
A Genetic Algorithm for Bin Packing
and Line Balancing

E.Falkenauer, A.Delchambre

CRIF - Research Centre for Belgian Metalworking Industry
CP 106 - P4

50, av. F.D.Roosevelt
B-1050 Brussels, Belgium

Email: PIERRE_LECOCQ_CRIF@eurokom.ie

Abstract

The bin packing problem can be best described in
'transportation' terms: given a set of boxes of different
sizes, how should one pack them all i nto containers of a
given size, in order to use as few containers as possible?

The task of balancing of (robotized) assembly
li nes is of considerable industrial importance. It consists
of assigning operations from a given set to workstations in
a production li ne in such a way that (1) no assembly
precedence constraint is violated, (2) no workstation in the
line takes longer than a predefined cycle time to perform
all the tasks assigned to it, and (3) as few workstations as
possible are needed to perform all the tasks in the set.

This paper presents a genetic grouping algorithm
for the two problems.

We first define the two problems precisely and
specify a cost function suitable for the bin packing
problem.

Next, we show why the classic genetic algorithm
performs poorly on grouping problems and then present an
encoding of solutions fitti ng them.

We present eff icient crossover and mutation ope-
rators for the bin packing. Then we give the modification
necessary to fit these operators for the li ne balancing.

We foll ow with results of performance tests on
randomly generated data. Especiall y the li ne balancing
tests largely cover the real-world problem size.

We conclude with a discussion of the results and
areas of further research.

Keywords: Genetic algorithms, grouping, problem
encoding, bin packing, li ne balancing.

1. Introduction - the Problems

1.1 The Bin Packing

The bin packing problem (BPP) is defined as
foll ows ([Garey and Johnson, 79]):

Given a finite set O of numbers (the object sizes)
and two constants B (the bin size) and N (the number of
bins), is it possible to 'pack' all the objects into N bins, i.e.
does there exist a partiti on of O into N or less subsets,
such that the sum of elements in any of the subsets doesn't
exceed B?

This NP-complete decision problem naturall y
gives rise to the associated NP-hard optimization problem,
the first subject of this paper: what is the best packing, i.e.
how many bins are necessary to pack all the objects into
(what is the minimum number of subsets in the above
mentioned partiti on)?

Being NP-hard, there is no known optimal algo-

rithm for BPP running in polynomial time (and there will
most probably never be one). However, [Garey and
Johnson,79] cite simple heuristics which can be shown to
be no worse (but also no better) than a rather small
multi plying factor above the optimal number of bins. The
idea is straightforward: starting with one empty bin, take
the objects one by one and for each of them first search
the bins so far used for a space large enough to
accommodate it. If such a bin can be found, put the object
there, if not, request a new bin. Putting the object into the
first available bin found yields the First Fit (FF) heuristic.
Searching for the most fill ed bin still having enough space
for the object yields the Best Fit, a seemingly better
heuristic, which can, however, be shown to perform as
well (as bad) as the FF, while being slower.

1.2 The Line Balancing

The li ne balancing problem (LBP) can be descri-
bed as foll ows: given a set of tasks of various lengths,
subject to precedence constraints (i.e. some tasks have as
prerequisite the completion of one or more other tasks, see
[Sacerdoti,77]), and a time constant called cycle time, how
should be the tasks distributed over workstations along a
production (assembly) li ne, so that (1) no workstation
takes longer than the cycle time to complete all the tasks
assigned to it and (2) the precedence constraints are
complied with?

In more formal terms, we define the LBP as the
foll owing decision problem:

Given a directed acycli c graph G=(T,P) (the
nodes T representing the tasks and the arrows P
representing the precedence constraints) with a constant Li
(task length) assigned to each node Ti, a constant C (the
cycle time) and a constant N, can the nodes T be
partiti oned into N or less subsets Sj (the j-th station's
tasks) in such a way that (1) for each of the subsets, the
sum of L is associated with the nodes in the subset doesn't
exceed C, and (2) there exists an ordering of the subsets
such that whenever two nodes in distinct subsets are
joined by an arrow in G, the arrow goes from a
higher-ordered (earli er) to a lower-ordered (later) subset?

