MapReduce

Nguyén Quang Hung

hungng2@cse.hcmut.edu.vn
Department of Systems and Networking
Faculty of Computer Science & Engineering

HoChiMinh City University of Technology



Objectives

a This slides introduce students about MapReduce
framework: programming model and implementation.

0 Not:
— how to install a MapReduce implementation (e.g. Hadoop)



Outline

Challenges
Motivation

ldeas

Programming model
Implementation
Related works
References

o 0O 0 0 0 0 O



Introduction

a Challenges?
— Applications face with large-scale of data (e.g. multi-terabyte).
» High Energy Physics (HEP) and Astronomy.
» Earth climate weather forecasts.
Gene databases.
Index of all Internet web pages (in-house).
» etc

— Easy programming to normal users (i.e. not expert in Parallel
programming) and/or non-Computer Science users (e.qg.
biologist).

A
\'4

v
\'4




MapReduce

a Motivation: Large scale data processing
— Want to process huge of datasets (>1 TB).
— Want to parallelize across hundreds/thousands of CPUs.
— Want to make this easy.



MapReduce: ideas

a Automatic parallel and data distribution
a Fault-tolerant

a Provides status and monitoring tools

a Clean abstraction for programmers



MapReduce: programming model

a Borrows from functional programming

0 Users implement interface of two functions: map and
reduce:
a map (k1,v1) = list(k2,v2)
O reduce (k2,list(v2)) - list(v2)



map() function

0 Records from the data source (lines out of files, rows of a
database, etc) are fed into the map function as key*value

pairs: e.g., (filename, line).
a map() produces one or more intermediate values along
with an output key from the input.



reduce() function

a After the map phase is over, all the intermediate values
for a given output key are combined together into a list

o reduce() combines those intermediate values into one or
more final values for that same output key

a (in practice, usually only one final value per key)



Parallelism

a map() functions run in parallel, creating different
intermediate values from different input data sets

0 reduce() functions also run in parallel, each working on a
different output key

a All values are processed independently

a Bottleneck: reduce phase can’t start until map phase is
completely finished.



(1) fork .- .
" (1) fork
2) 2)
assign assign
_map reduce

splito |- /(

split 1 —_:“ 4 (4] local write
split 2
split3 |

split4 | \

Input Map Intermediate files
files phasr lon local disks)

e (1) fork

output
file O

output
file 1

Output

files




Example: word counting

0 map(String input key, String input doc):
// input key: document name
// input doc: document contents
for each word w in 1nput doc:

EmitIntermediate(w, "1"); // intermediate wvalues

0 reduce (String output key, Iterator intermediate values):
// output key: a word
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += Parselnt (v);
Emit (AsString(result));

o RESULT?
o More examples: Distributed Grep, Count of URL access frequency, etc.




Locality

o Master program allocates tasks based on location of
data: tries to have map() tasks on same machine as
physical file data, or at least same rack (cluster rack)

o map() task inputs are divided into 64 MB blocks: same
size as Google File System chunks



Fault tolerance

0 Master detects worker failures
— Re-executes completed & in-progress map() tasks
— Re-executes in-progress reduce() tasks

o Master notices particular input key/values cause crashes
in map(), and skips those values on re-execution.



Optimizations (1)

a No reduce can start until map is complete:
— A single slow disk controller can rate-limit the whole process

o Master redundantly executes “slow-moving” map tasks;
uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this make a
mistake in the total computation?




Optimizations (2)

0 “Combiner” functions can run on same machine as a
mapper

o Causes a mini-reduce phase to occur before the real
reduce phase, to save bandwidth

Under what conditions does it seem good to use a combiner?




MapReduce: implementations

o Google MapReduce: C/C++

o Hadoop: Java
a Phoenix: C/C++ multithread
o Etc.



Google MapReduce evaluation (1)

o Cluster: approximately 1800 machines.

