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Abstract

The bin packing problem can be best described in
‘transportation’ terms; given a set of boxes of different
sizes, how shoud ore padk them all into containers of a
given size, in order to use & few containers as possble?

The task of balancing d (robdized) assembly
lines is of considerable industrial importance. It consists
of asggning operations from agiven set to workstationsin
a production line in such a way that (1) no asembly
|orecmlence @nstraint isviolated, (2) noworkstationin the
ine takes longer than a predefined cycle time to perform
al the tasks assgned to it, and (3) as few workstations as
possble ae needed to perform all the tasks in the set.

This paper presents a genetic grouping algorithm
for the two problems.

We first define the two problems predsely and
spedfy a st function suitable for the bin pading
problem.

Next, we show why the dassc genetic dgorithm
performspoarly on gouping problemsandthen present an
encoding o solutions fitting them.

We present efficient crossover and mutation ope-
rators for the bin padking. Then we give the modification
necessary to fit these operators for the line balancing.

We follow with results of performance tests on
randomly generated data. Espedally the line balancing
tests largely cover the red-world problem size.

We mnclude with a discusson d the results and
aress of further research.

Keywords: Genetic dgorithms, grouping, problem
encoding, bin pading, line balancing.

1. Introduction - the Problems
11 The Bin Packing

The bin padking problem (BPP is defined as
follows ([Garey and Johnson, 79)):

Given afinite set O of numbers (the objed sizes)
and two constants B (the bin size) and N (the number of
bins), isit possbleto ‘pad’ all the objedsinto N bins, i.e.
does there exist a partition d O into N or less sibsets,
such that the sum of elementsin any of the subsets doesn't
exceal B?

This NP-complete dedsion problem naturally
gﬂvesriseto the asciated NP-hard optimization problem,
the first subjed of this paper: what isthe best packing, i.e.
how many bins are necessary to pad all the objeds into
(what is the minimum number of subsets in the above
mentioned partition)?

Being NP-hard, there is no knowvn ogtimal algo-

rithm for BPPrunningin pdynomial time (and there will

most probably never be one). However, Egarey and
Johnson,79] cite simple heuristics which can be shown to
be no worse (but also no letter) than a rather small

multi plying facor above the optimal number of bins. The
ideais graightforward: starting with ore empty bin, take
the objeds one by ore and for ead of them first search
the bins © far used for a space large enough to
acaommodate it. If such abin can be found put the objec
there, if not, request a new bin. Putting the objea into the
first avail able bin found yields the First Fit (FF) heuristic.
Seaching for the most filled bin till having enoughspace
for the objed yields the Best Fit, a seemingly better
heuristic, which can, however, be shown to perform as
well (as bad) as the FF, while being slower.

12 The Line Balancing

The line balancing problem (LBP) can be descri-
bed as follows. given a set of tasks of various lengths,
subjed to precalence @nstraints (i.e. some tasks have &

rereguisite the aompletion d one or more other tasks, see
Sacedoati,77]), andatime cnstant caled cycletime, how
shoud be the tasks distributed over workstations along a
production (assembly) line, so that (1) no workstation
takes longer than the cycle time to complete dl the tasks
asdgned to it and (2) the precalence wnstraints are
complied with?

In more formal terms, we define the LBP as the
following dedsion problem:

Given a direded acyclic graph G=(T,P) (the
nodes T representing the tasks and the arows P
representing the precadence @nstraints) with a constant L,
(task Iengtk% asdgned to ead nock T,, a mnstant C (the
cycle time) and a onstant N, can the nodes T be
partitioned into N or less sibsets S (the j-th station's
tasks) in such a way that (1) for ead o the subsets, the
sum of L;s asociated with the nodes in the subset doesn't
exced C, and (2) there eists an ardering o the subsets
such that whenever two nodes in distinct subsets are
joined by an arrow in G, the arow goes from a

igher-ordered (ealier) to a lower-ordered (later) subset?

It is easy to show that the LBP is NP-complete:
it can be reduced to the NP-complete BPP, which it
contains as a spedal case (namely, the set of precealence
constraints, the arow set P, is empty for BPP. Nedalless
to say, the asociated ogtimization problem, where we ask
what is the minimum number of stations required, the
second subjea of this paper, is NP-hard.