It is easy to show that the LBP is NP-complete:
it can be reduced to the NP-complete BPP, which it
contains as a special case (namely, the set of precedence
constraints, the arrow set P, is empty for BPP). Needless
to say, the associated optimization problem, where we ask
what is the minimum number of stations required, the
second subject of this paper, is NP-hard.

As far as an available algorithm for the LBP is
concerned, we are not aware of any polynomial approxi-
mation similar to those known for the BPP. However, the
tight connection we just pointed out, between the two
problems, will enable us to treat them in a very similar

way.

1.3 The Cost Function

Let us concentrate on the BPP and try to define
a suitable cost function to optimize.

The objective being to find the minimum number
of bins required, the first cost function which comes to
mind is simply the number of bins used to 'pack' all the
objects. This is correct from the strictly mathematical
point of view, but is unusable in practice. Indeed, such a
cost function leads to an extremely 'unfriendly' landscape
of the search space: a very small number of optimal points
in the space are lost in a sea of points where this
purported cost function is just one unit above the
optimum. More importantly, all those sli ghtly suboptimal
points yield the same cost. The trouble is that such a cost
function lacks any capacity of guiding an algorithm in the
search.

Consider the extreme case where just one arran-
gement of the objects yields the optimum of, say, N bins.
The number of possible arrangements yielding N+1 bins
grows exponentiall y with N and is thus very large even
for small problem sizes. Nevertheless, all these points in
the search space yield the same cost of N+1 and thus
appear to be absolutely equal in terms of merit for
searching their surroundings. In other words, an algorithm
would have to run into the optimal solution by mere
chance. That would be impractical, to say the least.

We thus have to find a cost function which
assigns similar (but not equal) values to similar solutions,
while having the same optima as the function above. In ot-
her words, we have to identify the smallest natural piece
of a solution which is meaningful enough to convey infor-
mation about the expected qualit y of the solution it's part
of.

Fortunately, this is easy to do in the case of BPP:
the bin points itself out as the natural 'information quan-
tum'. We simply reali ze that the better each of the bins is
used, the fewer bins one needs to pack all the objects in.
Or, conversely, a bad use of bins' capacity leads to the
necessity of supplementary bins, in order to contain the
objects not packed into the wasted space.

In order to champion the bin, rather than the
overall performance of all the bins together, we also have
to account for the foll owing: if we take two bins and
shuff le their contents among them, the situation where one
of the bins is nearly full (leaving the other one nearly
empty) is better than when the two bins are about equall y
fill ed. This is because the nearly empty bin will more
easil y accommodate additi onal objects which could other-
wise be too big to fit into either of the half-f ill ed bins.

We thus settled for the foll owing cost function for
the BPP: maximize

 Σi=1..N(fill i / C)k

fBPP =
 N

with N being the number of bins used,
fill i the sum of sizes of the objects in the bin i,
C the bin capacity and
k a constant, k>1.

In other words, the cost function to maximize is
the average, over all bins, of the k-th power of 'bin eff i-
ciency' measuring the exploitation of a bin's capacity.

The constant k expresses our concentration on the
well -fill ed 'elit e' bins in comparison to the less fill ed ones.
Should k=1, only the total number of bins used would
matter, contrary to the remark above. The larger k is, the

more we prefer the 'extremists', as opposed to a collection
of about equall y fill ed bins. We have experimented with
several values of k and found out that k=2 gives good
results. Larger values of k seem to lead to premature
convergence of the algorithm, as the local optima, due to
a few well -fill ed bins, are too hard to escape.

1.4 Context of the Line Balancing

Figure 1 presents the global architecture of an
Integrated Control of a flexible assembly cell , under
development in our lab, which the li ne balancing program
is a part of.

Figure 1: Overall architecture of the Integrated Control.

The figure shows the various functions that this
control must fulfil and the interactions between them.

The system includes two essential parts :
- an off- li ne part
- an on-li ne part.

1.4.1 Off-line Programming

The off- li ne programming includes four
functions :

- design for assembly,
- assembly planning,
- resource planning,
- scheduling.

