Lock and Time

THOAI NAIVIL
Faculty of Information Technology

HCMC University of Technology

Using some slides of Prashant Shenoy,

UMass Computer Science

ol Chapter 3: Lock and Time

o Time ordering and clock
synchronization

o Virtual time (logical clock)

o Distributed snapshot (global state)
o Consistent/Inconsistent global state
o Rollback Recovery

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

,.m:_ Clock Synchronization

o Time in unambiguous in centralized systems
- System clock keeps time, all entities use this for time

o Distributed systems: each node has own system
clock
- Crystal-based clocks are less accurate (1 part in million)
- Problem: An event that occurred after another may be

Computer on 2144 2145 2146 2147 44— Time according
which compiler +* ! | } to local clock
runs Y.

" output.o created
Computer on 2142 2143 2144 2145 «— Time according
which editor ! + } I to local clock

v

runs -
output.c created

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

ﬁw: Physical Clocks: A Primer

o Accurate clocks are atomic oscillators
- 1s ~ 9,192,631,770 transitions of the cesium 133 atom
o Most clocks are less accurate (e.g., mechanical watches)
- Computers use crystal-based blocks (one part in million)
- Results in clock drift
o How do you tell time?
- Use astronomical metrics (solar day)
o Universal coordinated time (UTC) - international standard based
on atomic time
- Add leap seconds to be consistent with astronomical time
— UTC broadcast on radio (satellite and earth)
- Receivers accurate to 0.1 - 10 ms
o Need to synchronize machines with a master or with one another

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

,.m:_ Clock Synchronization

o Each clock has a maximum drift rate p
» 1-p<=dC/dt <= 1+p
- Two clocks may drift by 2p At in time At

- To limit drift to 8 => resynchronize every &/2p
second

Clock time, C

UTC. t

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

!““:... Cristian’s Algorithm

o Synchronize machines to
a time server with a UTC

receiver process £ tme server
o Machine P requests time 7r\

from server every 5/2p trn

seconds -~ t

- Receives time t from

server, P sets clock to
t+t,ep, Where t,,, is the

time to send reply to P network
- Use (tregttepy)/2 @s an

estimate of t.,,

- Improve accuracy by
making a series of

L
<

time

THTCOOUT CTT T

Khoa Cong Nghé Théng Tin — Dai Hoc Bach Khoa Tp.HCM

nlﬂ“:, Berkeley Algorithm

o Used in systems without UTC receiver
- Keep clocks synchronized with one another
- One computer is master, other are slaves
- Master periodically polls slaves for their times
» Average times and return differences to slaves

» Communication delays compensated as in
Cristian’s algorithm
- Failure of master => election of a new master

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

i“*‘:,, Berkeley Algorithm

Time daemon

3:00 . 3:00
KI 3:00

3:00 @<3.00 10 @
(e

0

<
-«

3:05

[0

-20

vu// \7;”

I

AT Pl
Oy | S
2:50 325 2:50 3:25 3.05 3:05

(@)

(b)

()

a) The time daemon asks all the other machines for their
clock values

b) The machines answer

¢ The time daemon tells everyone how to adjust their clock

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

,.m:_ Distributed Approaches

o Both approaches studied thus far are centralized

o Decentralized algorithms: use resynchronization
intervals
- Broadcast time at the start of the interval
- Collect all other broadcast that arrive in a period S
- Use average value of all reported times
- Can throw away few highest and lowest values

a Approaches in use today
- rdate: synchronizes a machine with a specified machine
— Network Time Protocol (NTP)
» Uses advanced techniques for accuracies of 1-50 ms

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

!““:... Logical Clocks

o For many problems, internal consistency of
clocks is important
— Absolute time is less important
- Use logical clocks

0 Key idea:
- Clock synchronization need not be absolute

- If two machines do not interact, no need to
synchronize them

- More importantly, processes need to agree on the
order in which events occur rather than the time
at which they occurred

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

nlﬂ“:, Event Ordering

a Problem: define a total ordering of all events that
occur in a system

o Events in a single processor machine are totally
ordered

o In a distributed system:

- No global clock, local clocks may be unsynchronized
— Can not order events on different machines using local
times
o Key idea [Lamport]
- Processes exchange messages
- Message must be sent before received
- Send/receive used to order events (and synchronize clocks)

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

i““:, Happened-Before Relation

o If A and B are events in the same process and A
executed before B, then A->B

o If A represents sending of a message and B is the
receipt of this message, then A -> B

o Relation is transitive:
-A->BandB->C =>A->C

o Relation is undefined across processes that do not
exchange messages
- Partial ordering on events

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

nlﬂ“:, Event Ordering Using HB

0 Goal: define the notion of time of an event
such that
- If A-> B then C(A) < C(B)
- If A and B are concurrent, then C(A) <, = or >
C(B)
o Solution:
- Each processor maintains a logical clock LC;

- Whenever an event occurs locally at I, LC, =
LC+1

- When i sends message to j, piggyback LC,

- When j receives message from i

ELC < LC then lLC — LC _L1a1'se_dlg_mth.i.n.g_

Khoa €6ng Nghé Théng Tin — Dal Hoc Bach Khoa Tp.HCM

i““:, Lamport’s Logical Clocks

0 0 lo

6 f— A 8 [10

N L |20

o BN

:24‘ 32 ‘:40 .