As far as an available dgorithm for the LBP is
concerned, we ae not aware of any pdynomial approxi-
mation simil ar to those known for the BPP. However, the
tight connedion we just pointed ou, between the two
problems, will enable us to trea them in a very similar



way.
1.3 The Cost Function

Let us concentrate on the BPPand try to define
a suitable st function to ogtimize.

The objedive being to find the minimum number
of bins required, the first cost function which comes to
mind is smply the number of bins used to 'pad’ al the
objeds. This is correa from the strictly mathematica
point of view, but is unusable in pracdice. Indeed, such a
cost function leads to an extremely 'unfriendly' landscape
of the search space avery small number of optimal points
in the space ae lost in a sea of points where this
purported cost function isaﬂ'ust one unit above the
optimum. More importantly, all those dlightly subogimal
?oi nts yield the same cost. The troude isthat such a cost

unction ladks any capadty of guiding an algorithmin the
seach.

Consider the extreme cae where just one aran-
gement of the objeds yields the optimum of, say, N bins.
The number of possble arangements yielding N+1 bins

rows exporentially with N and is thus very large even
or small problem sizes. Nevertheless all these paointsin
the seach spaceyield the same cst of N+1 and thus
pea to be asolutely equal in terms of merit for
seaching their surroundngs. In ather words, an algorithm
would have to run into the optimal solution by mere
chance That would be impracicd, to say the least.

We thus have to find a st function which
asggns smilar (but not equal) values to similar solutions,
whil e having the same optima & the function abowe. In o-
her words, we have to identify the smallest natural piece
of asolution which is meaningful enoughto convey infor-
rr%ation abou the expeded quality of the solution it's part
of.

Fortunately, thisiseasy to doin the cae of BPP.
the bin pantsitself out as the natural 'information quan-
tum'. We simply redizethat the better each of the bins is
used, the fewer bins one neals to padk all the objedsin.
Or, conversely, a bad use of bins' capadty leals to the
necessty of suppementary bins, in order to contain the
objeds not paxed into the wasted space

In order to champion the bin, rather than the
overall performance of all the bins together, we dso have
to acount for the following: if we take two bins and
shuffle their contents amongthem, the situation where one
of the bins is nealy full (leaving the other one nealy
emgg/) is better than when the two bins are ebout equally
filled. This is because the nealy emptK bin will more
easily acoommodate additional objeaswhich could ather-
wise be too kg to fit into either of the half-filled hins.

Wethus =ttled for thefoll owing cost functionfor
the BPP. maximize

T (fill, 7 C)
N

fapp

with N being the number of bins used,
fill, the sum of sizes of the objeds in the bin i,
C the bin cagpadty and
k a monstant, k>1.

In other words, the cost function to maximize is
the average, over al bins, of the k-th power of 'bin effi-
ciency' measuring the exploitation d a bin's cgpadty.

The constant k expressesour concentration onthe
well -fill ed 'elite’ binsin comparisonto the lessfill ed ores.
Shoud k=1, only the total number of bins used would
matter, contrary to the remark above. The larger k is, the

more we prefer the 'extremists, as oppased to a mlledion
of abou equally filled bins. We have experimented with
several values of k and found ou that k=2 gives good
results. Larger values of k seam to lead to premature
convergence of the dgorithm, as the locd optima, due to
a few well-filled bins, are too hard to escape.

14 Context of the Line Balancing

Figure 1 presents the global architedure of an
Integrated Control of a flexible assembly cdl, under
development in our lab, which the line balancing program
is a part of.
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Figure 1: Overall architedure of the Integrated Control.

The figure shows the various functions that this
control must fulfil and the interadions between them.

The system includes two eseential parts :

- an off-line part

- an online part.
141  Off-line Programming

The off-line programming includes four
functions :

- design for asembly,

- asembly planning,

- resource planning,

- scheduling.

14.1.1 Design for asembly

Thismodue evaluates afirst proposal of product
design. It helps the user to improve the design d this
product in order to make its assmbly process more
efficient. This tool uses Design for Asembly (DFA),
Design for Manufacuring (DFM) and Design for Quality
(DFQ) techniques.

14.1.2 Aszmbly planning



Asembly planning generates asembly plans
based onthreetypes of description: geometrica (dimen-
sions of com\oorents and their relative positions in the
final asembly), physicd (the mporents physica
charaderistics), andtopdogica (relations between parts of
the asembly). An asembly plan is a graph which nocdes
represent asembly operations and links represent prece
dence monstraints. General knowledge of the assembly cell
makes it posshle to choose among the various plans
propaosed. Except for these general criteria, the plan is
independent of the production means used.