1.4.1.1 Design for assembly

This module evaluates a first proposal of product
design. It helps the user to improve the design of this
product in order to make its assembly process more
eff icient. This tool uses Design for Assembly (DFA),
Design for Manufacturing (DFM) and Design for Qualit y
(DFQ) techniques.

1.4.1.2 Assembly planning

Assembly planning generates assembly plans
based on three types of description: geometrical (dimen-
sions of components and their relative positi ons in the
final assembly), physical (the components' physical
characteristics), and topological (relations between parts of
the assembly). An assembly plan is a graph which nodes
represent assembly operations and li nks represent prece-
dence constraints. General knowledge of the assembly cell
makes it possible to choose among the various plans
proposed. Except for these general criteria, the plan is
independent of the production means used.

This is a task-level programming system. Ideall y,
the operator specifies the type of object to be assembled
and the system generates the assembly plan. The data ele-
ments composing these plans are the assembly actions or
operations, in the form of object-level instructions :

- insert peg a in hole b,
- place part c on part d,
- screw part e onto part f.
These are the operations required to construct the

product. They can be performed seriall y and/or in parallel.
A plan thus usuall y li sts a set of sequential series of
actions called assembly sequences.

1.4.1.3 Resource planning

From the chosen assembly plan and using a
database of existing production means, a design tool helps
the user to design both general production means (assemb-
ly methods : manual, automated or robotized; cell l ayout)
and specific production means (robots, fixtures, feeding
devices, grippers,...).

1.4.1.4 Scheduling

On the basis of the chosen assembly plan or plans
and of a detail ed description of the production means
available (robots, fixtures, grippers, feeding devices, ...),
scheduling is needed to answer the question : "Who does
what and when ?". In other words, it synchronises
assembly operations and distributes them to the cell 's
various actors.

It's at this stage that colli sion-free paths are
generated.

1.4.2 On-line Control

The on-li ne programming system controls the
execution of assembly operations. It includes two main
functions :

- assembly supervision and error diagnosis,
- error recovery.

1.4.2.1 Assembly supervision and error diagnosis

This module monitors assembly execution, detects
errors and identifies the causes of an anomaly: one or
several defective parts, a broken-down tool, ...

It makes intensive use of various sensors
(proximity, force, vision,...).

1.4.2.2 Error Recovery

This module plans and controls the correction
operations, so as to return the cell to a state in which
normal assembly may continue. This step's essential
criterion is to eliminate as few components as possible.

The case of faulty tools requires rescheduling of
operations, as shown in figure 1.

This paper deals with the first step of resource
planning: the li ne balancing problem. It minimizes the
number of workstations using cycle time and operation
execution time constraints.

2. Genetic Algorithms and Grouping Problems

2.1 Generalities

The Genetic Algorithms (GAs) are an optimiza-
tion technique for functions defined over finite (discrete)
domains. Since their introduction some 15 years ago
([Holland,75]) they have been extensively studied and
applied to a wide variety of problems, including machine
learning and NP-hard optimization problems ([Goldberg,
89], [Holland et al.,86], [Grefenstette,85], [Grefenstette,
87], [Schaffer,89]).

The reader not famili ar with the GA paradigm
can consult the recent literature on the topic (e.g.
[Morrow,91]) - we won't introduce it here for space
reasons. A short description can be found, for example, in
[Falkenauer and Bouffouix,91], while [Goldberg,89], for
instance, offers an excellent presentation of much of the
GA technique.

Let us, however, recall that the main concept un-
derlying the GA mechanics are schemata - portions of
chromosomes which map onto subspaces of the search
space. In fact, the eff iciency of GAs (or, more precisely,
of the crossover operator) stems from the fact that the
algorithms, while manipulating the chromosomes, impli ci-
tely manipulate large numbers of schemata ([Holland,75]).

In this section we will examine the effects of the
classic genetic operators on the structures relevant to the
grouping problems. These are the optimization problems
where the aim is to group members of a set into a small
number of famili es, in order to optimize a cost function,
while complying with some hard constraints (which, in
particular, prevent the grouping of all the objects into the
same unique famil y). A problem is a grouping when the
cost function to maximize increases with the size and
decreases with the number of famili es created.

