
1

Lock and Time

THOAI NAM

Faculty of Information Technology

HCMC University of Technology

Using som e slides of PrashantShenoy,

UM ass Com puter Science

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Chapter 3: Lock and Time

Time ordering and clock
synchronization
Virtual time (logical clock)
Distributed snapshot (global state)
Consistent/Inconsistent global state
Rollback Recovery

2

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Clock Synchronization

Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

Distributed systems: each node has own system
clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be

assigned an earlier time

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Physical Clocks: A Primer

Accurate clocks are atomic oscillators
– 1s ~ 9,192,631,770 transitions of the cesium 133 atom

Most clocks are less accurate (e.g., mechanical watches)
– Computers use crystal-based blocks (one part in million)
– Results in clock drift

How do you tell time?
– Use astronomical metrics (solar day)

Universal coordinated time (UTC) – international standard based
on atomic time
– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

Need to synchronize machines with a master or with one another

3

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Clock Synchronization

Each clock has a maximum drift rate ρ
» 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ ∆t in time ∆t
– To limit drift to δ => resynchronize every δ/2ρ

seconds

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Cristian’s Algorithm

Synchronize machines to
a time server with a UTC
receiver
Machine P requests time
from server every δ/2ρ
seconds
– Receives time t from

server, P sets clock to
t+treply where treply is the
time to send reply to P

– Use (treq+treply)/2 as an
estimate of treply

– Improve accuracy by
making a series of
measurements

4

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Berkeley Algorithm

Used in systems without UTC receiver
– Keep clocks synchronized with one another
– One computer is master, other are slaves
– Master periodically polls slaves for their times

» Average times and return differences to slaves
» Communication delays compensated as in

Cristian’s algorithm
– Failure of master => election of a new master

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Berkeley Algorithm

a) The time daemon asks all the other machines for their
clock values

b) The machines answer
c) The time daemon tells everyone how to adjust their clock

5

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Approaches

Both approaches studied thus far are centralized
Decentralized algorithms: use resynchronization
intervals
– Broadcast time at the start of the interval
– Collect all other broadcast that arrive in a period S
– Use average value of all reported times
– Can throw away few highest and lowest values

Approaches in use today
– rdate: synchronizes a machine with a specified machine
– Network Time Protocol (NTP)

» Uses advanced techniques for accuracies of 1-50 ms

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Logical Clocks

For many problems, internal consistency of
clocks is important
– Absolute time is less important
– Use logical clocks

Key idea:
– Clock synchronization need not be absolute
– If two machines do not interact, no need to

synchronize them
– More importantly, processes need to agree on the

order in which events occur rather than the time
at which they occurred

6

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Event Ordering

Problem: define a total ordering of all events that
occur in a system
Events in a single processor machine are totally
ordered
In a distributed system:
– No global clock, local clocks may be unsynchronized
– Can not order events on different machines using local

times

Key idea [Lamport]
– Processes exchange messages
– Message must be sent before received
– Send/receive used to order events (and synchronize clocks)

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Happened-Before Relation

If A and B are events in the same process and A
executed before B, then A -> B
If A represents sending of a message and B is the
receipt of this message, then A -> B
Relation is transitive:
– A -> B and B -> C => A -> C

Relation is undefined across processes that do not
exchange messages
– Partial ordering on events

7

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Event Ordering Using HB

Goal: define the notion of time of an event
such that
– If A-> B then C(A) < C(B)
– If A and B are concurrent, then C(A) <, = or >

C(B)

Solution:
– Each processor maintains a logical clock LCi

– Whenever an event occurs locally at I, LCi =
LCi+1

– When i sends message to j, piggyback LCi

– When j receives message from i
» If LCj < LCi then LCj = LCi +1 else do nothing

Cl i thi l ith t th b l

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Lamport’s Logical Clocks

8

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

More Canonical Problems

Causality
– Vector timestamps

Global state and termination detection

Election algorithms

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Causality

Lamport’s logical clocks
– If A -> B then C(A) < C(B)
– Reverse is not true!!

» Nothing can be said about events by comparing time-
stamps!

» If C(A) < C(B), then ??

Need to maintain causality
– Causal delivery:If send(m) -> send(n) => deliver(m) ->

deliver(n)
– Capture causal relationships between groups of processes
– Need a time-stamping mechanism such that:

» If T(A) < T(B) then A should have causally preceded B

9

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Vector Clocks

Each process i maintains a vector Vi
– Vi[i] : number of events that have occurred at process i
– Vi[j] : number of events occurred at process j that process i

knows

Update vector clocks as follows
– Local event: increment Vi[i]
– Send a message: piggyback entire vector V
– Receipt of a message:

» Vj[i] = Vj[i]+1
» Receiver is told about how many events the sender

knows occurred at another process k
Vj[k] = max(Vj[k],Vi[k])

Homework: convince yourself that if V(A)<V(B),
then A causally precedes B

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Global State

Global state of a distributed system
– Local state of each process
– Messages sent but not received (state of the queues)

Many applications need to know the state of the
system
– Failure recovery, distributed deadlock detection

Problem: how can you figure out the state of a
distributed system?
– Each process is independent
– No global clock or synchronization

Distributed snapshot: a consistent global state

10

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Consistent/Inconsistent Cuts

a) A consistent cut
b) An inconsistent cut

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Snapshot
Algorithm

Assume each process communicates with another
process using unidirectional point-to-point channels
(e.g, TCP connections)
Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

On receiving a marker
– Checkpoint state if first marker and send marker on

outgoing channels, save messages on all other channels
until:

– Subsequent marker on a channel: stop saving state for that
channel

11

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Snapshot

A process finishes when
– It receives a marker on each incoming channel and

processes them all
– State: local state plus state of all channels
– Send state to initiator

Any process can initiate snapshot
– Multiple snapshots may be in progress

» Each is separate, and each is distinguished by tagging
the marker with the initiator ID (and sequence number)

A
C

BM

M

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Snapshot Algorithm Example
(1)

(a) Organization of a process and channels for a
distributed snapshot

12

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Snapshot Algorithm Example
(2)

(b) Process Q receives a marker for the first time
and records its local state

(c) Q records all incoming message
(d) Q receives a marker for its incoming channel

and finishes recording the state of the
incoming channel

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Recovery

Techniques thus far allow failure handling
Recovery: operations that must be
performed after a failure to recover to a
correct state
Techniques:
– Checkpointing:

» Periodically checkpoint state
» Upon a crash roll back to a previous checkpoint

with a consistent state

13

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Independent Checkpointing

Each processes periodically checkpoints independently of
other processes
Upon a failure, work backwards to locate a consistent cut
Problem: if most recent checkpoints form inconsistenct cut,
will need to keep rolling back until a consistent cut is found
Cascading rollbacks can lead to a domino effect.

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Coordinated Checkpointing

Take a distributed snapshot
Upon a failure, roll back to the latest
snapshot
– All process restart from the latest snapshot

14

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Message Logging

Checkpointing is expensive
– All processes restart from previous consistent cut
– Taking a snapshot is expensive
– Infrequent snapshots => all computations after

previous snapshot will need to be redone
[wasteful]

Combine checkpointing (expensive) with
message logging (cheap)
– Take infrequent checkpoints
– Log all messages between checkpoints to local

stable storage
– To recover: simply replay messages from

previous checkpoint
» Avoids recomputations from previous