0 Each machine: 2x2GHz Intel Xeon processors with
Hyper-Threading enabled, 4GB of memory, two 160GB
IDE disks and a gigabit Ethernet link.

0 Network of cluster:

— Two-level tree-shaped switched network with approximately 100-
200 Gbps of aggregate bandwidth available at the root.

— Round-trip time any pair of machines: < 1 msec.



Google MapReduce evaluation (2)

0000 —

20000 —

0000 —

—_ Dgne & Done
= 15000 15000 |
=" 15000 — | o0
Z 100004 M : l“l |rxr.x]-|
- I | 10000 . {
.EL 000 | soo0| | so00 - |
o+ A1 ot L 0 .l.!h,ljll.l. —
500 1000 ' 500 1000 500 1000
20000 — 2000000 20000
é 15000 — 15000 — 1 5000 —
=
< 10000 10000 — 1 0R0K0H0
S s000- e ﬁuuu-//'-l soo0 7|
z oL, ”F"’T-" T ol Km,ﬂ" : , 0 "f.l.\. S Ncos N S
500 1000 00 1000 L 00 1000
20000 2000 0000
é 15000 15000 15000
?; 10000 10000 10000
5000
= 5000 - 5000
a3 - | |
= 0 fﬁw — 0= ’M f.J...J'IT\.—ﬂ'A\'."".“’.\. —
500 1000 00 10an 500 1000
Seconds Seconds Seconds
(a) Normal execution (b) No backup tasks (c) 200 tasks killed

Data transfer rates over time for different executions of the sort
program (J.Dean and S.Ghemawat shows in their paper [1, page 9])




Google MapReduce evaluation (3)

Number of jobs 79423 g ]
Average job completion time 634 secs £ soo-
Machine days used 79,186 days E 600 —
Input data read 3.283 TB = o]
Intermediate data produced 7158 TB '; -
Output data written 193 TB 7
Average worker machines per job 157 - e e s A S B
Average worker deaths per job 1.2 = = E = £ = =
Average map tasks per job 3,351
A\-‘Erﬂgﬂ fE'IjL]'I:'E.' [ﬂ_'i]‘-'.:'*i. PET jf.'lh 55 Figure 4: MapReduce instances over time
Unique map implementations 395
Unique reduce implementations 269 — 30000 4
Unique map/reduce combinations 426 = -.
<. 20000
2. 10000
Table 1: MapReduce jobs run in August 2004 = ol \
I I I [

Seconds

J.Dean and S.Ghemawat shows in theirs paper [1]




Other MapReduce systems

a0 Hadoop [9]
0 SAGA-MapReduce [8]
o CGIl-MapReduce [7]



Hadoop

0 Hadoop Core is a MapReduce implementation in Java
after paper [1] is published.
a Apache open-source license

Khoa Céng Nghé Théng Tin — Pai Hoc Bach Khoa Tp.HCM



SAGA-MapReduce

SACA tased Mazkedcce

|
-
-

BRRAW e MEx

Fa?d <:-‘l

High-level control flow diagram for SAGA-MapReduce. SAGA uses a
master-worker paradigm to implement the MapReduce pattern. The
diagram shows that there are several different infrastructure options to
a SAGA based application [8




CGL-MapReduce

Content Dissamination Network ' | Fixed Data
L I I Intdallze "

—» Worker Nodes - ] Varlable Data
®) «®)| |(R)®) ﬁ ‘ lterative

. @ @ '“‘T ( | map-raduce

Data $p||t e Flh- Eyatam 1 mm{} ~I - ______.f"fr
(M) Map Worker {I Data Read/Witte
(R) Reduce Worker 3 Communication Terminate |

Components of the CGL-MapReduce , extracted from [8]