The BPP (and hence LBP) can clearly be seen to
be a grouping problem: the aim is to group the objects
into famili es (bins) and the cost function fBPP above indeed
grows with the size (fill) and decreases with the number
(expli citl y via N, and impli citl y via fill) of the famili es.

For the sake of clarity, we will consider the bin
packing problem in the rest of this section, and assume
that the hard constraint, i.e. the maximum bin capacity, is
always complied with.

2.2 The Crossover

Let us see how the significant (strong) schemata
relevant to the problem of grouping are transferred from
parents to offspring under the standard crossover.

Let's assume the most straightforward encoding
scheme, namely one gene per object. For example, the
chromosome

ADBCEB
would encode the solution where the first object is in the
group (bin) A, the second in the group D, third in B,
fourth in C, fifth in E and sixth in the group B. Note that
the third and the sixth objects are in the group B - the
objects are thus grouped in the same group.

Since, by definiti on of the problem, the cost
function increases with the size of groups, the grouping of
the two objects into one group constitutes a gain and
should be thus transmitted to the next generations.

However, the two genes are positi oned too far from each
other on the chromosome to be safe against disruption
during the crossover. Indeed, the probabilit y that a
crossing site will fall between the two of them grows with
their distance.

We must thus find a way to shorten this kind of
schema. The standard way to do this is through inversion.
By storing the loci together with the all eles, the same
chromosome, written this time

123456 (the number of the object)
ADBCEB (the group the object is in),

could be arranged by (possibly successive) inversion(s)
into

123654
ADBBEC.

This chromosome has the interesting genes tightly
together. This time the group of Bs has good chances to
survive a crossover.

So far so good. The problems begin when the
groups become larger, that is, incidentall y, when the
optimization process starts to develop a good solution of
the grouping problem. Indeed, in a chromosome li ke

123654
ACBBBB,

the probabilit y of disruption of the very promising group
of four Bs is as large as it was for the group of two Bs
without inversion. We thus see that inversion cannot help
in assuring good survival rates for schemata relevant to
the grouping problem. This is because the good schemata
for this problem are, by definiti on, long schemata.

In other words, while the classic crossover (fitted
with inversion or not) might converge to a better solution
in the beginning of the genetic search, once a good candi-
date has been found, instead of improving this solution, it
works against its own progress towards destruction of the
good schemata. The result is, of course, an algorithm
stagnating on poor, never improving solutions.

2.3 The Mutation

Let's again consider the standard encoding and
see the effects of the standard mutation, i.e. a random
modification of a randomly chosen allele, in the case of
grouping.

Consider for example the foll owing chromosome :
ABDBAC.

A mutation of this individual could yield
ABDEAC,

which could be beneficial, for the all ele E, perhaps
missing from the population, appears in the genetic pool.

The troubles begin, once again, as the algorithm
approaches a good solution, developing large groups of
identical all eles. The standard mutation of

AAA BBB
would lead, for example, to

AAEBBB.
On the one hand, the all ele E appears in the population -
a possibly beneficial effect. On the other hand, the new
chromosome contains a 'group' of just one element. Since
grouping of objects accounts for a gain, this mutated
individual will most probably show a steep loss of f itness
in comparison with the other non-mutated individuals.
Consequently, this individual will be eliminated with high
probabilit y from the population on the very next step of
the algorithm, yielding hardly any benefit for the genetic
search.

In other words, the classic mutation is too
destructive once the GA begins to reach a good solution
of the grouping problem.

3. Operators for the two Problems

3.1 The Encoding

As we have seen, the standard genetic operators
are not suitable for the grouping problems. Unli ke with the
deceptive problems of [Goldberg, 87], the strong schemata
are not misleading. Rather, they do not survive the very
genetic search supposed to improve them.

The main reason is that the structure of the
simple chromosome (which the above operators work
with) is much too object oriented, instead of being group
(i.e. bin) oriented. In short, the above encoding is not
adapted to the cost function to optimize. Indeed, fBPP
champions the promising bins, but there is no structural
counterpart for them in the chromosome above. That is a
serious drawback: the fact that the object i is in the bin j
is meaningless - it is the fact that the bin j is full or empty
that is important. Of course, given the distribution of the
objects to the bins, one can always compute the state of
the bins, but such an information is far too indirect for the
GA (i.e. the operators) to be taken into account eff iciently.

