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Abstract

The Grouping Genetic Algorithm (GGA) is a Genetic Algorithm heavily modified to suit
the structure of grouping problems. Those are the problems where the aim is to find a good
partition of a set, or to group together the members of the set. The Bin Packing Problem (BPP) is
a well known NP-hard grouping problem - items of various sizes have to be grouped inside bins
of fixed capacity. On the other hand, the Reduction Method of Martello and Toth, based on their
Dominance Criterion, constitutes one of the best OR techniques for optimization of the BPP to
date.

In this paper, we first describe the GGA paradigm as compared to the classic
Holland-style GA and the ordering GA. We then show how the Bin Packing GGA can be
enhanced with a local optimization inspired by the Dominance Criterion. An extensive expe-
rimental comparison shows that the combination yields an algorithm superior to either of its
components.

Key words: Grouping, partitioning, bin packing, genetic algorithm, solution encoding, dominance,
reduction.

1. Introduction

0.1 The Bin Packing Problem

The Bin Packing Problem (BPP) is defined as follows ([Garey and Johnson, 79]): given a
finite set O of numbers (the item sizes) and two constants C (the bin’s capacity) and N (the
number of bins), is it possible to ’pack’ all the items into N bins, i.e. does there exist a partition of
O into N or less subsets, such that the sum of elements in any of the subsets doesn’t exceed C?

This NP-complete decision problem naturally gives rise to the associated NP-hard
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optimization problem, the subject of this paper: what is the best packing, i.e. what is the minimum
number of subsets in the above mentioned partition?

Being NP-hard, there is no known optimal algorithm for BPP running in polynomial time.
However, [Garey and Johnson, 79] cite simple heuristics which can be shown to be no worse (but
also no better) than a rather small multiplying factor above the optimal number of bins. The idea
is straightforward: starting with one empty bin, take the items one by one and for each of them
first search the bins so far used for a space large enough to accommodate it. If such a bin can be
found, put the item there, if not, request a new bin. Putting the item into the first available bin
found yields the First Fit (FF) heuristic. Searching for the most filled bin still having enough
space for the item yields the Best Fit, a seemingly better heuristic, which can, however, be shown
to perform as well (as bad) as the FF, while being slower. In the realm of Operations Research
methods, [Martello and Toth, 90a] have recently introduced a more powerful approximation
algorithm for BPP, discussed below.

0.2 The Grouping Problems

The Bin Packing Problem is member of a large family of problems, many of them
naturally arising in practice, which consist in partitioning a set U of items into a collection of
mutually disjoint subsets Ui of U, i.e. such that

∪ Ui = U and
Ui ∩ Uj = ∅,  i≠j.

One can also see these problems as ones where the aim is to group the members of the set U into
one or more (at most card(U)) groups of items, with each item in exactly one group, i.e. to find a
grouping of those items.

In most of these problems, not all possible groupings are allowed: a solution of the
problem must comply with various hard constraints, otherwise the solution is invalid. That is,
usually an item cannot be grouped with all possible subsets of the remaining items.

The objective of the grouping is to optimize a cost function defined over the set of all
valid groupings. The following are just three examples1 of well-known grouping problems, with
the hard constraint a solution must comply with (where C is an arbitrary constant), and the cost
function to minimize:

Problem Hard Constraint Cost Function
Bin Packing Sum of sizes of items in any group<C Number of groups
Workshop Layouting Number of machines in any group<C Total intercell traffic
Graph Coloring No connected nodes in any group Number of groups

As can be seen, the grouping problems are characterized by cost functions which depend
on the composition of the groups2, that is, where one item taken isolatedly has little or no meaning.
The Grouping Genetic Algorithm (GGA) is a GA heavily modified to suit the particular structure
of grouping problems. It has been presented as a method applicable to many different problems by
[Falkenauer, 93] and [Falkenauer, 94]. A ’raw’ GGA applied to the Bin Packing Problem (BPP)
was proposed by [Falkenauer and Delchambre, 92].

In this paper, we report on a hybridization of the Bin Packing GGA of [Falkenauer and

                                               
     1 There are many more grouping problems of great practical importance, but their description would be too
lengthy for the purpose of this paper.
     2 This is why we talk about grouping problems, rather than partitioning - we thus emphasize the importance
of the groups, rather than the ’cuts’.
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Delchambre, 92] with a recent OR technique for the BPP, the Dominance Criterion of [Martello
and Toth, 90a].

The rest of the paper is organized as follows. In sections 2 and 3 we point out the
respective weaknesses of standard and ordering GAs when applied to grouping problems. In
section 4, we present the Grouping GA (GGA) which addresses those drawbacks. The ideas
behind the Dominance Criterion of Martello and Toth are presented in section 5. Section 6
introduces the Hybrid GGA (HGGA) for BPP resulting from a ’marriage’ of the two techniques.
An extensive experimental comparison of the HGGA with a sophisticated branch-and-bound
algorithm, the MTP procedure of [Martello and Toth, 90b], is carried out in section 7.
Conclusions are drawn in section 8.

2. Standard GA Operators and Grouping Problems

In this section we examine the effects of the classic genetic operators on the structures
relevant to the grouping problems. Application of a straightforward encoding scheme together
with classic ([Holland, 75] type) genetic operators is the first route that has been taken in the GA
literature treating grouping problems (e.g. [Van Driessche and Piessens, 92], [Ding et al., 92],
[Jones and Beltramo, 91], [Von Laszewski, 91]). We will show why we think this is not the best
GA approach for these problems.

2.1 The Encoding and Redundancy

Let us consider the most straightforward encoding scheme, namely one gene per item. For
example, the chromosome

ADBCEB
would encode the solution where the first item is in the group A, the second in the group D, third
in B, fourth in C, fifth in E and sixth in the group B.

Among the six design principles for constructing useful representations (see e.g.
[Radcliffe, 91]) figures the principle of Minimal Redundancy - each member of the search space
(here the space of all valid groupings) should be represented by as few distinct chromosomes as
possible (ideally exactly one), in order to reduce the size of the space the GA has to search.

The straightforward encoding above is highly redundant. Indeed, the cost function of a
grouping problem depends only on the grouping of the items, rather than the numbering of the
group. For instance, in the Graph Coloring Problem, only the distribution of colors over the nodes
counts3, whatever the actual colors (their names) used. Thus with A standing for Amber, B for
Blue, C for Crimson and D for DarkRed,

ABCADD and
CADCBB

both encode the same solution of the problem, namely the one where the first and fourth nodes of
the graph are assigned one color, the fifth and sixth nodes a second color, and the second and third
nodes a third and fourth color respectively.

The degree of redundancy (i.e. the number of distinct chromosomes encoding the same
solution of the original problem) of this scheme grows exponentially with the number of groups,
that is, indirectly, with the size of the problem. Thus the size of the space the GA has to search is
much larger than the original space of solutions. Consequently, the power of the GA is seriously
                                               
     3 The resulting number of colors, i.e. the value of the cost function, results from a given color distribution.
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impaired.

2.2 The Crossover

Let us see how the significant (strong) schemata relevant to the problem of grouping are
transferred from parents to offspring under the standard crossover.

2.2.1 Context Insensitivity

The straightforward encoding leads to the highly undesirable effect of casting
context-dependent information out of context  under the standard crossover. Indeed, in the first
chromosome above (ABCADD), the C affected to the third gene only has sense in the context of
that particular chromosome, where it means that the third node is not grouped with any other
node. Taking that C out of the context during crossover has disastrous consequences. To see this,
let us apply the standard two-point crossover to the two chromosomes above:

A|BC|ADD crossed with
C|AD|CBB would yield
 CBCCBB as one of the two children.