Thisis atask-level programming system. Idedly,
the operator spedfies the type of objed to be asembled
and the system generates the sssembly plan. The data de-
ments composing these plans are the asembly adions or
operations, in the form of objed-level instructions :

- insert peg ain hde b,

- placepart c on part d,

- screw part e onto part f.

These ae the operations required to construct the
product. They can be performed serially and/or in parallel.
A plan thus usually lists a set of sequential series of
aaions cdled asembly sequences.

1.4.1.3 Resource planning

From the chosen asembly plan and wing a
database of existing production means, adesigntoadl helps
the user to design bah general production means ﬁassem -
ly methods : manual, automated or robatized; cel |ayout)
and spedfic production means (robas, fixtures, feeding
devices, grippers,...).

14.1.4 Scheduling

On the basis of the chosen assembly plan or plans
and d a detailed description d the production means
available (robats, fixtures, grippers, feeding cevices, ..),
schedulinc? is needed to answer the question : "Who dces
what and when ?'. In other words, it synchronises
asembly operations and dstributes them to the cdl's
various adors.

It's at this dage that collision-free paths are
generated.

142 On-line Control

The on-line programming system controls the
exeaution d asembly operations. It includes two main
functions :

- asembly supervisionanderror diagnasis,

- error recovery.

14.2.1 Assmbly supervision and error diagnasis

Thismoduemonitorsasembly exeaution, deteds
errors and identifies the caises of an anomaly: one or
several defedive parts, a broken-down todl, ...

It makes intensive use of various ®nsors
(proximity, force, vision,...).

1.4.2.2 Error Recovery

This modue plans and controls the rredion
operations, so as to return the cdl to a state in which
normal asembly may continue. This dep's essential
criterion is to eliminate & few componrents as posshble.

The cae of faulty tools requires rescheduling o
operations, as siown in figure 1.

This paper deds with the first step of resource
planning: the line balancing problem. It minimizes the
number of workstations using cycle time and operation
exeaution time constraints.

2. Genetic Algorithms and Grouping Problems
21 Generalities

The Genetic Algorithms (GAs) are an o&Iimiza—
tion technique for functions defined owver finite (discrete)
domains. Since their introduction some 15 yeas ago
([Holland,75]) they have been extensively studied and
applied to awide variety of problems, including machine
leaning and NP-hard opimization problems ([Goldberg,
89|, [Holland et al.,86], [Grefenstette,85], [Grefenstette,
87], [Schaffer,89]).

The reader not familiar with the GA paradigm
can consult the recent literature on the topic (eg.
[Morrow,91]) - we won't introduce it here for space
reasons. A short description can be found for example, in
[Falkenauer and Bouffouix,91], while [Goldberg,89], for
instance, offers an excdlent presentation o much of the
GA tedchnique.

Let us, however, recdl that the main concept un-
derlying the GA medhanics are schemata - portions of
chromosomes which map orto subspaces of the seach
space In faa, the dficiency of GAs (or, more predsely,
of the aossover operator) stems from the fad that the
algorithms, whil e manipulating the chromosomes, impli ci-
tely manipulate large numbers of schemata ([Holland,75]).

In this dionwe will examine the dfeds of the
clasgc genetic operators on the structures relevant to the
grouping problems. These ae the optimization problems
where the @m is to group members of a set into a small
number of families, in order to opimize acost function,
while cmplying with some hard constraints (which, in
particular, prevent the grouping d all the objeds into the
same unique family). A problem is a grouping when the
cost function to maximize increases with the size ad
decaeases with the number of famili es created.

The BPP(and rence LBP) can clealy be seen to
be agrouping poblem: the am is to c}youpthe objeds
into famili es(%i ns) and the ast functiont,,, aboveindeed

rows with the size (fill) and deareases with the number
explicitly via N, and implicitly via fill ) of the famili es.

For the sake of clarity, we will consider the bin
packing problem in the rest of this sdion, and assume
that the hard constraint, i.e. the maximum bin capadty, is
always complied with.

2.2 The Crossover

Let us sehow the significant (strong) schemata
relevant to the problem of grouping are transferred from
parents to off spring under the standard crossover.

Let's assume the most straightforward encoding
scheme, namely one gene per objed. For example, the
chromosome

ADBCEB
would encode the solution where the first objed isin the

roug (bin) A, the second in the group D, third in B,
ourth in C, fifth in E and sixth in the group B. Note that
the third and the sixth oljeds are in the group B - the
objeds are thus grouped in the same group.

