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Objectives

a This slides introduce students about MapReduce
framework: programming model and implementation.

0 Not:
— how to install a MapReduce implementation (e.g. Hadoop)
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Introduction

a Challenges?
— Applications face with large-scale of data (e.g. multi-terabyte).
» High Energy Physics (HEP) and Astronomy.
» Earth climate weather forecasts.
Gene databases.
Index of all Internet web pages (in-house).
» etc

— Easy programming to normal users (i.e. not expert in Parallel
programming) and/or non-Computer Science users (e.qg.
biologist).
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MapReduce

a Motivation: Large scale data processing
— Want to process huge of datasets (>1 TB).
— Want to parallelize across hundreds/thousands of CPUs.
— Want to make this easy.



MapReduce: ideas

a Automatic parallel and data distribution
a Fault-tolerant

a Provides status and monitoring tools

a Clean abstraction for programmers



MapReduce: programming model

a Borrows from functional programming

0 Users implement interface of two functions: map and
reduce:
a map (k1,v1) = list(k2,v2)
O reduce (k2,list(v2)) - list(v2)



map() function

0 Records from the data source (lines out of files, rows of a
database, etc) are fed into the map function as key*value

pairs: e.g., (filename, line).
a map() produces one or more intermediate values along
with an output key from the input.



reduce() function

a After the map phase is over, all the intermediate values
for a given output key are combined together into a list

o reduce() combines those intermediate values into one or
more final values for that same output key

a (in practice, usually only one final value per key)



Parallelism

a map() functions run in parallel, creating different
intermediate values from different input data sets

0 reduce() functions also run in parallel, each working on a
different output key

a All values are processed independently

a Bottleneck: reduce phase can’t start until map phase is
completely finished.
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Example: word counting

0 map(String input key, String input doc):
// input key: document name
// input doc: document contents
for each word w in 1nput doc:

EmitIntermediate(w, "1"); // intermediate wvalues

0 reduce (String output key, Iterator intermediate values):
// output key: a word
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += Parselnt (v);
Emit (AsString(result));

o RESULT?
o More examples: Distributed Grep, Count of URL access frequency, etc.




Locality

o Master program allocates tasks based on location of
data: tries to have map() tasks on same machine as
physical file data, or at least same rack (cluster rack)

o map() task inputs are divided into 64 MB blocks: same
size as Google File System chunks



Fault tolerance

0 Master detects worker failures
— Re-executes completed & in-progress map() tasks
— Re-executes in-progress reduce() tasks

o Master notices particular input key/values cause crashes
in map(), and skips those values on re-execution.



Optimizations (1)

a No reduce can start until map is complete:
— A single slow disk controller can rate-limit the whole process

o Master redundantly executes “slow-moving” map tasks;
uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this make a
mistake in the total computation?




Optimizations (2)

0 “Combiner” functions can run on same machine as a
mapper

o Causes a mini-reduce phase to occur before the real
reduce phase, to save bandwidth

Under what conditions does it seem good to use a combiner?




MapReduce: implementations

o Google MapReduce: C/C++

o Hadoop: Java
a Phoenix: C/C++ multithread
o Etc.



Google MapReduce evaluation (1)

o Cluster: approximately 1800 machines.

0 Each machine: 2x2GHz Intel Xeon processors with
Hyper-Threading enabled, 4GB of memory, two 160GB
IDE disks and a gigabit Ethernet link.

0 Network of cluster:

— Two-level tree-shaped switched network with approximately 100-
200 Gbps of aggregate bandwidth available at the root.

— Round-trip time any pair of machines: < 1 msec.



Google MapReduce evaluation (2)
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Google MapReduce evaluation (3)
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Other MapReduce systems

a0 Hadoop [9]
0 SAGA-MapReduce [8]
o CGIl-MapReduce [7]



Hadoop

0 Hadoop Core is a MapReduce implementation in Java
after paper [1] is published.
a Apache open-source license
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SAGA-MapReduce
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High-level control flow diagram for SAGA-MapReduce. SAGA uses a
master-worker paradigm to implement the MapReduce pattern. The
diagram shows that there are several different infrastructure options to
a SAGA based application [8




CGL-MapReduce
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CGL-MapReduce: sample
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CGL-MapReduce: evaluation
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J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]




Hadoop vs. CGL-MapReduce
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Hadoop vs. SAGA-MapReduce
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C.Miceli, M.Miceli, S. Jha, H. Kaiser, A. Merzky show in [8]




Exercise

a Write again “word counting” program by using Hadoop
framework.
— Input: text files
— Result: show number of words in these inputs files



g .
Conclusions

0 MapReduce has proven to be a useful abstraction

a Simplifies large-scale computations on cluster of
commodity PCs

o Functional programming paradigm can be applied to
large-scale applications

0 Focus on problem, let library deal w/ messy details
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