CGL-MapReduce: sample
"D

applications
" l " I:HEFDH':D'W”I Data splt - 2D data polnts |
\ \| ST z @ G ch
mep()| [ map()]:ROOT tarprtad noe |
T fndon | (mep0] [map() comerancssion |
1 points to the
— ] | cluster centers

reducel) )| cheter oot

| whether to continue Heration |

MapReduce for HEP MapReduce for Kmeans



CGL-MapReduce: evaluation

7000 Each testis'perfﬂrmed usi’ng 12 n:c:-rr'pu"te nodes | 1m: B _E_l____—————ﬁ"_ — 4
I {Total of 96 processor cores) | 1
%000 4 1000 | Each test is performed using 5 compute
= E000 | . | | nodes (Total of 40 processor cores)
.-I.___.-" _ﬁ-"'f | ,.d_-';ﬁ'
4000 - H 100 ¢ -_____,ﬁ i
E A IE ' =
3000 T T
ot 0} o
E 2000 ﬁﬂ E b
¢ |
00 Hadoop —5— | R Ol oop —H™
. . __COLMapRegiuco —— - | iy
200 400 800 BOD 1000 Il.'Im { 10 40
Volume of Data In Gigabytes Number of 2D Data Polnts (millons)
HEP data analysis, execution Total Kmeans time against the
time vs. the volume of data number of data points (Both
(flxed Compute resources) axes are in |Og scale)

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]




Hadoop vs. CGL-MapReduce

Total Tima{saconds)

m[ T T T T
CGL-MapReduce ——
4000 - 100GB of data processed by varying

] the number of compute nodes. One
processor core is used in each node
3000 -
2000 :
—\_-\-\--\-\_"-\-\_

Number of Compute Nodes

Total time vs. the number of

compute nodes (fixed data)

. COL-MapRedyce —=—
4 a8 B 10 12
Mumber of Compute Nodes

Speedup for 100GB of HEP

data

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]



Hadoop vs. SAGA-MapReduce

700 .

MapReduce- execution times — ' SAGA Maﬁﬁgdmh”'ﬁ“lﬂ Fg o
] BOOO | = 5.&&“.+ﬁ'ﬁgg #f
B SAGA + KFS e

OO -a#

AT .-'
H g 4000 | T
] o L Gipbeén % .
i — Rapubye @ = i
1 wm Aty = 3000 ¢ g
i e ——— 3 Gigabein o l__.-"'l.’

i — Lo a0

m idiarg _-' -
1000 ?\_ . —] 1000 f’F
et : — ¥
0 .
:I 3 E- 5 J|:| 13 “ 1 1 1 1 1 1 1 1

ra
ad
F o

5 i H ] 9 10
Kursbar of kool worksm Diata Sat {GE:I

C.Miceli, M.Miceli, S. Jha, H. Kaiser, A. Merzky show in [8]




Exercise

a Write again “word counting” program by using Hadoop
framework.
— Input: text files
— Result: show number of words in these inputs files



g .
Conclusions

0 MapReduce has proven to be a useful abstraction

a Simplifies large-scale computations on cluster of
commodity PCs

o Functional programming paradigm can be applied to
large-scale applications

0 Focus on problem, let library deal w/ messy details



References

1. Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplied Data Processing on Large
Clusters, 2004

2. Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Distributed Computing
Seminar, Lecture 2: MapReduce Theory and Implementation, Summer 2007, ©
Copyright 2007 University of Washington and licensed under the Creative Commons
Attribution 2.5 License.

3. Sanjag Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In
21 86h3 ymposium on QOperating Systems Principles, pages 29.43, Lake George, New York,

4. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

5. Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice:
The Condor experience. Concurrency and Computation: Practice and Experience, 2004.
6. L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103.111, 1997.

7. Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox, MapReduce for Data
Intensive Scientific Analyses,

8. Chris Miceli12, Michael Miceli12, Shantenu Jha123, Hartmut Kaiser1, Andre Merzky,
Programming Abstractions for Data Intensive Computing on Clouds and Grids.

9. Apache Hadoop. Website: http://hadoop.apache.org/




Q/A