Since, by definition o the problem, the st
functionincreases with the size of groups, the grouping o
the two oljeds into ore group constitutes a gain and
shoud be thus transmitted to the next generations.



However, the two genes are positioned too far from ead
other on the diromosome to be safe ajainst disruption
during the aossver. Indeed, the probability that a
crossng site will fall between the two of them grows with
their distance

We must thus find a way to shorten this kind o
schema. The standard way to dothisisthroughinversion.
By storing the loci together with the dleles, the same
chromosome, written this time

123456 Ethe number of the objed)

ADBCEB the group the otg'ed Isin),
could be aranged by (possbly successve) inversion(s)
into

123654

ADBBEC.

This chromosome has the interesting genes tightly
together. This time the group d Bs has good chances to
survive a cosover.

So far so good The problems begin when the
groups beocome larger, that is, incidentally, when the
optimizaion process $arts to develop a good solution o
the group'ng problem. Indeed, in a chromosome like

12365

ACBBBB,
the probability of disruption o the very promising goup
of four Bsis as large & it was for the group d two Bs
without inversion. We thus sethat inversion canna help
in asauring goodsurvival rates for schemata relevant to
the grouping problem. This is because the good schemata
for this problem are, by definition, long schemata.

In ather words, whil e the dasdc crosover Sfitted
with inversion a not) might converge to a better solution
inthe be%inning d the genetic search, once agoodcandi-
date has been found instead of improving this lution, it
works against its own progresstowards destruction d the
good schemata. The result is, of course, an algorithm
stagnating on poo, never improving solutions.

2.3 The Mutation

Let's again consider the standard encoding and
see the dfeds of the standard mutation, i.e. a random
modification o arandamly chosen allele, in the cae of
grouping.

Consider for examplethefoll owingchromosome :

ABDBAC.

A mutation d this individual could yield

ABDEAC,
which could be beneficial, for the dlele E, perhaps
missng from the popuation, appeas in the genetic pod.

The troubles begin, once aain, as the dgorithm
approaches a good solution, developing large groups of
identicad alleles. The standard mutation o

AAABBB
would lead, for example, to

EBBB.

On the one hand, the dlele E appeasin the popuation -
a posshly beneficial effed. On the other hand, the new
chromosome mntains a 'group of just one dement. Since
groupgng d objeds acwurts for a gain, this mutated
individual will most probably show a steep lossof fitness
in comparison with the other non-mutated individuals.
Consequentlty, thisindividual will be diminated with high
probability from the poPéJration onthe very next step of
the drgl;orithm, yielding hardly any benefit for the genetic
seach.

In ather words, the dassc mutation is too
destructive once the GA begins to read a good solution
of the grouping problem.

3. Operators for the two Problems
3.1 The Encoding

As we have seen, the standard genetic operators
are not suitable for the grouping problems. Unlike with the
deceptive problems of [ Goldberg, 87], the strongschemata
are not misleading. Rather, they do nd survive the very
genetic seach suppcsed to improve them.

The main reason is that the structure of the
simple diromosome (which the &ove operators work
with) is much too objed oriented, instead of being group
(i.e. bin) oriented. In short, the @&ove eicoding is not
adapted to the ost function to opimize. Indeed, fg,
champions the promising kins, but there is no structur
courterpart for them in the diromosome @ove. That is a
serious drawbad: the fad that the objed i isin the bin j
ismeaningless- it isthe fad that the bin j is full or empty
that isimportant. Of course, given the distribution o the
objeds to the bins, one can always compute the state of
the bins, but such an informationis far tooindired for the
GA (i.e. the operators) to betaken into acourt efficiently.

Note that these remarks are nothing more than a
cdl for compliance with the Thesis of Good Building
Blocks, central to the GA paradigm. Note dso that since
we did na refer explicitly to the BPPor LBP, the above
conclusions apply to al grouping problems. Indeed, for
instance []Falkenauer,gl] applies smilar conclusions in a
successul treament of a dasdficaion problem, which
turns out to be agroupng.

To remedy the aove problems, we have chosen
the foll owing encoding scheme: the standard chromosome
above is augmented with a group part, encoding the bins
onaone gene for one bin basis. For example, the first and
the next to last chromosomes above would be encoded as
foll ows:

ADBCEB:BECDA

AAABBB:AB,
with the group part written after the semicolon.

