Matrix Multiplication

Thoai Nam

- ■Sequential matrix multiplication
- □Algorithms for processor arrays
 - Matrix multiplication on 2-D mesh SIMD model
 - Matrix multiplication on hypercube SIMD model
- ☐ Matrix multiplication on UMA multiprocessors
- ☐ Matrix multiplication on multicomputers

Sequential Matrix Multiplication

```
Global a[0..l-1,0..m-1], b[0..m-1][0..n-1], {Matrices to be multiplied}
        c[0..l-1,0..n-1],
                                          {Product matrix}
                                          {Accumulates dot product}
        i, j, k;
Begin
   for i:=0 to l-1 do
     for j:=0 to n-1 do
         t:=0;
        for k:=0 to m-1 do
          t:=t+a[i][k]*b[k][j];
         endfor k;
        c[i][j]:=t;
     endfor j;
    endfor i;
End.
```


- ☐ Matrix multiplication on 2-D mesh SIMD model
- ☐ Matrix multiplication on Hypercube SIMD model

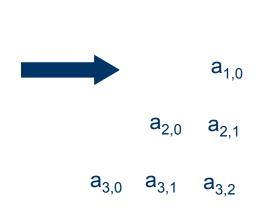
- ☐ Gentleman(1978) has shown that multiplication of to n*n matrices on the 2-D mesh SIMD model requires 0(n) routing steps
- We will consider a multiplication algorithm on a 2-D mesh SIMD model with wraparound connections

- ☐ For simplicity, we suppose that
 - Size of the mesh is n*n
 - Size of each matrix (A and B) is n*n
 - Each processor P_{i,j} in the mesh (located at row i,column j) contains a_{i,j} and b_{i,j}
- \Box At the end of the algorithm, $P_{i,j}$ will hold the element $c_{i,j}$ of the product matrix

□ Major phases

 $a_{0.0}$ $a_{0.1}$ $a_{0.2}$ $a_{0.3}$ $b_{0,3}$ $b_{0,1}$ $b_{0.2}$ b_{00} **a**_{1.0} **a**_{1.2} $a_{1.3}$ a_{1.1} $b_{1,0}$ $b_{1,1}$ $b_{1,2}$ $b_{1.3}$ $a_{2,0}$ a_{22} **a**_{2.1} a_{23} $b_{2.0}$ $b_{2,1}$ $b_{2.2}$ $b_{2.3}$ **a**_{3,1} $a_{3.0}$ $a_{3.2}$ $a_{3.3}$ $b_{3,0}$ $b_{3,3}$ $b_{3,1}$ $b_{3.2}$

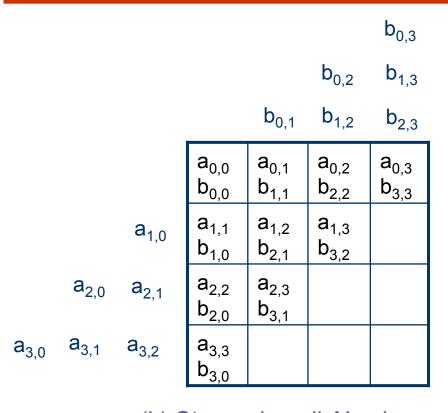
(a) Initial distribution of matrices A and B



a _{0,0} b _{0,0}	a _{0,1} b _{1,1}	a _{0,2} b _{2,2}	a _{0,3} b _{3,3}
a _{1,1} b _{1,0}	a _{1,2} b _{2,1}	a _{1,3} b _{3,2}	
a _{2,2} b _{2,0}	a _{2,3} b _{3,1}		
a _{3,3} b _{3,0}			

 $b_{0.3}$

(b) Staggering all A's elements in row i to the left by i positions and all B's elements in col j upwards by i positions



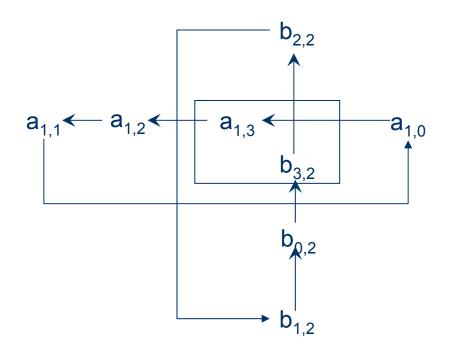
Each processor P(i,j) has a pair of elements to multiply $a_{i,k}$ and $b_{k,j}$