In absence of mutation, a recombination of two identical individuals must produce progeny which
is again identical to the parents. The two parents above are identical with respect to the problem
being solved by the GA, because they both encode the same solution of the problem. Hence a
correct recombination operator should produce an individual which again encodes the same
solution. However, the resulting child above encodes a ’solution’ which has nothing in common
with the solution its parents encode: there are two groups instead of four4!

In other words, while the schemata are well transmitted with respect to the chromosomes
under the standard encoding/crossover, their meaning with respect to the problem to solve (i.e. the
cost function to optimize) is lost in the process of recombination.

2.2.2 Schema Disruption

Under any encoding mapping items to genes, grouping problems of practical relevance
normally have long schemata. However, under the standard crossover, the probability of
disruption of a schema grows with its defining length. In other words, while the classic crossover
(fitted with inversion or not) might converge to a better solution in the beginning of the genetic
search, once a good candidate is found, instead of improving this solution, it works against its own
progress towards destruction of the good schemata.

2.3 The Mutation

Let’s again consider the standard encoding and see the effects of the standard mutation, i.e.
a random modification of a randomly chosen allele.

Consider for example the following chromosome :
ABDBAC.

A mutation of this individual could yield
ABDEAC,

                                               
     4 Depending on the problem’s hard constraints, the resulting child might be valid or invalid.
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which could be beneficial, for the allele E, perhaps missing from the population, appears in the
genetic pool.

The troubles begin as the algorithm approaches a good solution, developing large groups
of identical alleles. The standard mutation of

AAABBB
would lead, for example, to

AACBBB.
On the one hand, the allele C appears in the population - a possibly beneficial effect. On the other
hand, the new chromosome contains a ’group’ of just one element. Since grouping of items usually
accounts for a gain, this mutated individual will most probably show a steep loss of fitness in
comparison with the other non-mutated individuals. Consequently, this individual will be
eliminated with high probability from the population on the very next step of the algorithm,
yielding hardly any benefit for the genetic search. In other words, the classic mutation is too
destructive once the GA begins to reach a good solution of the grouping problem.

One solution to these problems would be to abandon the concept of mutation as a random
modification of a small (minimal) part of the chromosome, in profit of a more sophisticated
operator acting on several, possibly many genes simultaneously. However, that would yield an
operator that basically disregards the genes in the chromosome. We show in section 4.2 below
that it is possible to take a more usual route.

3. Ordering GA Operators and Grouping Problems

In this section we examine the effects of ordering genetic operators on the structures
relevant to the grouping problems. Application of an encoding scheme representing permutations
of the members of the set, together with ordering genetic operators is the other route that has been
taken in the GA literature treating grouping problems (e.g. [Smith, 85], [Bhuyan et al., 91], [Jones
and Beltramo, 91], [Reeves, 94]). We will again show why we think this approach is not the best
one for these problems.

3.1 The Encoding and Redundancy

Another way of handling grouping problems is to represent permutations of the items
(members of the set U in section 1 above), and use a decoding mechanism that reveals the actual
assignment of the items to groups (the resulting partition of the set) corresponding to each
chromosome. The decoding mechanism usually proceeds by considering the items one by one in
the order given by the chromosome, and assigning them to the first group available.

For the sake of clarity, let’s consider the Bin Packing Problem. Suppose there are ten items
to pack, numbered 0 through 9. A valid chromosome is one where each item appears exactly
once, for example

0123456789.
This encoding is highly redundant. Indeed, suppose that the items in the above chromo-

some are partitioned as follows
0123|45678|9,

i.e. there are three bins, one containing the items 0 through 3, the second containing the items 4
through 8, and the third containing the item 9. Now any permutation of the items having the
same bin contents, such as

3210|45678|9 or
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87645|1032|9,
encodes the same solution of the original Bin Packing Problem. As for the straightforward
encoding in section 2, the degree of redundancy of this encoding grows exponentially with the
size of the instance. Again, the power of the GA is seriously diminished.

3.2 The Crossover

3.2.1 Context Insensitivity

Like the classic crossovers operating on chromosomes using the encoding from section 2,
most ordering crossovers working with the permutation encoding cast context-dependent
information out of context during recombination.

Indeed, given the mechanism of decoding the chromosome, it is clear that the meaning of
a gene in the solution the chromosome encodes, depends heavily on all the genes that precede it
on the chromosome. For instance, consider again the BPP and the chromosome

0123456789,
and suppose it is decoded from the left to the right as above. This chromosome encodes a solution
where items 4 through 8 are in the same group. However, this information depends on the genes
to the left of the group, i.e. on the head of the chromosome. For instance, the chromosomes

9123456780 or
9012345678

most probably encode different solutions of the Bin Packing Problem. Indeed, depending on the
sizes of the items, a bin filled with either the items 9,1,2 or 9,0,1, respectively, can be so filled
that no other item would fit in the remaining space. That would yield, say, the solutions

912|34567|80 and
901|234|5678, respectively,

none of which has the items 4 through 8 in the same bin.
There is a number of ordering crossovers available in the literature nowadays (see e.g.

[Davis, 91] for several of them). Let’s concentrate on Goldberg’s PMX ([Goldberg, 89]), probably
the best known ordering crossover. The PMX transmits well the absolute positions of genes on
the chromosome. It works as follows. Given two parents, a crossing section is selected at random,
e.g.

0123|4567|89 and
9173|5482|60.

The corresponding genes in the crossing section define a mapping, in this case 4↔5, 5↔4,
6↔8 and 7↔2. The first child is constructed by copying the crossing section from the first
parent and all the genes from the second parent which do not appear in the crossing section of the
first, yielding in this case

91 3|4567| 0.
Finally, the remaining places are filled by the mapping’s images of the genes that previously
occupied those positions. That yields

9123|4567|80.
The second child is obtained by permuting the roles of the parents.
Now the only difference between the chromosomes

0123456789 and
9123456780

consists of a swap of the first and last genes. Hence with a crossing section anywhere between the
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two genes, the information the PMX transmits is identical in the two chromosomes w.r.t. the
position of the group 45678. That means the latter chromosome could be a child of the former
(as illustrated by the example), even though the two encode very different solutions of the BPP,
one having the group 45678 together, the other not. In other words, the PMX transmits
information which more often than not gets a different meaning in the new chromosome.

Other ordering crossovers suffer similar problems. The reason is that o-schemata (the
ordering equivalent of Holland’s schemata) have little meaning in a grouping problem - they are
not building blocs capable of conveying useful information on the solution they’re part of. Indeed,
the only information useful in grouping problems concerns the groups and these are obtained
from a permutation of items in a far too indirect way. Consequently, as illustrated by [Falkenauer,
94] on a simple example, sampling o-schemata in grouping problems is of little use for estimating
the quality of the corresponding solutions.

The inadequacy of ordering crossovers for grouping problems is not only backed by the
theoretical arguments given above - it has been confirmed by experimental evaluation. Indeed,
testing various approaches to the Cutting Stock Problem5, [Hinterding and Khan, 94] have
observed a degradation of performance of an ordering GA with increasing crossover rate. What
their results mean is that the information inherited by progeny from their parents (under the
ordering crossover) is mostly detrimental to the quality of the progeny. That goes in line with our
claim that the information passed on is not useful, since the best ordering ’GA’ for a grouping
problem would be one with no crossover!