The important point is that the cgenetic operators
will work with the group part of the chromosomes, the
standard oljed part of the diromosomes merely servingto
identify which ojedsacually form which group. Notein
ﬁarticular that this implies that the operators will have to

andle chromosomes of variable length.

3.2 Apport of Known Heuristics

In constructing a solution o the BPP, we can
make the following olservation: in a goodsolution, most
of the bins are well filled. This is important, because it
shows that in constructing a new solution o the problem,
it usually pays to look for well filled hins.

On the other hand, the FF heuristic (see sedion
1.1 abowe) is attradive & a means of pladng ohjedsinto
bins for three reasons.

First, it places the objeds one by ore, i.e. its
strateg( is independent of the whale of the set of objeds
to pack. That means the heuristic does make sense in case
a subset of the objeds isto be placed into hins.

Seoond, it does not need to start ead time from
the scratch, i.e. it can start with a set of partialy fill ed
bins (i.e. with a partial solution) and still padk the sup-
plementary objeds in a reasonable way.

Third, it is complete, i.e. it can generate the
optimal solution. Indedd, there isaleeway in its function:
the solution it produces depends on the order in which the
objeds are presented to the heuristic (and thus placed into
the bins), and at leest one permutation o the objedsleads
to the optimum. Note that this is rather exceptional for a



heuristic. For example, another heuristic for BPP, the First
Fit Descending (FFD) in [Garey and Johnson, 79], first
sorts the objeds in deceas n? ader of their sizes before
applying the FF strategy. While performing slightly better
than FF, it always produces a unique solution d a
problem.

Given the three points above, we took advantage
of the FF and FFD heuristics in conceiving the genetic
operators for the BPP.

3.3 Generating the First Population

The genetic dgorithm starts from an initi al popu
lation which is usually generated at randam. This initial
'seed' cannat, however, contain invalid individuals, which
means that we must find a way to generate a solution
whichisboth random and compliant with the constraint(s).

The FF heuristic serves well as the initia
solution-generator. When presented with the objedsin a
random order, it generates a solution which is reasonable
(i.e. not unacceptably bad), yet till random to a large
extent. More importantly, the modification introduced in
the sedion 37 below will make it generate valid indivi-
duals for the line balancing as well.

34 BPCX, the Bin Packing Crossover

A crosover's job consistsin producing df spring
out of two parents in such a way that the dildren inherit
as much of the meaningful information from bath parents
as possble. Since it is the bin that conveys important
information in BPP, we must find a way to transmit bins
from the parents onto the dildren. This is dore &
foll ows.

Consider the following group prts of the dro-
mosomes to cross (recdl that there is one gene per bin):

ABCDEF first parent)

abcd second parent).

First, copies are made of the two parents (in order
not to destroy the parents) and two crossng sites are cho-
sen at randam in ead of them, yielding for example

QABSDEF and

C

Next, the bins between the aosdng sites in the second
chromosome aeinjeded into the first, at the first crossng
site, yieldin

AcdBCDEF.
Now some of the objeds appea twicein the solution and
must be thus eli minated. Suppase the objedsinjeded with
the bins ¢ and d also appea in the bins C, E and F. We
eliminate thase bins, leaving

AcdBD.
With the dimination d those three bins we have,
however, most probably eli minated oljeaswhich were not
injected with the bins ¢ end d Those objeds are thus
m|ssn%from the solution. To fix this last problem, we
apply the FFD heuristic to reinsert them, yielding, say

AcdBDx,
where x are one or more bins formed of the reinserted
objeds.

As can easily be seen, the dhild just constructed
indead inherited important information from both parents,
namely the bins A, B and D from the first and ¢ and d
from the second Note, however, that the bins A, B and D
might not be exadly the original ones foundin the first
parent, because the FFD might have fill ed them up with
some of the objeds reinserted in the last stage of the
BPCX. Nonetheless this is acually beneficial, since it
leads to bins even better fill ed than in the parent.

35 The Mutation

The mutation operator for the BPPisvery simple;
given a chromosome, we seled at randam a few bins and
eliminate them. The obLecIs which composed those bins
are thus missng from the solution and we use the FF to
insert them badk in a random order.

In order to improve the chances of the mutation
to improve the airrent solution, we follow two rules: the
emptiest bin is always amongthe diminated ores, and we
always eliminate and subsequently reinsert at least three
Ibi ns (the number of used hins canna be improved with
ess.