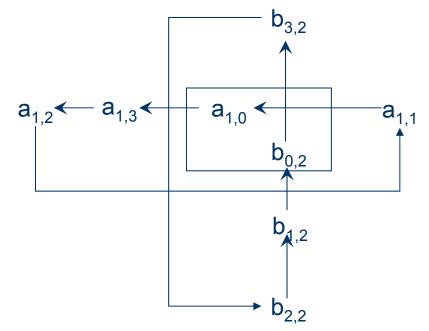
_			
a _{0,0} b _{0,0}	a _{0,1} b _{1,1}	a _{0,2} b _{2,2}	a _{0,3} b _{3,3}
a _{1,1} b _{1,0}	a _{1,2} (b _{2,1}	a _{1,3} b _{3,2}	a _{1,0} b _{0,3}
a _{2,2} b _{2,0}	a _{2,3} b _{3,1}	a _{2,0} b _{0,2}	a _{2,1} b _{1,3}
a _{3,3} b _{3,0}	a _{3,0} b _{0,1}	a _{3,1} b _{1,2}	a _{3,2} b _{2,3}

(b) Staggering all A's elements in row i to the left by i positions and all B's elements in col j upwards by i positions

(c) Distribution of 2 matrices A and B after staggering in a 2-D mesh with wrapparound connection

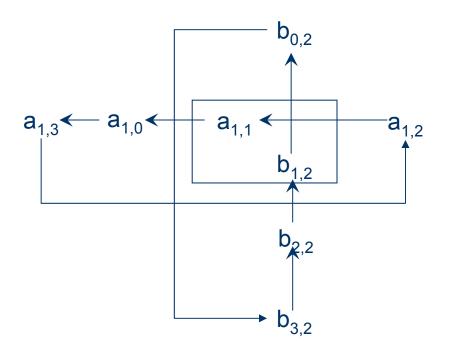
 \Box The rest steps of the algorithm from the viewpoint of processor P(1,2)

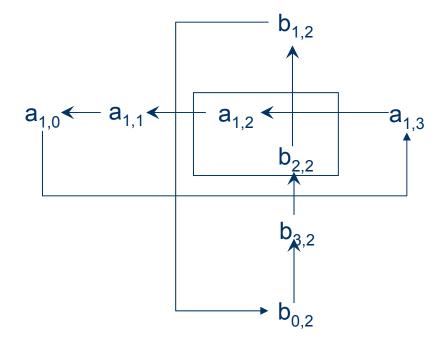




(a) First scalar multiplication step

(b) Second scalar multiplication step after elements of A are cycled to the left and elements of B are cycled upwards





- (c) Third scalar multiplication step after second cycle step
- (d) Third scalar multiplication step after second cycle step. At this point processor P(1,2) has computed the dot product **c**_{1,2}

Detailed AlgorithmGlobal n, {Dimension of matrices}

k ;

endfor k;

Compute dot product

```
forall P(i,j) where 0 \le i,j < n do c:= a*b; end forall; for k:=1 to n-1 do forall P(i,j) where 0 \le i,j < n do a:= fromleft(a); b:=fromdown(b); c:= c + a*b; end forall; endfor k; End.
```


□ Can we implement the above mentioned algorithm on a 2-D mesh SIMD model without wrapparound connection?

Matrix Multiplication Algorithm for Multiprocessors

□ Design strategy 5

- If load balancing is not a problem, maximize grain size
 - Grain size: the amount of work performed between processor interactions

☐ Things to be considered

- Parallelizing the most outer loop of the sequential algorithm is a good choice since the attained grain size (0(n³/p)) is the biggest
- Resolving memory contention as much as possible

Matrix Multiplication Algorithm for UMA Multiprocessors

Algorithm using p processors

```
Global n.
        a[0..n-1,0..n-1], b[0..n-1,0..n-1];
        c[0..n-1,0..n-1];
Local i.i.k.t:
Begin
   for all P_m where 1 \le m \le p do
     for i:=m to n step p do
         for j:= 1 to n to
          t:=0:
          for k:=1 to n do t:=t+a[i,k]*b[k,j];
       endfor j;
        c[i][j]:=t;
      endfor i:
   end forall;
End.
```

{Dimension of matrices}
{Two input matrices}
{Product matrix}

- ☐ Things to be considered
 - Try to resolve memory contention as much as possible
 - Increase the locality of memory references to reduce memory access time
- □ Design strategy 6
 - Reduce average memory latency time by increasing locality
- ☐ The block matrix multiplication algorithm is a reasonable choice in this situation
 - Section 7.3, p.187, Parallel Computing: Theory and Practice

Matrix Multiplication Algorithm for Multicomputers

- ☐ We will study 2 algorithms on multicomputers
 - Row-Column-Oriented Algorithm
 - Block-Oriented Algorithm

Row-Column-Oriented Algorithm

- ☐ The processes are organized as a ring
 - Step 1: Initially, each process is given 1 row of the matrix
 A and 1 column of the matrix B
 - Step 2: Each process uses vector multiplication to get 1 element of the product matrix C.
 - Step 3: After a process has used its column of matrix B, it fetches the next column of B from its successor in the ring
 - Step 4: If all rows of B have already been processed, quit. Otherwise, go to step 2

- ■Why do we have to organize processes as a ring and make them use B's rows in turn?
- **□** Design strategy 7:
 - Eliminate contention for shared resources by changing the order of data access