3.2.2 Schema Disruption

We have indicated in section 2.2.2 that an encoding mapping items onto genes in a
chromosome leads to high probabilities of disruption of useful parts of the chromosome. Since the
permutation-based encoding also maps items onto genes, the ordering GA suffers of the same
drawback.

3.3 The Mutation

In the ordering GA, the mutation operator modifies the order of the genes on the
chromosome. However, given the above, such an operator has a high probability of either not
having any effect at all because of the high redundancy of the encoding, or being too destructive
because of its impact on all the items that map onto genes following the modified site. Once
again, these problems stem from the item oriented (rather than group oriented) encoding.

4. The Grouping Genetic Algorithm

The Grouping Genetic Algorithm (GGA) differs from the classic GA in two important
aspects. First, a special encoding scheme is used in order to make the relevant structures of
grouping problems become genes in chromosomes, i.e. the building blocks the GA works with.
Second, given the encoding, special genetic operators are used, suitable for the chromosomes.

                                               
     5 The Cutting Stock Problem is essentially a Bin Packing where the bins are of various capacities.
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4.1 The Encoding

As we have seen, neither the standard nor the ordering genetic operators are suitable for
grouping problems. The reason is that the structure of the simple chromosomes (which the above
operators work with) is item oriented, instead of being group oriented. In short, the above
encodings are not adapted to the cost function to optimize. Indeed, the cost function of a grouping
problem depends on the groups, but there is no structural counterpart for them in the chromo-
somes above.

Note that these remarks are nothing more than a call for compliance with the Thesis of
Good Building Blocks (see e.g. [Goldberg, 89]6), central to the GA paradigm. Others issued
similar calls in the past, most notably Radcliffe (e.g. [Radcliffe, 92]), Vose and Liepins (e.g.
[Vose and Liepins, 91]). Still, the references in sections 2 and 3 seem to indicate that their calls
were not heard to the extent they deserved, at least as far as grouping problems are concerned.

To remedy the above problems, we have chosen the following encoding scheme: the
standard chromosome from section 2 is augmented with a group part, encoding the groups on a
one gene for one group basis. More concretely, let us consider the first chromosome in section 2
and the Bin Packing Problem. Numbering the items from 0 through 5, the item part of the
chromosome can be explicitly written

012345
ADBCEB: ...,

meaning the item 0 is in the bin labeled (named) A, 1 in the bin D, 2 and 5 in B, 3 in C,
and 4 in E. This is the straightforward chromosome from section 2. The group part of the
chromosome represents only the groups (bins in BPP). Thus

... :BECDA
expresses the fact that there are five bins in the solution. Of course, what names are used for each
of the bins is irrelevant in the BPP: only the contents of each bin counts in this problem. We thus
come to the raison d'être of the item part. Indeed, by a lookup there, we can establish what the
names stand for. Namely,

A={0}, B={2,5}, C={3}, D={1} and E={4}.
In fact, the chromosome could also be written

{0}{2,5}{3}{1}{4}.

The important point is that the genetic operators will work with the group part of the
chromosomes, the standard item part of the chromosomes merely serving to identify which items
actually form which group. Note in particular that this implies that the operators will have to
handle chromosomes of variable length.

In short, the encoding scheme we adopted makes the genes represent the groups. The
rationale is that in grouping problems it is the groups which are the meaningful building blocks,
i.e. the smallest piece of a solution which can convey information on the expected quality of the
solution they are part of. This is crucial: indeed, the very idea behind the GA paradigm is to
perform an exploration of the search space, so that promising regions are identified, together with
an exploitation of the information thus gathered, by an increased search effort in those regions. If,
on the contrary, the encoding scheme does not allow the building blocks to be exploited (i.e.
transmitted from parents to offspring, thus allowing a continuous search in their surrounding) and
                                               
     6 Goldberg calls it the Building Blocks Hypothesis.
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simultaneously serve as estimators of quality of the regions of the search space they occupy, then
the GA strategy inevitably fails and the algorithm performs in fact little more than a random
search or naïve evolution.

Note finally that the order of the groups in the chromosome is irrelevant in the GGA (this
is obvious under the inversion operator).

4.2 The Crossover

As pointed out in the previous section, a GGA crossover7 will work with variable length
chromosomes with genes representing the groups.

Given the fact that the hard constraints and the cost function vary among different
grouping problems, the ways groups can be combined without producing invalid or too bad
individuals are not the same for all those problems. Thus the crossover used will not be the same
for all of them. However, it will fit the following pattern:
1. Select at random two crossing sites, delimiting the crossing section, in each of the two

parents.
2. Inject the contents of the crossing section of the first parent at the first crossing site of the

second parent. Recall that the crossover works with the group part of the chromosome, so
this means injecting some of the groups from the first parent into the second.

3. Eliminate all items now occurring twice from the groups they were members of in the
second parent, so that the ’old’ membership of these items gives way to the membership
specified by the ’new’ injected groups. Consequently, some of the ’old’ groups coming
from the second parent are altered: they do not contain all the same items anymore, since
some of those items had to be eliminated.8

4. If necessary, adapt the resulting groups, according to the hard constraints and the cost
function to optimize. At this stage, local problem-dependent heuristics can be applied.

5. Apply the points 2. through 4. to the two parents with their roles permuted in order to
generate the second child.

As can easily be seen, the idea behind the GGA crossover is to promote promising groups
by inheritance. In this respect, it is interesting to compare the GGA to the algorithm proposed by
[Reeves, 94]. He has recently tackled the Bin Packing Problem with an ordering GA coupled with
a decoder of the chromosomes (permutations of items) using the First Fit and Best Fit heuristics.
The experimental results obtained with the ordering GA were inferior to the ones reported in
[Falkenauer and Delchambre, 92], which means that they are substantially inferior to the
performance of the algorithm presented here.

However, more interesting than this comparison is the method Reeves uses to enhance the
performance of the ordering GA. In a hybrid algorithm, he performs a reduction9 of the problem:

                                               
     7 The recombination operator presented here turns out to be rather more sophisticated than the classic
crossover. Nevertheless, we kept the latter denomination because of the intended role of the operator.
     8 The injection operation has some of the flavor of the cut & splice recombination operator of Goldberg’s
messy GA (e.g. [Goldberg et al., 91]). The fundamental difference lies with the fact that the GGA’s crossover always
ends up with each item present exactly once, through a possible modification of genes coming from the second
parent.
     9 This ’reduction’ is not to be confused with the Reduction Method of Martello and Toth, the latter being
based on a criterion of dominance of one bin over others.
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each time a sufficiently filled bin is found in a solution (i.e. an individual decoded with the FF or
BF), the bin is ’fixed’ and the objects it contains are eliminated from all individuals in the
population, yielding a smaller problem.

Recall that the purpose of the GGA crossover operator is to transfer groups (bins in BPP)
from parents to offspring. Supposing a bin remains consistently above-average10, this mechanism
will eventually propagate the bin throughout the whole population. Clearly, at that point the bin
will be ’fixed’ (because all individuals in the population will then contain it), and could be
removed from the problem.

Thus the reduction of Reeves does the same thing as the GGA’s crossover: it propagates
promising bins. However, as we show in [Falkenauer, 94], the former gets very easily stuck in a
local optimum, because it violates the search strategy of the GA. Indeed, whenever the GGA
discovers a promising bin, it is propagated throughout the population, which means that the
sampling rate of the solutions containing that bin increases in accordance with the optimal samp-
ling strategy of [Holland, 75]. Yet that strategy also requires to continue the sampling of the other
solutions (i.e. those that do not contain the bin), albeit at a reduced rate. When the reduction of
Reeves eliminates a bin, the sampling of the solutions that do not contain it ceases immediately
and is never resumed, which violates the optimal sampling strategy.