Note that, as with the BPCX, even some of the
bins not seleded for elimination might be filled upwith
objeds from the diminated hins.

3.6 The Inversion

Therole of an inversion ogerator isto change the
positions of some of the genes on the chromosome in
order to asgst the aossver in transmitting goodschemata
to the offspring (see sedion 22). Unlike the other two
operators, It thus only affeds the representation o the
genleftic contents of a chromosome, nat the information
itself.

The inversion we use for the BPPis the dasdc
one, the only difference being that it operates only onthe
groug (bin) part of the dromosome. Since the
membership of objedsin binsisnot affeaed by a change
of bins positions on the chromosome, the objed part of
the chromosome remains unchanged. For example, the
chromosome

ADBCEB:BECDA
could be inverted into

ADBCEB:CEBDA.

The example ill ustrates the utility of this operator: shoud
B and D be promising genes (i.e. well filled hins), the
probability of transmitting both of them during the next
crosver is improved after the inversion, since they are
now closer together, i.e. safer against disruption. That in
turn makes the proliferation d the goodschemata eaier.

3.7 Modification for the Line Balancing

Given the operators above and the similarity
between the bin padcing and line balancing pdnted ou in
sedion 12, we can easily construct the aosover and
mutation operators for the latter problem. An inversion
doesn't change the information in a chromosome, so the
one &ove ca be used for both problems.

Sincethe only difference between BPPand LBP
lies with the suppementary precalence mnstraint for the
latter, all we have to do to adapt the BPP operators for
LBP, is to ensure that nore of them will violate this
constraint.

Thisis easily dore if we note the following: (1)
eliminating groups (i.e. workstations) from avalid solution
doesn't spail the mnstraint, i.e. the new (partial) solution
is again a valid ore, and (2) ead time we mmplete a
solution by gadng oheds into bins, we use the FF or
FFD heuristic. Clealy, making sure the heuristics never
violate the precadence onstraints yields valid operators
for the line balancing problem.

Reverting to the LBP definition above, we note
that the precaedence mnstraint is violated when thereis a
cycle in the graph oliained from the original graph G by
merging the nodes belongng to the same group (worksta-
tion) into ore node, preserving all the arows except the
ones that make anode point to itself.

Indedd, with a ¢gyclein the aove graph, there is



noway we could say whether anode in the ¢ycle precales
or follows another node in the ¢ycle, i.e. the required
ordering d the subsets canna be found Conversely, we
can always compute the degrees of nodes in an acyclic
graph, i.e. such an ordering can be found

In order to prevent cyclesin the 'group gaph’, we
modify the heuristics as follows. ead time we ae adbou
to insert an ojed into a group (atask onto a workstation,
or, in BPPterms, an oljed into a bin), we compute the
length (in terms of the number of arrows involved) of the
longest precadence path leading from the objec to all the
groups arealy in place We than restrict the heuristic to
put the objed into a group which is either not conneded
at al with the objed, or is conreced via exadly one
arrow.

This cycling prevention for the heuristics insures
the validity of the mutation operator, since dl we dothere
is to eliminate end then reinsert ojeds from a solution.
The BPCX crosver is abit moretricky: theinjeaed bins
(workstations) can be incompatible (i.e. induce oycles)
with the ones already in place

Hence we procedal as follows. having injecaed
groupsandeliminated those mntaining doulbe occurrences
of objeds from the chromosome, we chedk for the presen-
ce of cycles between the groups left in the dhromosome.
If thereis nore, we procee as usual, with the constrained
FFD. If so, in order to modify the inherited schemata &
little @ possble, we repeaedly eliminate one objed,
chosen at randam from those which form the ¢ycle, and
chedk again for the presence of a g/cle. As on as the
cycle is broken, we have avalid partial solution, and can
proced as above.

4. Experimental Results
4.1 The Bin Packing

Since the First Fit Descending can be shown to
be agood leuristic for the BPP, it constituted a bench-
mark in tests of performance of our GA approach.
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Figure 2: Relative BPP performance of the GA and FFD.

