Parallel Job Schedulings

Thoai Nam

a Schedule:
allocation of tasks to processors
\square Dynamic scheduling

- A single queue of ready processes
- A physical processor accesses the queue to run the next process
- The binding of processes to processors is not tight
\square Static scheduling
- Only one process per processor
- Speedup can be predicted

Classes of scheduling

- Static scheduling
- An application is modeled as an directed acyclic graph (DAG)
- The system is modeled as a set of homogeneous processors
- An optimal schedule: NP-complete
- Scheduling in the runtime system
- Multithreads: functions for thread creation, synchronization, and termination
- Parallelizing compilers: parallelism from the loops of the sequential programs
- Scheduling in the OS
- Multiple programs must co-exist in the same system
- Administrative scheduling
- A parallel program is a collection of tasks, some of which must be completed before others begin
- Deterministic model:

The execution time needed by each task and the precedence relations between tasks are fixed and known before run time

- Task graph

- Gantt chart indicates the time each task spends in execution, as well as the processor on which it executes

	T_{4}					
	T_{3}		T_{6}			
T_{1}	T_{2}			T_{5}		T_{7}
\|						
1		3	45	6	7	8
Time						

Optimal schedule

- If all of the tasks take unit time, and the task graph is a forest (i.e., no task has more than one predecessor), then a polynomial time algorithm exists to find an optimal schedule
- If all of the tasks take unit time, and the number of processors is two, then a polynomial time algorithm exists to find an optimal schedule
- If the task lengths vary at all, or if there are more than two processors, then the problem of finding an optimal schedule is np-hard.

Graham's list scheduling algorithm

- $\mathbf{T}=\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{n}\right\}$
a set of tasks
- μ : $\mathbf{T} \rightarrow(0, \infty)$
a function associates an execution time with each task
- A partial order < on T
- \mathbf{L} is a list of task on \mathbf{T}
- Whenever a processor has no work to do, it instantaneously removes from L the first ready task; that is, an unscheduled task whose predecessors under < have all completed execution. (The processor with the lower index is prior)

Graham's list scheduling algorithm - Example

$$
L=\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}\right\}
$$

Time

Graham's list scheduling algorithm - Problem

T	T_{9}		
T_{2}	T_{4}	T_{5}	T_{7}
T_{3}		T_{6}	T_{8}

T	T_{8}	
T_{2}	T_{5}	T9
T_{3}	T_{6}	
T_{4}	T_{7}	

$$
L=\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}, T_{9}\right\}
$$

Coffman-Graham's scheduling algorithm (1)

- Graham's list scheduling algorithm depends upon a prioritized list of tasks to execute
- Coffman and Graham (1972) construct a list of tasks for the simple case when all tasks take the same amount of time.
- Let $\mathbf{T}=T_{1}, T_{2}, \ldots, T_{n}$ be a set of n unit-time tasks to be executed on p processors
- If $T_{i}<T_{j}$, then task is T_{i} an immediate predecessor of task T_{j}, and T_{j} is an immediate successor of task T_{i}
- Let $S\left(T_{i}\right)$ denote the set of immediate successor of task T_{i}
- Let $\alpha\left(T_{i}\right)$ be an integer label assigned to T_{i}.
- $N(T)$ denotes the decreasing sequence of integers formed by ordering of the set $\left\{\alpha\left(T^{\prime}\right) \mid T^{\prime} \in S(T)\right\}$

Coffman-Graham's scheduling algorithm (3)

1. Choose an arbitrary task T_{k} from T such that $S\left(T_{k}\right)=0$, and define $\alpha\left(T_{k}\right)$ to be 1
2. for $\mathrm{i} \leftarrow 2$ to n do
a. R be the set of unlabeled tasks with no unlabeled successors
b. Let T^{*} be the task in R such that $N\left(T^{*}\right)$ is lexicographically smaller than $N(T)$ for all T in R
c. Let $\alpha\left(\mathrm{T}^{*}\right) \leftarrow \mathrm{i}$
endfor
3. Construct a list of tasks $L=\left\{U_{n}, U_{n-1}, \ldots, U_{2}, U_{1}\right\}$ such that $\alpha\left(U_{i}\right)=i$ for all i where $1 \leq i \leq n$
4. Given ($\mathbf{T},<, \mathrm{L}$), use Graham's list scheduling algorithm to schedule the tasks in T