Note that these remarks are nothing more than a
call for compliance with the Thesis of Good Building
Blocks, central to the GA paradigm. Note also that since
we did not refer expli citl y to the BPP or LBP, the above
conclusions apply to all grouping problems. Indeed, for
instance [Falkenauer,91] applies similar conclusions in a
successful treatment of a classification problem, which
turns out to be a grouping.

To remedy the above problems, we have chosen
the foll owing encoding scheme: the standard chromosome
above is augmented with a group part, encoding the bins
on a one gene for one bin basis. For example, the first and
the next to last chromosomes above would be encoded as
foll ows:

ADBCEB:BECDA
AAA BBB:AB,

with the group part written after the semicolon.
The important point is that the genetic operators

will work with the group part of the chromosomes, the
standard object part of the chromosomes merely serving to
identify which objects actuall y form which group. Note in
particular that this implies that the operators will have to
handle chromosomes of variable length.

3.2 Apport of Known Heuristics

In constructing a solution of the BPP, we can
make the foll owing observation: in a good solution, most
of the bins are well fill ed. This is important, because it
shows that in constructing a new solution of the problem,
it usuall y pays to look for well fill ed bins.

On the other hand, the FF heuristic (see section
1.1 above) is attractive as a means of placing objects into
bins for three reasons.

First, it places the objects one by one, i.e. its
strategy is independent of the whole of the set of objects
to pack. That means the heuristic does make sense in case
a subset of the objects is to be placed into bins.

Second, it does not need to start each time from
the scratch, i.e. it can start with a set of partiall y fill ed
bins (i.e. with a partial solution) and still pack the sup-
plementary objects in a reasonable way.

Third, it is complete, i.e. it can generate the
optimal solution. Indeed, there is a leeway in its function:
the solution it produces depends on the order in which the
objects are presented to the heuristic (and thus placed into
the bins), and at least one permutation of the objects leads
to the optimum. Note that this is rather exceptional for a

heuristic. For example, another heuristic for BPP, the First
Fit Descending (FFD) in [Garey and Johnson, 79], first
sorts the objects in decreasing order of their sizes before
applying the FF strategy. While performing sli ghtly better
than FF, it always produces a unique solution of a
problem.

Given the three points above, we took advantage
of the FF and FFD heuristics in conceiving the genetic
operators for the BPP.

3.3 Generating the First Population

The genetic algorithm starts from an initi al popu-
lation which is usuall y generated at random. This initi al
'seed' cannot, however, contain invalid individuals, which
means that we must find a way to generate a solution
which is both random and compliant with the constraint(s).

The FF heuristic serves well as the initi al
solution-generator. When presented with the objects in a
random order, it generates a solution which is reasonable
(i.e. not unacceptably bad), yet still random to a large
extent. More importantly, the modification introduced in
the section 3.7 below will make it generate valid indivi-
duals for the li ne balancing as well .

3.4 BPCX, the Bin Packing Crossover

A crossover's job consists in producing offspring
out of two parents in such a way that the children inherit
as much of the meaningful information from both parents
as possible. Since it is the bin that conveys important
information in BPP, we must find a way to transmit bins
from the parents onto the children. This is done as
foll ows.

Consider the foll owing group parts of the chro-
mosomes to cross (recall that there is one gene per bin):

ABCDEF (first parent)
abcd (second parent).
First, copies are made of the two parents (in order

not to destroy the parents) and two crossing sites are cho-
sen at random in each of them, yielding for example

A|BCD|EF and
ab|cd|.

Next, the bins between the crossing sites in the second
chromosome are injected into the first, at the first crossing
site, yielding

AcdBCDEF.
Now some of the objects appear twice in the solution and
must be thus eliminated. Suppose the objects injected with
the bins c and d also appear in the bins C, E and F. We
eliminate those bins, leaving

AcdBD.
With the elimination of those three bins we have,
however, most probably eliminated objects which were not
injected with the bins c and d. Those objects are thus
missing from the solution. To fix this last problem, we
apply the FFD heuristic to reinsert them, yielding, say

AcdBDx,
where x are one or more bins formed of the reinserted
objects.

