1995, he has been involved in several high-
performance computing projects, including the teraflop-scale ASCI
Blue-Pacific, ASCI White, and Blue Gene/L. Dr. Moreira was a
manager at the IBM Thomas J. Watson Research Center from
2001 to 2004; he is currently the Lead Software Systems Architect
for the IBM eServer Blue Gene solution. Dr. Moreira is the author
of more than 70 publications on high-performance computing. He
has served on various thesis committees and has been the chair or
vice-chair of several international conferences and workshops. Dr.
Moreira interacts closely with software developers, hardware
developers, system installers, and customers to guarantee that the
delivered systems work effectively and accomplish their intended
missions successfully.

George Almási IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (gheorghe@us.ibm.com). Dr. Almási is a Research Staff
Member at the IBMThomas J.WatsonResearchCenter.He received
anM.S.degree in electrical engineering fromtheTechnicalUniversity
of Cluj-Napoca, Romania, in 1991 and an M.S. degree in computer
science fromWest Virginia University in 1993. In 2001 he received a
Ph.D. degree in computer science from the University of Illinois at
Urbana–Champaign; his thesis dealt with ways of optimizing and
compiling MATLAB code. For the last three years, Dr. Almási has
been working on various aspects of the Blue Gene system software
environment, including the MPI communication libraries.

Charles Archer IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(archerc@us.ibm.com). Mr. Archer is a software engineer working
on the Blue Gene/L project. He received a B.S. degree in chemistry
and a B.A. degree in mathematics from Minnesota State University
at Moorhead, and an M.S. degree in chemistry from Columbia
University. He is currently a graduate student in computer science
at the University of Minnesota. Mr. Archer has worked on the
OS/400* PASE project and grid computing. His current role is
development, optimization, and maintenance of the Blue Gene/L
message-passing software stack.

Ralph Bellofatto IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (ralphbel@us.ibm.com). Mr. Bellofatto is a Senior Software
Engineer. He has been responsible for various aspects of hardware
system verification and control system programming on the Blue
Gene/L project. He received B.S. and M.S. degrees from Ithaca
College in 1979 and 1980, respectively. He has worked as a software
engineer in a variety of industries. Mr. Bellofatto’s interests include
computer architecture, performance analysis and tuning, network
architecture, ASIC design, and systems architecture and design. He
is currently working on the control system for Blue Gene/L.

Peter Bergner IBM Systems and Technology Group,
3605 Highway 52 N., Rochester, Minnesota 55901
(bergner@us.ibm.com). Dr. Bergner is a member of the Blue
Gene/L software team working on compiler and runtime library

J. E. MOREIRA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

374

2004; Internet publication April 5, 2005

development. He received a Ph.D. degree in electrical engineering
from the University of Minnesota in 1997. His thesis work involved
developing techniques for minimizing spill code in graph coloring
register allocators. Dr. Bergner has worked in a variety of areas
since joining IBM, including AS/400* compiler optimizer
development and Linux kernel and compiler development for
PowerPC hardware platforms.

José R. Brunheroto IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (brunhe@us.ibm.com). Mr. Brunheroto is a Senior
Software Engineer at the IBM Thomas J. Watson Research Center.
He received a B.S. degree in electrical engineering from Escola
Politécnica, University of São Paulo, Brazil. Mr. Brunheroto is
currently working on his M.A. degree in computer science at
Columbia University. His research interests include computer
architecture, simulators (single-node and distributed), and
performance tools.

Michael Brutman IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(brutman@us.ibm.com). Mr. Brutman has worked for IBM
since 1992. Before joining the Blue Gene project in early 2003,
he concentrated on operating systems implementation and
performance analysis. Mr. Brutman has worked primarily on the
control system and debugger support for the compute node kernel
as part of the Blue Gene team.

José Gabriel Castaños IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (castanos@us.ibm.com). Dr. Castaños joined the Blue
Gene project in 2000 after receiving his Ph.D. degree in computer
science at Brown University. His initial assignment as a Research
Staff Member involved the development of applications for high-
performance computing. He later became one of the technical
leaders of the Blue Gene/L systems software and worked on many
of its components: integrated software development environment,
simulators, kernels, runtime libraries, and management
infrastructure. Dr. Castaños received his undergraduate degrees
in systems analysis (1988) and operations research (1989) at
the Universidad Católica, Buenos Aires, Argentina.