Although it is not the objective of this paper to compare experimentally the GGA to the
classic GA approaches to grouping problems, let us note the comparison made by [Falkenauer,
95]. In that paper, a GGA is compared to the results obtained by [Jones and Beltramo, 91] with
nine different standard GAs applied to the problem of Equal Piles.

Equal Piles is a grouping problem extremely similar to Bin Packing: a set of items of
given sizes must be distributed over a given number of bins, the objective being to equalize as
much as possible the contents of the bins. Among the nine GAs they studied, an ordering GA (see
section 3) combined with a greedy heuristic was found to be significantly better than the best
standard GA (section 2). Nevertheless, the former algorithm was itself outperformed by a wide
margin by the GGA.

4.3 The Mutation

A mutation operator for grouping problems must work with groups rather than items. As
for the crossover, the implementation details of the operator depend on the particular grouping
problem on hand. Nevertheless, three general strategies can be outlined: create a new group,
eliminate an existing group, or shuffle a small number of items among groups.

4.4 The Inversion

The inversion operator serves to shorten good schemata in order to facilitate their trans-
mission from parents to offspring, thus ensuring an increased rate of sampling of the above-ave-
rage ones ([Holland, 75]). In a Grouping GA, it is applied to the group part of the chromosome.
Thus for instance, the chromosome

ADBCEB:BECDA
could be inverted into

                                               
     10 That is, the individuals containing that bin consistently score better than those which do not contain it.
Recall that under the GGA encoding, a group represents a group-schema of order one.
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ADBCEB:CEBDA.
Note that the item part of the chromosome stays unchanged. Indeed, the groups are still composed
of the same items.

The example illustrates the utility of this operator: should B and D be promising genes
(i.e. well-performing groups), the probability of transmitting both of them during the next
crossover is improved after the inversion, since they are now closer together, i.e. safer against
disruption. That in turn makes the proliferation of the good group-schemata easier.

5. The Dominance Criterion

[Martello and Toth, 90a]
have recently introduced a new
approximation algorithm for the
Bin Packing Problem. Their
method is based on a simple yet
powerful observation illustrated
in 1: given the contents of two
bins B1 and B2, if there exists a
subset {i1, ... in} of items in B2

and a partition {P1, ... Pn} of
items in B1 such that for each
item ii there is a no bigger11

corresponding Pi, then B2 is said
to dominate B1, because a
solution obtained with B2 as one of the bins requires no more bins than one with B1.

A Bin Packing algorithm would repeatedly find a bin dominating all others, add that bin
to the solution and reduce the problem by removing the items just assigned. However, that
procedure would run in exponential time. In order to obtain a procedure of a reasonable
complexity, [Martello and Toth, 90a] propose to consider only sets of size three or less.

An effective approximation algorithm can be obtained from the above procedure as
follows. When no set dominating all others can be found anymore, the problem is relaxed by
removing the smallest item among those which are not yet assigned to any bin, and the procedure
is repeated. [Martello and Toth, 90a] use this algorithm to compute lower bounds on the number
of necessary bins for BPP instances.

We use the concept of dominance in conjunction with the Grouping GA described above.
It serves as a local optimization producing high-quality bins which are then efficiently processed
by the GGA.

6. The Hybrid GGA for Bin Packing

In this section, we first define a suitable cost function for the Bin Packing Problem, and
then show how the Grouping Genetic Algorithm can be combined with the concept of dominance.

                                               
     11 That is, the total size of items in Pi is less than or equal to the size of ii.

Figure 1 The Dominance Criterion: B2 dominates B1
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6.1 The Problem Redefinition

Let’s define a suitable cost function for the Bin Packing Problem defined in section 1.1.
The objective being to find the minimum number of bins required, the first cost function which
comes to mind is simply the number of bins used to ’pack’ all the items. This is correct from a
strictly mathematical point of view, but is unusable in practice. Indeed, such a cost function leads
to an extremely ’unfriendly’ landscape of the search space: a very small number of optimal points
in the space are lost in an exponential number of points where this purported cost function is just
one unit above the optimum. Worse, all those slightly suboptimal points yield the same cost. The
trouble is that such a cost function lacks any capacity of guiding an algorithm in the search,
making the problem a ’Needle-in-a-haystack’.

We thus settled in [Falkenauer and Delchambre, 92] for the following cost function for the
BPP: maximize

  i=1..N(Fi / C)k

fBPP   =  ——————
         N

with N being the number of bins used in the solution,
Fi the sum of sizes of the items in the bin i (the fill of the bin),
C the bin capacity and
k a constant, k>1.
The constant k expresses our concentration on the 'extremist' bins in comparison to the

less filled ones. The larger k is, the more we prefer well-filled 'elite' groups as opposed to a
collection of about equally filled bins. We have experimented with several values of k and found
out that k=2 gives good results. Larger values of k seem to lead to premature convergence of the
algorithm, as the local optima, due to a few well-filled bins, are too hard to escape.

The exact assessment of the influence of k is difficult, due to the extremely large number
of possible instances and the corresponding solutions. The question is whether some choice of k
can lead to a cost function that has global optima other than those of the original one, i.e. such that
for a certain value of k,

fBPP(PN+1) ≥ fBPP(PN),
where N is the minimum number of bins necessary to contain all the items, PN an optimal solution
requiring this minimal number of bins, and PN+1 a solution requiring one more.

The fBPP function departs from the original one (i.e. number of bins) as k grows above 1
and the well-filled 'elite' bins are promoted. Examining the most adverse possibility, namely the
one where PN+1 features an 'elite' of NF full bins among a total of N+1 bins, while PN consists of N
equally filled bins12, the above inequality yields, after a conservative development,

2k - 1    ≥   2k.
We thus see that for moderate values of k, in particular for k ≤ 2, the last inequality is not

satisfied, so
fBPP(PN+1) < fBPP(PN) for k ≤ 2,

and the fBPP function defined above yields the same optima as the original BPP objective.

                                               
     12 This is a conservative approach, as an arbitrary instance of the problem does not necessarily admit the two
solutions.
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6.2 BPRX - the Bin Packing Crossover with Replacement

6.2.1 The Mechanism

A crossover’s job consists of producing offspring out of two parents in such a way that the
children inherit as much as possible of the meaningful information from both parents. Since it is
the bin13 that conveys important information in BPP, we must find a way to transmit bins from the
parents onto the children. This is done as follows.

Consider the following group parts of the chromosomes (recall that there is one gene per
bin):

ABCDEF (first parent)
abcd (second parent).
First, copies are made of the two parents (in order not to destroy the parents) and two

crossing sites are chosen at random in each of them, yielding for example
A|BCD|EF and
ab|cd|.

Next, the bins between the crossing sites in the second chromosome are injected into the first, at
the first crossing site, yielding

AcdBCDEF.
Now some of the items appear twice in the solution and must be thus eliminated. Suppose the
items injected with the bins c and d also appear in the bins C, E and F. We eliminate those
bins, leaving

AcdBD.
With the elimination of those three bins we have, however, most probably eliminated items which
were not injected with the bins c and d. Those items are thus missing from the solution.

To fix this last problem, in our previous work we used the First Fit Descending (FFD)
heuristic to reinsert again the missing objects ([Falkenauer and Delchambre, 92]). That is, they
were sorted in descending order of their sizes and then put one by one into the first sufficiently
empty bin.