As can easil y be seen, the child just constructed
indeed inherited important information from both parents,
namely the bins A, B and D from the first and c and d
from the second. Note, however, that the bins A, B and D
might not be exactly the original ones found in the first
parent, because the FFD might have fill ed them up with
some of the objects reinserted in the last stage of the
BPCX. Nonetheless, this is actuall y beneficial, since it
leads to bins even better fill ed than in the parent.

3.5 The Mutation

The mutation operator for the BPP is very simple:
given a chromosome, we select at random a few bins and
eliminate them. The objects which composed those bins
are thus missing from the solution and we use the FF to
insert them back in a random order.

In order to improve the chances of the mutation
to improve the current solution, we foll ow two rules: the
emptiest bin is always among the eliminated ones, and we
always eliminate and subsequently reinsert at least three
bins (the number of used bins cannot be improved with
less).

Note that, as with the BPCX, even some of the
bins not selected for elimination might be fill ed up with
objects from the eliminated bins.

3.6 The Inversion

The role of an inversion operator is to change the
positi ons of some of the genes on the chromosome in
order to assist the crossover in transmitti ng good schemata
to the offspring (see section 2.2). Unli ke the other two
operators, it thus only affects the representation of the
genetic contents of a chromosome, not the information
itself.

The inversion we use for the BPP is the classic
one, the only difference being that it operates only on the
group (bin) part of the chromosome. Since the
membership of objects in bins is not affected by a change
of bins' positi ons on the chromosome, the object part of
the chromosome remains unchanged. For example, the
chromosome

ADBCEB:BECDA
could be inverted into

ADBCEB:CEBDA.
The example ill ustrates the utilit y of this operator: should
B and D be promising genes (i.e. well fill ed bins), the
probabilit y of transmitti ng both of them during the next
crossover is improved after the inversion, since they are
now closer together, i.e. safer against disruption. That in
turn makes the proli feration of the good schemata easier.

3.7 Modification for the Line Balancing

Given the operators above and the similarity
between the bin packing and li ne balancing pointed out in
section 1.2, we can easil y construct the crossover and
mutation operators for the latter problem. An inversion
doesn't change the information in a chromosome, so the
one above can be used for both problems.

Since the only difference between BPP and LBP
lies with the supplementary precedence constraint for the
latter, all we have to do to adapt the BPP operators for
LBP, is to ensure that none of them will violate this
constraint.

This is easil y done if we note the foll owing: (1)
eliminating groups (i.e. workstations) from a valid solution
doesn't spoil the constraint, i.e. the new (partial) solution
is again a valid one, and (2) each time we complete a
solution by placing objects into bins, we use the FF or
FFD heuristic. Clearly, making sure the heuristics never
violate the precedence constraints yields valid operators
for the li ne balancing problem.

Reverting to the LBP definiti on above, we note
that the precedence constraint is violated when there is a
cycle in the graph obtained from the original graph G by
merging the nodes belonging to the same group (worksta-
tion) into one node, preserving all the arrows except the
ones that make a node point to itself.

Indeed, with a cycle in the above graph, there is

no way we could say whether a node in the cycle precedes
or foll ows another node in the cycle, i.e. the required
ordering of the subsets cannot be found. Conversely, we
can always compute the degrees of nodes in an acycli c
graph, i.e. such an ordering can be found.

In order to prevent cycles in the 'group graph', we
modify the heuristics as foll ows: each time we are about
to insert an object into a group (a task onto a workstation,
or, in BPP terms, an object into a bin), we compute the
length (in terms of the number of arrows involved) of the
longest precedence path leading from the object to all the
groups already in place. We than restrict the heuristic to
put the object into a group which is either not connected
at all with the object, or is connected via exactly one
arrow.

This cycling prevention for the heuristics insures
the validity of the mutation operator, since all we do there
is to eliminate and then reinsert objects from a solution.
The BPCX crossover is a bit more tricky: the injected bins
(workstations) can be incompatible (i.e. induce cycles)
with the ones already in place.