))) 50| w0 50

—35: 48 C_60 aaé 48 C__60

[P s« |70 2 ol |70

48 D64l e le] o _Jeo 80

sajk— 72 |90 ol - %0

|60 80| hoo| s s | oo
@) (b)

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

n i
¢, More Canonical Problems

o Causality
- Vector timestamps

o Global state and termination detection

o Election algorithms

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

!““:... Causality

o Lamport’s logical clocks
- If A-> Bthen C(A) < C(B)
- Reverse is not true!!

» Nothing can be said about events by comparing time-
stamps!

» If C(A) < C(B), then ??
o Need to maintain causality

- Causal delivery:If send(m) -> send(n) => deliver(m) ->
deliver(n)

— Capture causal relationships between groups of processes
- Need a time-stamping mechanism such that:
» If T(A) < T(B) then A should have causally preceded B

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

,.m:_ Vector Clocks

o Each process i maintains a vector V,
- V/[i] : number of events that have occurred at process i
- Vi[j] : number of events occurred at process j that process i
knows
o Update vector clocks as follows
- Local event: increment V[i]
- Send a message: piggyback entire vector V
— Receipt of a message:
» Vi[i] = V[i]+1
» Receiver is told about how many events the sender
knows occurred at another process k
Vi[k] = max(V,[k],Vi[K])
o Homework: convince yourself that if V(A)<V(B),
then A causally precedes B

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

!““:... Global State

o Global state of a distributed system
- Local state of each process
- Messages sent but not received (state of the queues)
o Many applications need to know the state of the
system
— Failure recovery, distributed deadlock detection
a Problem: how can you figure out the state of a
distributed system?
— Each process is independent
- No global clock or synchronization

o Distributed snapshot: a consistent global state

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

nl-w Consistent/Inconsistent Cuts

Consistent cut Inconsistent cut
P1 \ Time ——» P1 \ Time —»
m T m ~m3
P2 - ¥ P2 ey X
.fl . ~._m2 ;". - ~_r_r12
P3 _f \‘1 P3

Sender of m2 ;:an not
be identified with this cut

@) ()

a) A consistent cut
b) An inconsistent cut

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

A Distributed Snapshot
e Algorithm

o Assume each process communicates with another
process using unidirectional point-to-point channels
(e.g, TCP connections)

o Any process can initiate the algorithm
- Checkpoint local state
- Send marker on every outgoing channel

o On receiving a marker

- Checkpoint state if first marker and send marker on
outgoing channels, save messages on all other channels
until:

- Subsequent marker on a channel: stop saving state for that
channel

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

10

,.m:_ Distributed Snapshot

o A process finishes when

- It receives a marker on each incoming channel and
processes them all

- State: local state plus state of all channels
- Send state to initiator

o Any process can initiate snapshot

— Multiple snapshots may be in progress

» Each is separate, and each is distinguished by tagging
the marker with the initiator ID (and sequence number)

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

o Snapshot Algorithm Example
< (1)

Incoming Qutgoing
message Process State message

Local

Marker - filesystem
(a)

(a) Organization of a process and channels for a
distributed snapshot

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

11

x Snapshot Algorithm Example
"= (2)

— C o HE—»> — > >
@EHBHe> @ —W-a> o [T) THH @[5,

f‘tj':' rI-jlj T |
— [a][b][c][d]

— [allelle]
Recorded

state
{b) () (d)

(b) Process Q receives a marker for the first time
and records its local state

(c) Q records all incoming message

(d) Q receives a marker for its incoming channel
and finishes recording the state of the
incoming channel

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

n
#=, Recovery

o Techniques thus far allow failure handling

o Recovery: operations that must be
performed after a failure to recover to a
correct state

o Techniques:
- Checkpointing:
» Periodically checkpoint state

» Upon a crash roll back to a previous checkpoint
with a consistent state

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

12

,.m:_ Independent Checkpointing

Initial state Checkpoint
P1

WAV

Time —»

o Each processes periodically checkpoints independently of
other processes

o Upon a failure, work backwards to locate a consistent cut

o Problem: if most recent checkpoints form inconsistenct cut,
will need to keep rolling back until a consistent cut is found

o Cascading rollbacks can lead to a domino effect.

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

uw",_, Coordinated Checkpointing

o Take a distributed snapshot

o Upon a failure, roll back to the latest
snapshot
- All process restart from the latest snapshot

Khoa Cong Nghé Théng Tin — Bai Hoc Bach Khoa Tp.HCM

13

,.m:_ Message Logging

o Checkpointing is expensive
- All processes restart from previous consistent cut
- Taking a snapshot is expensive
- Infrequent snapshots => all computations after
previous snapshot will need to be redone
[wasteful]
o Combine checkpointing (expensive) with
message logging (cheap)
- Take infrequent checkpoints
- Log all messages between checkpoints to local
stable storage
- To recover: simply replay messages from
previous checkpoint

» AKxred dsgnecoma Wita beos BEFOMa DresMious

14