Paul G. Crumley IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (pgc@us.ibm.com). Mr. Crumley has worked in the IBM
Research Division for more than 20 years. His work and interests
span a wide range of projects including distributed data systems,
high-function workstations, operational processes, and, most
recently, cellular processor support infrastructure.

Manish Gupta IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mgupta@us.ibm.com). Dr. Gupta is a Research Staff
Member and Senior Manager of the Emerging System Software
Department at the IBM Thomas J. Watson Research Center. His
group has developed system software for the Blue Gene/L machine
and conducts research on software issues for high-performance
server systems. In 1992 he received a Ph.D. degree in computer
science from the University of Illinois at Urbana–Champaign and
has worked with the IBM Research Division since then. Dr. Gupta

has coauthored several papers in the areas of high-performance
compilers, parallel computing, and high-performance Java**

Virtual Machines.

Todd Inglett IBM Systems and Technology Group,
3605 Highway 52 N., Rochester, Minnesota 55901
(tinglett@us.ibm.com). Mr. Inglett graduated with a B.S. degree in
computer science from the University of Wisconsin in 1987, joining
ETA Systems, Inc., as a software engineer. He began work at IBM
in Rochester, Minnesota, in 1989, and was part of the Andrew
Project and Andrew Consortium as a partner with Carnegie
Mellon University from 1989 to 1993. He then worked on IBM
internal development tools, including Apache, from 1994 to 1998,
and on porting Linux to the PowerPC 64-bit architecture from
1999 to 2002. Mr. Inglett has been a member of the Blue Gene/L
software development team since 2002. He has made various
contributions to the project, including the I/O node Linux kernel,
parts of the control system, file system performance, and
system bring-up.

Derek Lieber IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (lieber@us.ibm.com). Mr. Lieber received his B.S. degree in
physics from Lebanon Valley College in 1975. In 1983 he joined the
IBM Thomas J. Watson Research Center, where he is currently a
Senior Software Engineer. Mr. Lieber was the technical leader and
main implementer of the Jikes Research Virtual Machine (RVM)
runtime environment. The Jikes RVM has been recognized by
institutions worldwide as a excellent platform for research in Java.
He was the main designer and implementer of the Blue Gene/L
operating environment. Mr. Lieber has more than 20 publications
in high-performance computing.

David Limpert IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(limpert@us.ibm.com). Mr. Limpert is a Senior Technical Staff
Member responsible for the software development and delivery
of the Blue Gene/L supercomputer system. In 1977 he joined
IBM in Rochester, Minnesota, after receiving a B.A. degree in
mathematics and computer science from Saint Mary’s University
of Minnesota. He has a wide range of experience in the field of
systems software engineering. His areas of responsibility have
ranged from design and implementation of microcode for terminal
and server system devices to technical project leader for complete
software systems. During the 1980s and early 1990s, he led
software development teams in the integration of the emerging
PC business with IBM midrange server systems as cooperative
processing workstations. Those efforts progressed from simple
terminal device emulators to full-feature distributed processing
networked environments. Mr. Limpert shifted focus in the late
1990s to the design of network-connected thin clients and their
use of Linux as an embedded operating system.

Patrick McCarthy IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(pjmccart@us.ibm.com). Mr. McCarthy has worked for IBM since
1984 and has spent most of his career in kernel development,
including the OS/400 kernel and microkernel and the Linux port to
the 64-bit PowerPC. He is currently working on the development of
the BG/L supercomputer. His main focus is on the kernels which
run on the compute and I/O nodes in the Blue Gene/L system. Mr.
McCarthy has also worked on the development of parts of the Blue
Gene/L control system.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 J. E. MOREIRA ET AL.

375

Mark Megerian IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(megerian@us.ibm.com). Mr. Megerian is a Senior Software
Engineer in the IBM Rochester Laboratory. He graduated from
Michigan State University with a degree in computer science in
1987, joining IBM upon graduation. His past responsibilities have
included database and SQL development on the iSeries* platform.
Mr. Megerian is currently the control system team leader for
BlueGene/L.

Mark Mendell IBM Software Group, Toronto Laboratory,
8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7
(mendell@ca.ibm.com). Mr. Mendell graduated from Cornell
University in 1980 with a B.S. degree in computer engineering. He
received his M.S. degree in computer science from the University of
Toronto in 1983. At the University of Toronto, he helped develop
the Concurrent Euclid, Turing, and Turing Plus compilers, and
worked on the Tunis operating system project. In 1991 he joined
IBM, working initially on the AIX* Cþþ compiler from V1.0 to
V5.0. He has been the team leader for the TOBEY Optimizer
Group since 2000. Mr. Mendell implemented the automatic
compiler support of the dual floating-point unit (FPU) for the
Blue Gene/L project.