We onstructed the test data as follows: we first
generated ot%eds of randam sizes admitting a perfed
packing (i.e. fgp=1), and then subtraced from randamly
chosen ohjedsatotal of LEEWAY percentage of the size
of one bin. For example, with LEEWAY set to 3% and
the bin size of 255, the total size of the objeds was 7.65
less than the total capadty of the bins In the perfea
padcing. Thusthetest refleded the ability of the dgorithm

to get as close as possble to the optimum, rather than its
eventual ability to find the optimum perfed pading. In-
dedd, the latter test would be atest of optimality, which
would be eguivalent to asking whether we can solve in a
reasonabletime an NP-complete dedsion problem - some-
thing the dgorithm wasn't and couldn't be designed to.

Since the total size of the objeds was only a
fradion o the bin size lessthan the total capadty of the
bins in the perfed pading, the optimum number of bins
hasn't changed. Hence we observed the &bility of the dgo-
rithm to read that number of bins, compared to the FFD
heuristic. However, in order to acourt for a pradica use
of the GA, we required it to read the optimum number of
bins in at most 5000 generations.

The results are summarized in figure 2. It shows
the average propartion, over 50 successve runs, of test
cases of 64 oljeds succesSully optimized bythe GA and
FFD, function d the LEEWAY (1.5 through 1346 of the
bin size). The dhart showsthe net superiority of the GA in
'tougH condtions, i.e. when the spacefor the objeds to
padc is tight.

The running times of the GA were of the order of
a minute on a 4D35 Sili con Graphics (33 MIPS.

4.2 The Line Balancing

For the line balancing, the precadence @nstraints
were generated for a set of tasks obtained as above, by
sorting them 'in time' and making precele 'later' tasks by
randomly chosen 'ealier' tasks. In short, we made sure
that the optimal pading also complied with the prece
dence onstraints.

Dueto the precadence @nstraints, we cainat use
the FFD as a benchmark anymore. Indeed, when modified
as indicaed in sedion 37 abowe, its performance dete-
riorates badly. Nevertheless a figure similar to the figure
2 gives an idea of the performance of the dgorithm. It
was obtained as the previous one, except that the
algorithm was allowed to run for a maximum of 10000
generations.

The figure demonstrates the GA's ahility to find
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Figure 3: Relative LBP performance of the GA and FFD.

the optimal number of workstations with ody a small
LEEWAY (say 5% of the oycle time). The aserage run-
ning time was of the order of 5 minutes.

The experimental LBP results compare favorably
with the industrial redity :
- The size of 64 operations comfortably covers the
majority of industry's needs. Nevertheless shoud that not



be enough preliminary tests siggest that problems of up
to two hunoped tasks could still be handed in areasonable
time.

- The ¢cle time being a parameter set by
econamic considerations, it is extremely rare to require a
perfed line balancing (i.e. the sum of task lengths be a
multi ple of the gycle time), which means that a LEEWAY
aways exists. With that in mind, the 5% of cycle time,
compared to the total length of all tasks, dorit represent a
major strain. In any case, when necessary, allowing the
algorithm to run for more generations increases the
probability of an ogimal balancing.

The GA's performance dso represents a very
goodalternative in comparison to most enumeration tech-
niques. This is due mainly to its cgpadty to handle caes
with very sparse precadence @nstraints, thanks to its bin
padcing 'ancestor'. The enumeration techniques require
much denser precedence mnstraints, not commonin prac
tice to gude them in the seach, if they are to solve
problems of comparable size in a reasonable time and
memory space For instance, a sophisticaed dyramic
programming technique used by [Peng,91] requires 60%
norempty entries in the precealence matrix in order to
solve problems with 25 tasks reasonably fast.

5. Discussion
51 Conclusions

We have presented an efficient genetic dgorithm
for two NP-hard problems, the bin packing and the line
balancing. The latter being an important industrial prob-
lem, we demonstrated the dgorithm's ability to handle
red-world data sizes.

The two problems being d the groupng type, we
have justified the use of new encodin? and ogerators by
showingthat the dassc GA canna perform well on prob-
lems of this kind.

5.2 Suggestions for Further Development

Let usconcentrate onthe line balancing problem.
The dgorithm is realy for industrial use in condtions
given by the LBP definition above. However, in order to
enhance its applicability, at least the following
improvements can be suggested:
- enable the user to spedfy preferences of certain
tasks to be or not to be performed onthe same worksta-
tion. This preference @uld be mnsidered as either a hard
(inviolable) or a soft constraint;
- take into acount the st of ead workstation,
given the tasks asdgned to it. For example, a station with
very disamilar tasks, i.e. a very flexible one, would be
more expensive than a spedalized ore.
b The first of these is currently under way in ou
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