Hence we proceed as foll ows: having injected
groups and eliminated those containing double occurrences
of objects from the chromosome, we check for the presen-
ce of cycles between the groups left in the chromosome.
If there is none, we proceed as usual, with the constrained
FFD. If so, in order to modify the inherited schemata as
littl e as possible, we repeatedly eliminate one object,
chosen at random from those which form the cycle, and
check again for the presence of a cycle. As soon as the
cycle is broken, we have a valid partial solution, and can
proceed as above.

4. Experimental Results

4.1 The Bin Packing

Since the First Fit Descending can be shown to
be a good heuristic for the BPP, it constituted a bench-
mark in tests of performance of our GA approach.

Figure 2: Relative BPP performance of the GA and FFD.

We constructed the test data as foll ows: we first
generated objects of random sizes admitti ng a perfect
packing (i.e. fBPP=1), and then subtracted from randomly
chosen objects a total of LEEWAY percentage of the size
of one bin. For example, with LEEWAY set to 3% and
the bin size of 255, the total size of the objects was 7.65
less than the total capacity of the bins in the perfect
packing. Thus the test reflected the abilit y of the algorithm

to get as close as possible to the optimum, rather than its
eventual abilit y to find the optimum perfect packing. In-
deed, the latter test would be a test of optimalit y, which
would be equivalent to asking whether we can solve in a
reasonable time an NP-complete decision problem - some-
thing the algorithm wasn't and couldn't be designed to.

Since the total size of the objects was only a
fraction of the bin size less than the total capacity of the
bins in the perfect packing, the optimum number of bins
hasn't changed. Hence we observed the abilit y of the algo-
rithm to reach that number of bins, compared to the FFD
heuristic. However, in order to account for a practical use
of the GA, we required it to reach the optimum number of
bins in at most 5000 generations.

The results are summarized in figure 2. It shows
the average proportion, over 50 successive runs, of test
cases of 64 objects successfull y optimized by the GA and
FFD, function of the LEEWAY (1.5 through 15% of the
bin size). The chart shows the net superiority of the GA in
'tough' conditi ons, i.e. when the space for the objects to
pack is tight.

The running times of the GA were of the order of
a minute on a 4D35 Sili con Graphics (33 MIPS).

4.2 The Line Balancing

For the li ne balancing, the precedence constraints
were generated for a set of tasks obtained as above, by
sorting them 'in time' and making precede 'later' tasks by
randomly chosen 'earli er' tasks. In short, we made sure
that the optimal packing also complied with the prece-
dence constraints.

Due to the precedence constraints, we cannot use
the FFD as a benchmark anymore. Indeed, when modified
as indicated in section 3.7 above, its performance dete-
riorates badly. Nevertheless, a figure similar to the figure
2 gives an idea of the performance of the algorithm. It
was obtained as the previous one, except that the
algorithm was allowed to run for a maximum of 10000
generations.

The figure demonstrates the GA's abilit y to find

Figure 3: Relative LBP performance of the GA and FFD.

the optimal number of workstations with only a small
LEEWAY (say 5% of the cycle time). The average run-
ning time was of the order of 5 minutes.

The experimental LBP results compare favorably
with the industrial realit y :
- The size of 64 operations comfortably covers the
majority of industry's needs. Nevertheless, should that not

be enough, preliminary tests suggest that problems of up
to two hundred tasks could still be handled in a reasonable
time.
- The cycle time being a parameter set by
economic considerations, it is extremely rare to require a
perfect li ne balancing (i.e. the sum of task lengths be a
multi ple of the cycle time), which means that a LEEWAY
always exists. With that in mind, the 5% of cycle time,
compared to the total length of all tasks, don't represent a
major strain. In any case, when necessary, all owing the
algorithm to run for more generations increases the
probabilit y of an optimal balancing.

The GA's performance also represents a very
good alternative in comparison to most enumeration tech-
niques. This is due mainly to its capacity to handle cases
with very sparse precedence constraints, thanks to its bin
packing 'ancestor'. The enumeration techniques require
much denser precedence constraints, not common in prac-
tice, to guide them in the search, if they are to solve
problems of comparable size in a reasonable time and
memory space. For instance, a sophisticated dynamic
programming technique used by [Peng,91] requires 60%
nonempty entries in the precedence matrix in order to
solve problems with 25 tasks reasonably fast.