In our new algorithm, prior to the application of FFD, we first perform a local
optimization inspired by the ideas of [Martello and Toth, 90a] in the following way. Taking one
by one the bins so far in the solution14, we check whether it is possible to replace up to three items
in the bin by one or two items from those currently missing in the bins, in such a way that the total
size of the items in the bin increases without overflowing the bin. If so, we perform the
replacement, which means that some of the previously unassigned items are assigned to the bin,
while some of the items previously assigned to the bin become ’unassigned’.

Note that the replacement has two important consequences. First, it fills better the target
bin than it was before. Since a good packing has well-filled bins, this improves the quality of the
solution on the one hand. On the other hand, since the total size of the items is a constant, it also
leaves more space in the other bins (indirectly), which makes them more capable of accommo-
dating additional items, and that leads ultimately to the desired reduction of the number of
necessary bins. Second, the exchange makes available (i.e. ’unassigns’) smaller items than before
the exchange, which makes easier the task of adding those items to bins already in the solution.

                                               
     13 More precisely, a coadapted subset of the bins in the solution.
     14 These are the bins coming from the other parent, as well as those which were not affected by the injection.
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This process is repeated as long as such exchanges are possible. When none is possible
anymore and there are still items to be reinserted, the usual FFD heuristic is applied to complete
the solution (i.e. assign all items to bins).

6.2.2 The Rationale

The method of [Martello and Toth, 90a] aims at identifying bins which dominate the
others, so that they can be fixed, thus reducing the effective size of the problem. However,
because of the size of the search space, it is impossible to verify in a reasonable time that a given
bin dominates all the others. The approximation described in section 5 above solves the problem
of complexity of the algorithm, but introduces a new one: it happens that the simplified method
does not find a bin which dominates the others. In order to continue towards some solution, rather
than stopping the algorithm with a "do not know" answer, the problem is relaxed in some way15

and the reduction procedure is reapplied.
However necessary to keep the algorithm practically useful, the relaxation step introduces

an extraneous element into the procedure: there is little guarantee that the relaxation applied will
preserve the global optimality of the solution under construction. Since there is no backtracking
allowed (for efficiency reasons), once a wrong relaxation is performed, the global optimum is out
of reach and the method will settle to a local one.

The replacement stage in the BPRX was inspired by the method of Martello and Toth.
Indeed, what is done during that stage is nothing else than a local search for dominant bins, using
an approximative criterion very similar to the one used by Martello and Toth. However, the
Grouping GA does not suffer the drawback of convergence to a local optimum. Since whole bins
are transmitted during a crossover, each improvement is usefully propagated throughout the
population, by means of transmission from parents to offspring. That makes it possible to ’test’ the
quality of each bin in numerous contexts, which is analogous to testing the dominance of each bin
under many different relaxations.

Indeed, consider a bin in one individual in the population and recall that in the Grouping
GA, the bins correspond to genes in the chromosomes. If the gene is transmitted without
modification over the succesive generations of the GGA, then it probably dominates most of the
other bins that could be made with the items it contains. On the other hand, if it is modified, then
it is because there is a bin which dominates it.

Finally, the recombinating power of the BPRX crossover takes still further advantage of
an approximated dominance criterion. Consider two bins having no item in common and suppose
each is part of one individual in the population. Since both individuals have survived the
evolutionary competition, the bins they are made of dominate, under the approximated criterion,
all other bins which could be formed with the items the bins contain16. Now since the BPRX
crossover combines whole bins and the bins have no item in common, they can be both inherited
in a child, without a need of new verification of their dominance. In short, the crossover
constructs solutions that automatically contain bins dominating the others.

                                               
     15 [Martello and Toth, 90a] propose three sensible ways of relaxing a problem, but there are numerous other
ways of relaxing a given instance.
     16 This does not mean that they dominate all the others though, because a more thorough (less approximated)
criterion could reveal that they are themselves dominated.
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6.3 The Mutation

The mutation operator is simple. Given a chromosome, we select at random a few bins
(i.e. genes) and eliminate them. The items which composed those bins are thus missing from the
solution and must be inserted back. To do so, we again use the ideas applied for the crossover.
Namely, the eliminated items first serve as the basis for eventual improvement of the bins left
unchanged, during a stage of replacement. When no replacement is possible anymore, the FFD
heuristic is used to complete the solution.

7. Experimental Results

7.1 The Setup

In order to assess the merit of the algorithm, we compared the hybrid GGA (HGGA in the
sequel) to the MTP procedure of [Martello and Toth, 90b], i.e. an enumerative
(branch-and-bound) method which has the Dominance Criterion embedded. We chose the MTP
as the benchmark because it is considered by many to be one of the best methods for the Bin
Packing Problem to date.

The GGA used in the experiments is a steady-state17 order-based GA using a population of
100 individuals and a tournament of size 2 as the selection strategy. On each generation, 50
individuals were replaced by progeny produced by crossover of the 50 best individuals, 33
individuals (selected at random) were mutated and 25 individuals underwent inversion. The full
details of the general procedure can be found in [Falkenauer, 94].

The initial population was generated by running the First Fit heuristic on 100 random
permutations of the items. Note that the heuristic is extremely fast, yielding a run time of 0.0 CPU
seconds whenever an optimal solution appeared already in the initial population.

Two sets of experiments were performed. One was designed to see how the HGGA fares
on the MTP’s "turf", i.e. we generated instances of the kind considered in [Martello and Toth, 90a]
(see section 7.2 below). The second set of experiments was designed to see the practical limits of
the two algorithms. To do so, we generated what seems to be the most difficult BPP instances (see
section 7.3).

Each instance was submitted both to the MTP procedure and to the Hybrid GGA18. This
way, the performances of the two algorithms were compared on the same instances of BPP. The
HGGA was coded in C++ and run on a R4000 Silicon Graphics workstation under IRIX 5.1. The
MTP procedure was coded in FORTRAN (we used the code of Martello and Toth) and run on a
Control Data CD4000 (also an R4000 machine) under EP/IX 2.1.

Note that the enumerative nature of the MTP procedure makes it take an excessive time
when confronted with difficult instances, and an artificial shutoff is required in order to obtain
some result. We thus allowed the MTP to perform at most 1500000 (one and a half million)
backtracks on any of the instances. However, in some cases, this shutoff aborted the MTP sooner
than after the amount of time (in CPU seconds) we gave to the HGGA, which could be perceived
as an unfair comparison. Consequently, whenever this was the case, we increased the backtrack

                                               
     17 See e.g. [Syswerda, 89]. Note however that according to [Davis, 91], most steady-state GAs in use create
and insert just one or two children in a generation, whereas we replace 50% of the population.
     18 We run the GGA once on each of 160 instances, rather than running it several times on a more limited set.
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limit accordingly, and rerun the MTP.

7.2 Uniform Item Size Distribution

[Martello and Toth, 90a] give the performance of their method on instances of the BPP
constructed by drawing integer item sizes uniformly random from a given range. A look at their
results reveals that among the various classes of problems they considered (different bin capacities
and different ranges of sizes of the items), the following setup proved the most difficult for their
method: bin capacity 150 and integer item sizes uniformly random between 20 and 100.

We generated instances of this kind (i.e. items of sizes uniformly distributed between 20
and 100 to be packed into bins of capacity 150) with the number of items 120, 250, 500 and 1000,
respectively. We generated 20 instances of each.