Michael Mundy IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(mmundy@us.ibm.com). Mr. Mundy joined IBM in 1989 as a
developer and tester for the MVS operating system. His past
projects have included Qshell (a shell and utilities package), base
POSIX enablement, Pthreads, TCP/IP sockets, and the Distributed
Computing Environment (DCE). Since 1993 he has worked on
i5/OS* and its predecessors to provide open industry-standard
interfaces. Mr. Mundy is currently working on the compute node
kernel of Blue Gene/L.

Don Reed IBM Systems and Technology Group, 3605 Highway
52 N., Rochester, Minnesota 55901 (donreed@us.ibm.com). Mr.
Reed received his computer science degree from the University
of South Dakota. At IBM he has worked on control systems for
DASD manufacturing, the port of Linux to 64-bit PowerPC, and
process and resource management for the OS/400 kernel. His
current role is development and maintenance of the hardware
initialization and control system software stack of Blue Gene/L.

Ramendra K. Sahoo IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (rsahoo@us.ibm.com). Dr. Sahoo received a B.E.
degree (with honors) in mechanical engineering from the National
Institute of Technology, Durgapur, India, in 1990, and an M.S.
degree (research) from the Indian Institute of Technology,
Chennai, in 1992. In 1998 he received his Ph.D. degree from the
State University of New York at Stony Brook. Prior to joining the
Ph.D. program at Stony Brook, he worked as an assistant manager
(CAD and analysis) at TATA Motors Engineering Research
Center. Since 2000 he has worked at the IBM Thomas J. Watson
Research Center and is currently a member of the Blue Gene
Systems Software Group. Dr. Sahoo’s research interests include
distributed and fault-tolerant computing, numerical and parallel
algorithms, databases, and artificial intelligence. He has published
35 papers in refereed international journals and conferences in the
area of scientific computing, electronic packaging, data mining,
parallel computing, and artificial intelligence. Dr. Sahoo holds

seven patents in the area of distributed and fault-tolerant
computing; he is a member of the IEEE and ASME.

Alda Sanomiya IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (sanomiya@us.ibm.com). Mrs. Sanomiya received a B.S.
degree in computer science from the Universidade de São Paulo,
Brazil. She began working with IBM Brazil in 1986 and joined the
IBM Research Division in 2000. Mrs. Sanomiya was responsible
for the first port of Linux to the Blue Gene/L I/O nodes; she has
also worked on control systems for the Blue Gene/L project.

Richard Shok IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(shok@us.ibm.com). Mr. Shok has worked for IBM for more than
six years. During that time, he has been involved in OS internals,
retail middleware, and custom programs for various IBM
customers. Mr. Shok has spent the last year working on the
Blue Gene/L project; he is primarily responsible for software
builds, integration, and packaging.

Brian Smith IBM Systems and Technology Group,
3605 Highway 52 N., Rochester, Minnesota 55901
(smithbr@us.ibm.com). Mr. Smith has worked at IBM in
Rochester, Minnesota, for the past year as a co-op student. His
work primarily involves MPI development and optimization, and
porting applications for Blue Gene/L. In early 2005 he began
working full-time at IBM Rochester, after graduating from Iowa
State University with an M.S. degree in computer engineering.

Gordon G. (Greg) Stewart IBM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(gregstewt@us.ibm.com). Mr. Stewart is a Senior Software
Engineer in the eServer Custom Technology Center at IBM in
Rochester, Minnesota. He received a B.S. degree in mathematics
and an M.S. degree in computer science from Northern Illinois
University in 1974 and 1976, respectively. After spending two years
at Baxter/Travenol Laboratories as a systems programmer, Mr.
Stewart joined IBM in 1978 to work on the development of
the IBM System/38*. Since then, he has worked chiefly in
architecture and development in various areas of the System/38,
AS/400, and iSeries operating systems, particularly in data
communications, availability/recovery, and the POSIX and
C language environments. He has also contributed to the
development of several application middleware products, including
Domino* for AS/400 and Net.Data*. In 2000 he joined the eServer
Custom Technology Center, where he has worked on the Blue
Gene/L project, primarily in development of the control system.
Mr. Stewart has received several patents and IBM Technical
Achievement Awards.

J. E. MOREIRA ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

376