5. Discussion

5.1 Conclusions

We have presented an eff icient genetic algorithm
for two NP-hard problems, the bin packing and the li ne
balancing. The latter being an important industrial prob-
lem, we demonstrated the algorithm's abilit y to handle
real-world data sizes.

The two problems being of the grouping type, we
have justified the use of new encoding and operators by
showing that the classic GA cannot perform well on prob-
lems of this kind.

5.2 Suggestions for Further Development

Let us concentrate on the li ne balancing problem.
The algorithm is ready for industrial use in conditi ons
given by the LBP definiti on above. However, in order to
enhance its appli cabilit y, at least the foll owing
improvements can be suggested:
- enable the user to specify preferences of certain
tasks to be or not to be performed on the same worksta-
tion. This preference could be considered as either a hard
(inviolable) or a soft constraint;
- take into account the cost of each workstation,
given the tasks assigned to it. For example, a station with
very dissimilar tasks, i.e. a very flexible one, would be
more expensive than a speciali zed one.

The first of these is currently under way in our
lab.

6. Acknowledgement

The research described in this paper was support-
ed in part by the EEC under the ESPRIT II Project 2637 -
ARMS.

7. References

[Davis,87] Davis Lawrence (Ed) Genetic Algorithms and
Simulated Annealing, Pitman Publi shing, London.

[Falkenauer,91] Falkenauer Emanuel A Genetic algorithm
for Grouping, in "Procs of the Fifth Int'l Symposium on

Applied Stochastic Models and Data Analysis", Granada,
Spain, April 23-26, 1991, World Scientific Publi shing Co.
Pte. Ltd.

[Falkenauer and Bouffouix,91] Falkenauer Emanuel and
Bouffouix Stéphane A Genetic Algorithm for Job Shop, in
"Procs of the 1991 IEEE Int'l Conference on Robotics and
Automation", Sacramento, CA, April 1991.

[Garey and Johnson,79] Garey Michael R. and Johnson
David S. Computers and Intractabilit y - A Guide to the
Theory of NP-completeness, W.H.Freeman Co., San
Francisco.

[Goldberg,87] Goldberg David E. Simple Genetic Algo-
rithms and the Minimal, Deceptive Problem, in [Davis,87].

[Goldberg,89] Goldberg David E. Genetic Algorithms in
Search, Optimization and Machine Learning,
Addison-Wessley Publi shing Company, Inc.

[Grefenstette,85] Grefenstette John J. (Ed) Procs of the
First Int'l Conference on Genetic Algorithms and their
Applications, Carnegie-Mellon University, Pittsburgh, PA,
July 24-26, 1985, Lawrence Erlbaum Associates,
Publi shers, Hill sdale, NJ.

[Grefenstette,87] Grefenstette John J. (Ed) Genetic
Algorithms and their Applications: Procs of the Second
Int'l Conference on Genetic Algorithms, MIT, Cambridge,
MA, July 28-31, 1987, Lawrence Erlbaum Associates,
Publi shers, Hill sdale, NJ.[Holland,75] Holland John H.
Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor.

[Holland et al.,86] Holland John H., Holyoak Keith J.,
Nisbett Richard E. and Thagard Paul A. Induction:
Processes of Inference, Learning and Discovery, The MIT
Press, Cambridge.

[Morrow,91] Morrow M. Genetic Algorithms - A new
class of searching algorithms, Dr.Dobb's Journal, April
1991.

[Peng,91] Peng Yanming The Algorithms for the
Assembly Line Balancing Problem, CRIF Internal Report,
August 1991.

[Sacerdoti,77] Sacerdoti Earl D. A structure for plans and
behavior, Stanford Research Institute, Elsevier North-
Holland Inc.

[Schaffer,89] Schaffer David J. (Ed) Procs of the Third
Int'l Conference on Genetic Algorithms, George Mason
University, June 4-7, 1989, Morgan Kaufmann Publi shers,
Inc., San Mateo, CA.