The results of the comparison are summarised below in tables 1 through 4. Each of the
tables shows, for each of the 20 instances, the number of the instance (Run), the theoretical
minimum number of bins (Theo = totsize/binsize)19, and the respective results of the Hybrid
GGA (HGGA) and the MTP procedure (MTP).  For the HGGA, the tables indicate the number of
bins obtained (Bins), the number of cost function evaluations performed (Evals)20, and the time
spent in CPU seconds (Time). For the MTP procedure, the tables indicate the number of bins
obtained (Bins), the absolute and relative difference with respect to the number of bins obtained
with the HGGA (Loss and Loss%), the number of backtracks the MTP performed (Backs,
where the value of 1500000 or more indicates that the procedure was stopped before
termination), and the time required in CPU seconds (Time).

For the first two sets of data (120 and 250 items), we imposed a maximum of 134000 cost
function evaluations (2000 generations) for the HGGA. For the other two (500 and 1000 items),
that limit was set to 335000 (5000 generations).

As observed by Martello and Toth, this class of problems proves difficult for their
method. Already for the relatively small instances of 120 items, it was unable to finish for two of
the twenty data sets. Only nine instances were completely solved with 250 items, and none was
solved with 500 or 1000 items. Nevertheless, the MTP fared well on the smallest instances, where
it was very fast most of the time.

Among the instances of 120 items (Table 1), in two cases (runs 9 and 20) neither
algorithm came up with a solution having the theoretical number of bins, so we conjecture that
there is no such solution. However, the MTP had to be aborted prematurely, so we have no proof.
The interesting point is that in both cases, a solution in Theo+1 bins (MTP’s best) appeared
already in the initial population of the HGGA, which seems to indicate that for these two
instances, an optimal solution is extremely easy to find, yet very hard to prove.

Apart from those two instances, the 120-item data proved to be easy for the MTP, which
was faster than the HGGA. Nevertheless, the difference was only marginal.

From 250 items up, the ’explosive’ nature of MTP starts to show, and the results show a
superiority of the HGGA in two respects: the HGGA supplies better solutions, and it does so

                                               
     19 Theo is the minimum number of bins that can accommodate the total size of the items. Consequently, a
solution in Theo bins is globally optimal.
     20 There were on average 67 new individuals created per generation of the HGGA.
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faster than the MTP procedure.
For seventeen out of the twenty instances of 250 items (Table 2), the HGGA has

discovered a solution in Theo bins, i.e. a global optimum. For the remaining three (runs 8, 13 and
14), the HGGA’s solution had the same number of bins as the MTP’s, so we again conjecture that
these were globally optimal as well, although we again have no proof, as the MTP had to be
aborted in all three cases.

The MTP procedure was less successful in finding the global optima for these instances:
in nine out of the twenty cases, it was unable to find a solution as good as the HGGA’s, the
difference (Loss) being two bins in one case (run 6).

The results on instances of 500 items (Table 3) and 1000 items (Table 4) confirm the
superiority of the HGGA in comparison to the MTP procedure. In all cases, the HGGA found a
globally optimal solution in Theo bins21, while the MTP never did (see the Loss column).

In addition, the meaning of time taken by the MTP becomes especially clear here. For all
but four of the 500 item instances, and for all with 1000 items, the difference between the
solutions of the two algorithms was two bins or more. This means that even if increased the
backtrack limit for the MTP so that it could improve the solution by one bin, which would
undoubtedly lead to extremely long execution times, the MTP would still end up with a solution
worse than the HGGA. Consequently, the HGGA fared better in both quality of the solution and
the speed of its delivery.

7.3 Triplets

With the second class of tests, we tried to establish the practical limits of the HGGA. We
considered problems with item sizes drawn from the range (0.25, 0.50) to be packed into bins of
capacity 1. In these problems, a well-filled bin must contain one ’big’ item (larger than the third of
the bin capacity) and two ’small’ ones (smaller than the third of the bin), which is why we term
them ’triplets’. What makes these problems difficult is the fact that putting two ’big’ or three ’small’
items into a bin is possible, but inevitably leads to a waste of space (the bin cannot be completely
filled by an additional item), implying a suboptimal solution.

[van Vliet, 93]22 points out a similarity between the difficulty of ’triplets’ and those of
3SAT23. While the 3SAT Problem is NP-complete, the satisfiability of a conjuction of
two-variable clauses (2SAT) is solvable in polynomial time ([Garey and Johnson, 79]), just like
BPP instances with two items per bin24. On the other hand, when the clauses grow longer (kSAT,
k>3), each clause is easier to satisfy, because there needs to be only one out of the k variables with
the value TRUE. Consequently, with a constant number of literals, kSAT instances are easier with
growing k, so 3SAT is the most difficult SAT problem25. Similarly, BPP instances are easier to
approximate when the number of items per bin grows above three, so ’triplets’ are the most
difficult BPP instances.

                                               
     21 The existence of a solution in Theo bins for all the instances can be explained by the fact that the large
number of items implies a large pool of various sizes from which well-filled bins can be drawn.
     22 André van Vliet suggested to test the algorithm on this kind of instances.
     23 3SAT is the satisfiability (SAT) problem where all clauses are disjunctions of exactly three Boolean
variables ([Garey and Johnson, 79]).
     24 Such instances would have all items larger than the third of the bin size and smaller than its half. They are
trivially solvable in quadratic time.
     25 Of course, there are trivial 3SAT instances, but on average, randomly generated 3SAT instances are harder
than randomly generated kSAT instances with k>3.
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In order to preserve the difficulty of the problem, we generated instances of known
optima26 as follows. Considering bin capacity of 1000, an item was first generated with a size
drawn uniformly from the range [380,490]. That left a space S of between 510 and 620 in the bin
of 1000. The size of the second item was drawn uniformly from [250, S/2). The third item
completed the bin.

To test the algorithms, we generated ’triplets’ with 60, 120, 249 and 501 items, 20
instances of each. The results of the HGGA and the MTP procedure are summarised in Tables 5
through 8 below. For the first two sets of instances (60 and 120 items), we imposed a limit of
67000 evaluations (1000 generations). For the other two, we set that limit to 134000 (2000
generations).

The performance of the MTP procedure shows that ’triplets’ are indeed very hard
problems. The MTP was able to finish only on 6 of the twenty instances of 60 items, and it never
finished on any of the bigger ones.

In two runs of 60 items (runs 8 and 19), the HGGA failed to find the optimal solution.
Obviously, the 67000 evaluations limit was too tight. Interestingly, on both these instances, the
MTP fared one bin worse yet.

Among the six runs which the MTP was able to optimize completely, in only two cases
(runs 11 and 13) was the MTP faster than the HGGA. Except for these, the MTP took longer than
the HGGA to find an equally good solution. In sixteen out of twenty cases, it took longer to find a
worse solution.

From 120 items up, the HGGA fared better than the MTP procedure in all respects. It
always found a globally optimal solution, while the MTP never did. The HGGA was also much
faster27.

While still showing a remarkable performance given the size and difficulty of the
problems, the 501 item triplets constitute a limit to online performance of the HGGA run on
ordinary hardware, and larger instances will probably have to be run overnight.

NOTE: All the 160 BPP instances used in the above experiments were made available to
the OR-Library Benchmark Database kept by John Beasley at the Imperial College, U.K. (the best
way to first contact OR-Library is to email the message ’info’ to o.rlibrary@ic.ac.uk).

