
1

Lock and Time

THOAI NAM

Faculty of Information Technology

HCMC University of Technology

Using som e slides of PrashantShenoy, 

UM ass Com puter Science

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Chapter 3: Lock and Time

Time ordering and clock 
synchronization
Virtual time (logical clock)
Distributed snapshot (global state)
Consistent/Inconsistent global state
Rollback Recovery
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Clock Synchronization

Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

Distributed systems: each node has own system 
clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be 

assigned an earlier time
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Physical Clocks: A Primer

Accurate clocks are atomic oscillators 
– 1s ~ 9,192,631,770 transitions of the cesium 133 atom 

Most clocks are less accurate (e.g., mechanical watches)
– Computers use crystal-based blocks (one part in million) 
– Results in clock drift

How do you tell time?
– Use astronomical metrics (solar day)

Universal coordinated time (UTC) – international standard based 
on atomic time
– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

Need to synchronize machines with a master or with one another
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Clock Synchronization

Each clock has a maximum drift rate ρ
» 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ ∆t in time ∆t
– To limit drift to δ => resynchronize every δ/2ρ

seconds
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Cristian’s Algorithm

Synchronize machines to 
a time server with a UTC 
receiver
Machine P requests time 
from server every δ/2ρ
seconds
– Receives time t from 

server, P sets clock to 
t+treply where treply is the 
time to send reply to P

– Use (treq+treply)/2 as an 
estimate of treply

– Improve accuracy by 
making a series of 
measurements
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Berkeley Algorithm

Used in systems without UTC receiver
– Keep clocks synchronized with one another 
– One computer is master, other are slaves
– Master periodically polls slaves for their times

» Average times and return differences to slaves
» Communication delays compensated as in 

Cristian’s algorithm
– Failure of master => election of a new master
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Berkeley Algorithm

a) The time daemon asks all the other machines for their 
clock values

b) The machines answer
c) The time daemon tells everyone how to adjust their clock
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Distributed Approaches

Both approaches studied thus far are centralized
Decentralized algorithms: use resynchronization 
intervals
– Broadcast time at the start of the interval
– Collect all other broadcast that arrive in a period S
– Use average value of all reported times
– Can throw away few highest and lowest values

Approaches in use today
– rdate: synchronizes a machine with a specified machine
– Network Time Protocol (NTP)

» Uses advanced techniques for accuracies of 1-50 ms
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Logical Clocks

For many problems, internal consistency of 
clocks is important
– Absolute time is less important
– Use logical clocks

Key idea:
– Clock synchronization need not be absolute
– If two machines do not interact, no need to 

synchronize them
– More importantly, processes need to agree on the 

order in which events occur rather than the time
at which they occurred
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Event Ordering

Problem: define a total ordering of all events that 
occur in a system
Events in a single processor machine are totally 
ordered
In a distributed system:
– No global clock, local clocks may be unsynchronized
– Can not order events on different machines using local 

times

Key idea [Lamport ]
– Processes exchange messages
– Message must be sent before received
– Send/receive used to order events (and synchronize clocks)
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Happened-Before Relation

If A and B are events in the same process and A
executed before B, then  A -> B
If A represents sending of a message and B is the 
receipt of this message, then A -> B
Relation is transitive:
– A -> B and B -> C  => A -> C

Relation is undefined across processes that do not 
exchange messages
– Partial ordering on events
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Event Ordering Using HB

Goal: define the notion of time of an event 
such that
– If A-> B then C(A) < C(B)
– If  A and B are concurrent, then C(A)  <, = or > 

C(B)

Solution: 
– Each processor maintains a logical clock  LCi

– Whenever an event occurs locally at I, LCi = 
LCi+1

– When i sends message to j, piggyback LCi

– When j receives message from i
» If LCj < LCi then LCj = LCi +1 else do nothing

Cl i thi l ith t th b l
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Lamport’s Logical Clocks
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More Canonical Problems

Causality
– Vector timestamps

Global state and termination detection

Election algorithms
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Causality

Lamport’s logical clocks
– If  A -> B then C(A) < C(B)
– Reverse is not true!!

» Nothing can be  said about events by comparing time-
stamps!

» If C(A) < C(B), then ??

Need to maintain causality
– Causal delivery:If send(m) -> send(n) => deliver(m) -> 

deliver(n)
– Capture causal relationships between groups of processes
– Need a time-stamping mechanism such that:

» If T(A) < T(B) then A should have causally preceded B
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Vector Clocks

Each process i maintains a vector Vi
– Vi[i] : number of events that have occurred at process i
– Vi[j] : number of events occurred at process j that process i 

knows

Update vector clocks as follows
– Local event: increment Vi[i]
– Send a message: piggyback entire vector V
– Receipt of a message:

» Vj[i] = Vj[i]+1
» Receiver is told about how many events the sender 

knows occurred at another process k
Vj[k] = max( Vj[k],Vi[k] )

Homework: convince yourself that if V(A)<V(B),
then A causally precedes B
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Global State

Global state of a distributed system
– Local state of each process
– Messages sent but not received (state of the queues)

Many applications need to know the state of the 
system
– Failure recovery, distributed deadlock detection

Problem: how can you figure out the state of a 
distributed system?
– Each process is independent
– No global clock or synchronization

Distributed snapshot: a consistent global state
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Consistent/Inconsistent Cuts

a) A consistent cut
b) An inconsistent cut
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Distributed Snapshot 
Algorithm

Assume each process communicates with another 
process using unidirectional point-to-point channels 
(e.g, TCP connections)
Any process can initiate the algorithm
– Checkpoint local state 
– Send marker on every outgoing channel

On receiving a marker
– Checkpoint state if first marker and send marker on 

outgoing channels, save messages on all other channels 
until:

– Subsequent marker on a channel: stop saving state for that 
channel
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Distributed Snapshot

A process finishes when
– It receives a marker on each incoming channel and 

processes them all
– State: local state plus state of all channels
– Send state to initiator

Any process can initiate snapshot
– Multiple snapshots may be in progress 

» Each is separate, and each is distinguished by tagging 
the marker with the initiator ID (and sequence number)

A
C

BM

M
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Snapshot Algorithm Example 
(1)

(a)  Organization of a process and channels for a 
distributed snapshot
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Snapshot Algorithm Example 
(2)

(b)  Process Q receives a marker for the first time 
and records its local state

(c)  Q records all incoming message
(d)  Q receives a marker for its incoming channel 

and finishes recording the state of the 
incoming channel
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Recovery

Techniques thus far allow failure handling
Recovery: operations that must be 
performed after a failure to recover to a 
correct state
Techniques:
– Checkpointing:

» Periodically checkpoint state 
» Upon a crash roll back to a previous checkpoint 

with a consistent state
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Independent Checkpointing

Each processes periodically checkpoints independently of 
other processes
Upon a failure, work backwards to locate a consistent cut
Problem: if most recent checkpoints form inconsistenct cut, 
will need to keep rolling back until a consistent cut is found
Cascading rollbacks can lead to a domino effect.
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Coordinated Checkpointing

Take a distributed snapshot
Upon a failure, roll back to the latest 
snapshot 
– All process restart from the latest snapshot
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Message Logging

Checkpointing is expensive
– All processes restart from previous consistent cut
– Taking a snapshot is expensive
– Infrequent snapshots => all computations after 

previous snapshot will need to be redone 
[wasteful]

Combine checkpointing (expensive) with 
message logging (cheap)
– Take infrequent checkpoints
– Log all messages between checkpoints to local 

stable storage
– To recover: simply replay messages from 

previous checkpoint
» Avoids recomputations from previous 