8. Conclusions

We have presented an algorithm issued from two techniques for the Bin Packing Problem,
the Grouping Genetic Algorithm of Falkenauer and the Reduction Method of Martello and Toth.

The GGA’s distinctive features make it exploit the very structure of the grouping problems
that makes the standard and the ordering GAs fail. That ability, joined with the efficient OR
technique for generating those blocks, leads to a hybrid GGA performing better than either of its
components separately. The superiority of the hybrid GGA over the MTP procedure of Martello
and Toth was confirmed by an extensive experimental comparison.

                                               
     26 As the MTP’s performance in Tables 5 to 8 reveals, it was impossible to generate triplets at random and
then compute the global optima.
     27 Note that the MTP always claimed more than two bins more than the HGGA.
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Run Theo HGGA MTP
Bins Evals  Time Bins Loss Loss%  Backs   Time

 1  48  48    201   15.2   48  0  0.0       56    0.1
 2  49  49      0    0.0   49  0  0.0        0    0.1
 3  46  46     67    5.8   46  0  0.0   124935   29.0
 4  49  49    804   50.4   49  0  0.0       74    0.0
 5  50  50      0    0.0   50  0  0.0        0    0.0
 6  48  48    268   19.4   48  0  0.0       43    0.1
 7  48  48    268   19.0   48  0  0.0       69    0.0
 8  49  49    335   21.7   49  0  0.0       54    0.0
 9  50  51 134000 3668.7   51  0  0.0 10000000 3681.4
10  46  46    603   39.5   46  0  0.0      103    0.1
11  52  52      0    0.0   52  0  0.0        0    0.1
12  49  49    335   23.7   49  0  0.0       64    0.1
13  48  48    402   25.7   48  0  0.0       88    0.0
14  49  49      0    0.0   49  0  0.0        0    0.0
15  50  50      0    0.0   50  0  0.0        0    0.0
16  48  48    134   11.1   48  0  0.0       36    0.1
17  52  52      0    0.0   52  0  0.0        0    0.0
18  52  52   1340   76.1   52  0  0.0       48    0.0
19  49  49    201   14.3   49  0  0.0       24    0.0
20  49  50 134000 3634.7   50  0  0.0  7500000 3679.4
Averages  381  0  0.0   370

  6min    6min

Table 1  Uniform, 120 items.

Run Theo HGGA MTP
Bins Evals  Time Bins Loss Loss%  Backs   Time

 1  99  99   3082  256.7  100  1  1.0  1500000  1001.6
 2 100 100    469   47.4  100  0  0.0      151     0.2
 3 102 102   2613  223.8  102  0  0.0      418     0.3
 4 100 100    268   27.0  100  0  0.0      128     0.1
 5 101 101   1809  163.5  101  0  0.0    10225     4.1
 6 101 101   7236  477.6  103  2  2.0  1500000   522.1
 7 102 102    134   14.5  102  0  0.0      115     0.1
 8 103 104 134000 6628.8  104  0  0.0  4000000  7411.8
 9 105 105  18827  924.4  106  1  1.0  3100000  1049.1
10 101 101   1675  158.3  102  1  1.0  1500000   597.1
11 105 105   1005   95.6  106  1  1.0  1500000   377.2
12 101 101   3082  240.0  102  1  1.0  1500000  1075.5
13 105 106 134000 5996.7  106  0  0.0  7000000  6100.9
14 102 103 134000 6346.6  103  0  0.0  3000000  6969.2
15 100 100    804   82.6  100  0  0.0      135     0.1
16 105 105  98289 4440.1  106  1  1.0  3000000  4672.8
17  97  97   3216  254.5   98  1  1.0  1500000   545.4
18 100 100    402   38.5  100  0  0.0      138     0.1
19 100 100   2948  246.8  100  0  0.0      320     0.4
20 102 102    737   68.0  102  0  0.0      109     0.1
Averages  27430 1337  0  0.4   1516

 22min   25min

Table 2  Uniform, 250 items.



20

Run Theo HGGA MTP
Bins Evals   Time Bins Loss Loss%  Backs   Time

 1 198 198   7102   480.5  201  3  1.5  1500000   986.8
 2 201 201   2412   177.7  202  1  0.5  1500000   868.5
 3 202 202   4422   347.9  204  2  1.0  1500000   910.9
 4 204 204 233562 11121.2  206  2  1.0 20000000 11412.1
 5 206 206   3283   267.6  209  3  1.5  1500000   844.0
 6 206 206   1407   129.7  207  1  0.5  1500000   818.3
 7 207 207  28073  1655.5  210  3  1.4  5200000  1854.1
 8 204 204  36314  1834.7  207  3  1.5  4000000  2084.5
 9 196 196   8911   501.5  198  2  1.0  1500000  1221.8
10 202 202    938    92.5  204  2  1.0  1500000   962.4
11 200 200   1072   106.2  202  2  1.0  1500000   893.6
12 200 200   1876   152.3  202  2  1.0  1500000   793.0
13 199 199  17621  1019.3  202  3  1.5  2200000  1258.2
14 196 196   1541   135.5  197  1  0.5  1500000   860.3
15 204 204  12261   951.7  205  1  0.5  2000000  1202.8
16 201 201   5360   375.2  203  2  1.0  1500000   782.9
17 202 202   1809   162.6  204  2  1.0  1500000   732.7
18 198 198   4556   336.8  201  3  1.5  1500000   754.5
19 202 202   1675   143.9  205  3  1.5  1500000   637.5
20 196 196   4824   306.8  199  3  1.5  1500000   819.2
Averages  18951  1015  2  1.1   1535

  17min   26min

Table 3  Uniform, 500 items.

Run Theo HGGA MTP
Bins Evals   Time Bins Loss Loss%  Backs   Time

 1 399 399   2211  2924.7  403  4  1.0  3500000  3279.0
 2 406 406   2948  4040.2  410  4  1.0  5000000  4886.6
 3 411 411   4958  6262.1  416  5  1.2  8500000  6606.1
 4 411 411  35376 32714.3  416  5  1.2 50000000 40285.6
 5 397 397   8844 11862.0  401  4  1.0 20000000 20689.8
 6 399 399   2948  3774.3  402  3  0.8  5000000  4216.3
 7 395 395   2010  3033.2  398  3  0.8  3000000  3449.7
 8 404 404   7303  9878.8  406  2  0.5 12500000 12674.4
 9 399 399   4355  5585.2  402  3  0.8  4500000  6874.0
10 397 397   6968  8126.2  402  5  1.3 12200000  9568.2
11 400 400   2278  3359.1  404  4  1.0  4000000  3542.8
12 401 401   6700  6782.3  404  3  0.7  8100000  7422.4
13 393 393   1943  2537.4  396  3  0.8  3200000  2714.0
14 396 396  14137 11828.8  401  5  1.3 20000000 23319.4
15 394 394   5762  5838.1  399  5  1.3  5000000  6770.9
16 402 402  13802 12610.8  407  5  1.2 20000000 20458.4
17 404 404   2278  2740.8  407  3  0.7  3000000  3139.6
18 404 404   2077  2379.4  407  3  0.7  3000000  2506.4
19 399 399   1005  1329.7  403  4  1.0  1500000  1353.2
20 400 400   2680  3564.2  405  5  1.3  3000000  4109.6
Averages   6529  7059  4  1.0   9393

 118min  157min

Table 4  Uniform, 1000 items.
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Run Theo HGGA MTP
Bins Evals  Time Bins Loss Loss%  Backs   Time

 1  20  20    603    4.0  20   0  0.0   36254     9.5
 2  20  20    737    5.8  20   0  0.0   28451    12.6
 3  20  20    201    1.5  23   3 15.0 1500000   564.2
 4  20  20    938    5.9  22   2 10.0 1500000   444.7
 5  20  20     67    0.6  22   2 10.0 1500000   404.6
 6  20  20   1541    9.0  22   2 10.0 1500000   415.2
 7  20  20  63717  284.1  22   2 10.0 1500000   485.7
 8  20  21  67000  295.3  22   1  4.8 1500000   395.9
 9  20  20   1139    6.8  22   2 10.0 1500000   451.6
10  20  20    938    6.2  20   0  0.0   26983     9.6
11  20  20   2680   15.3  20   0  0.0    1783     0.9
12  20  20     67    0.6  20   0  0.0   13325     6.3
13  20  20    335    2.5  20   0  0.0    6450     1.5
14  20  20    871    4.7  22   2 10.0 1500000   385.0
15  20  20   1005    5.9  22   2 10.0 1500000   400.8
16  20  20    469    3.4  23   3 15.0 1500000   537.4
17  20  20    335    2.2  23   3 15.0 1500000   528.3
18  20  20   1541    9.2  22   2 10.0 1500000   429.9
19  20  21  67000  281.1  22   1  4.8 1500000   385.6
20  20  20    201    1.6  22   2 10.0 1500000   399.5
Averages  10569   47   1  7.2   313

 47sec   5min

Table 5  Triplets, 60 items.

Run Theo HGGA MTP
Bins Evals  Time Bins Loss Loss%  Backs   Time

 1  40  40   6633  120.9  44   4 10.0 1500000   844.3
 2  40  40   4824  104.0  43   3  7.5 1500000   823.0
 3  40  40   4489   95.9  43   3  7.5 1500000   956.4
 4  40  40   1273   39.1  44   4 10.0 1500000   859.3
 5  40  40   2948   75.8  45   5 12.5 1500000  1184.4
 6  40  40   7839  148.5  45   5 12.5 1500000  1188.7
 7  40  40   1541   47.2  45   5 12.5 1500000  1054.3
 8  40  40   2680   61.4  43   3  7.5 1500000   777.3
 9  40  40   1273   36.9  43   3  7.5 1500000   642.9
10  40  40  15343  255.5  44   4 10.0 1500000  1002.6
11  40  40   4623  102.9  44   4 10.0 1500000   885.7
12  40  40   1742   49.5  45   5 12.5 1500000   979.9
13  40  40   1742   42.5  44   4 10.0 1500000  1013.5
14  40  40   1742   57.3  44   4 10.0 1500000   834.8
15  40  40   1541   40.9  44   4 10.0 1500000   824.3
16  40  40   1541   46.8  44   4 10.0 1500000   873.0
17  40  40   4422   93.0  43   3  7.5 1500000   629.3
18  40  40   2010   51.1  44   4 10.0 1500000   790.2
19  40  40   3015   67.3  46   6 15.0 1500000  1171.1
20  40  40   1541   40.1  45   5 12.5 1500000  1075.5
Averages   3368   79   4 10.3   921

 1.5min  15min

Table 6  Triplets, 120 items.
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Run Theo HGGA MTP
Bins Evals  Time Bins Loss Loss%  Backs  Time

 1  83  83   6365  322.9  93  10 12.0 1500000  2381.4
 2  83  83   3149  226.8  88   5  6.0 1500000  1526.4
 3  83  83   2881  217.4  88   5  6.0 1500000  1455.3
 4  83  83  21105  723.0  90   7  8.4 1500000  1717.3
 5  83  83   7638  382.1  91   8  9.6 1500000  2513.4
 6  83  83  46699 1716.6  90   7  8.4 1500000  2176.9
 7  83  83  42277 1473.6  90   7  8.4 1500000  2107.5
 8  83  83 131923 4399.6  92   9 10.8 1500000  2492.9
 9  83  83  15477  614.5  91   8  9.6 1500000  2437.5
10  83  83   4556  318.2  90   7  8.4 1500000  1522.3
11  83  83  18626  776.9  94  11 13.3 1500000  2814.8
12  83  83   2345  191.2  90   7  8.4 1500000  1687.5
13  83  83   4489  261.9  89   6  7.2 1500000  1608.2
14  83  83   7035  360.2  91   8  9.6 1500000  2362.9
15  83  83   3551  203.6  89   6  7.2 1500000  1398.6
16  83  83    871   75.3  91   8  9.6 1500000  2682.7
17  83  83  17420  667.4  90   7  8.4 1500000  2080.8
18  83  83   4288  306.5  90   7  8.4 1500000  2086.3
19  83  83   5159  293.5  91   8  9.6 1500000  2237.3
20  83  83  29011 1024.9  91   8  9.6 1500000  2199.2
Averages  18743  728   7  9.0  2074

12min  35min

Table 7  Triplets, 249 items.

Run Theo HGGA MTP
Bins Evals  Time Bins Loss Loss%  Backs   Time

 1 167 167   3752 1806.7 184  17 10.2 1500000  5828.9
 2 167 167   3551 1582.2 181  14  8.4 1500000  3437.4
 3 167 167   1809 1234.5 177  10  6.0 1500000  2358.7
 4 167 167   3082 1821.9 180  13  7.8 1500000  3398.0
 5 167 167   5360 2355.2 181  14  8.4 1500000  3709.8
 6 167 167   2881 1424.0 183  16  9.6 1500000 10624.4
 7 167 167   1809 1161.4 183  16  9.6 1500000  5788.5
 8 167 167   2613 1503.7 183  16  9.6 1500000  5798.9
 9 167 167   3685 2138.4 177  10  6.0 1500000  2991.3
10 167 167   3082 1550.1 185  18 10.8 1500000  5626.3
11 167 167   2010 1052.9 179  12  7.2 1500000  3771.4
12 167 167   2814 1334.9 178  11  6.6 1500000  3063.7
13 167 167   3216 1502.2 187  20 12.0 1500000  5787.1
14 167 167   5293 1951.0 181  14  8.4 1500000  4494.9
15 167 167   3216 1473.9 183  16  9.6 1500000  5929.5
16 167 167   4623 2350.6 181  14  8.4 1500000  5306.9
17 167 167   2613 1178.8 183  16  9.6 1500000  5522.0
18 167 167   3551 1754.2 183  16  9.6 1500000  6277.2
19 167 167   3484 1775.5 180  13  7.8 1500000  4164.2
20 167 167   4288 2307.2 188  21 12.6 1500000  6519.4
Averages   3337 1663  15  8.9  5020

28min  84min

Table 8  Triplets, 501 items.
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The respective performances of the HGGA and the MTP procedure inspire an important
conclusion. Both methods use the same local techniques (both FFD and the Dominance Criterion
are embedded in MTP), but they use different global mechanisms for generating candidate
solutions (like all GAs, the HGGA uses crossover, while the MTP follows a branch-and-bound
search tree). Given the superiority of the HGGA demonstrated above, we hope that the search
mechanism of the GA will be recognized as a very viable instrument in searching the vast search
spaces of difficult problems. Note however, that the success of the HGGA is due to two key
components: an encoding and operators that fit the structure of the problem, and a sophisticated
local optimization. We believe that both are necessary in any high-performance GA.

Besides the Bin Packing Problem, the GGA holds a promise for many other grouping
problems. If the concept of dominance of Martello and Toth can be shown to carry over to other
domains, then the marriage of the two paradigms should prove useful for other grouping problems
as well.
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