Coffman-Graham's scheduling algorithm - Example (1)

T_{2}	$\mathrm{~T}_{6}$	$\mathrm{~T}_{4}$	$\mathrm{~T}_{7}$	$\mathrm{~T}_{9}$
$\mathrm{~T}_{1}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{8}$		
	$\mathrm{~T}_{5}$			

Coffman-Graham's scheduling algorithm - Example (2)

Step1 of algorithm

task T_{9} is the only task with no immediate successor. Assign 1 to $\alpha\left(\mathrm{T}_{9}\right)$

Step2 of algorithm

- $i=2: R=\left\{T_{7}, T_{8}\right\}, N\left(T_{7}\right)=\{1\}$ and $N\left(T_{8}\right)=\{1\} \Rightarrow$ Arbitrarily choose task T_{7} and assign 2 to $\alpha\left(T_{7}\right)$
- $i=3: R=\left\{T_{3}, T_{4}, T_{5}, T_{8}\right\}, N\left(T_{3}\right)=\{2\}, N\left(T_{4}\right)=\{2\}, N\left(T_{5}\right)=\{2\}$ and $N\left(T_{8}\right)=\{1\} \Rightarrow$ Choose task T_{8} and assign 3 to $\alpha\left(\mathrm{T}_{8}\right)$
- $\mathrm{i}=4$: $\mathrm{R}=\left\{\mathrm{T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{6}\right\}, \mathrm{N}\left(\mathrm{T}_{3}\right)=\{2\}, \mathrm{N}\left(\mathrm{T}_{4}\right)=\{2\}, \mathrm{N}\left(\mathrm{T}_{5}\right)=\{2\}$ and $\mathrm{N}\left(\mathrm{T}_{6}\right)=\{3\} \Rightarrow$ Arbitrarily choose task T_{4} and assign 4 to $\alpha\left(\mathrm{T}_{4}\right)$
- $\quad i=5: R=\left\{T_{3}, T_{5}, T_{6}\right\}, N\left(T_{3}\right)=\{2\}, N\left(T_{5}\right)=\{2\}$ and $N\left(T_{6}\right)=\{3\} \Rightarrow$ Arbitrarily choose task T_{5} and assign 5 to $\alpha\left(\mathrm{T}_{5}\right)$
a $i=6: R=\left\{T_{3}, T_{6}\right\}, N\left(T_{3}\right)=\{2\}$ and $N\left(T_{6}\right)=\{3\} \Rightarrow$ Choose task T_{3} and assign 6 to $\alpha\left(T_{3}\right)$

Coffman-Graham's scheduling algorithm - Example (3)

- $\mathrm{i}=7: \mathrm{R}=\left\{\mathrm{T}_{1}, \mathrm{~T}_{6}\right\}, \mathrm{N}\left(\mathrm{T}_{1}\right)=\{6,5,4\}$ and $\mathrm{N}\left(\mathrm{T}_{6}\right)=\{3\} \Rightarrow$ Choose task T_{6} and assign 7 to $\alpha\left(T_{6}\right)$
- $i=8: R=\left\{T_{1}, T_{2}\right\}, N\left(T_{1}\right)=\{6,5,4\}$ and $N\left(T_{2}\right)=\{7\} \Rightarrow$ Choose task T_{1} and assign 8 to $\alpha\left(T_{1}\right)$
- $\mathrm{i}=9: \mathrm{R}=\left\{\mathrm{T}_{2}\right\}, \mathrm{N}\left(\mathrm{T}_{2}\right)=\{7\} \Rightarrow$ Choose task T_{2} and assign 9 to $\alpha\left(\mathrm{T}_{2}\right)$

Step 3 of algorithm
$L=\left\{T_{2}, T_{1}, T_{6}, T_{3}, T_{5}, T_{4}, T_{8}, T_{7}, T_{9}\right\}$
Step 4 of algorithm
Schedule is the result of applying Graham's list-scheduling algorithm to task graph \mathbf{T} and list L

Issues in processor scheduling

- Preemption inside spinlock-controlled critical sections
Enter
\rightarrow Critical Section
Exit
P_{0}
\rightarrow Enter
Critical Section
Exit
P_{1}
\rightarrow Enter
\rightarrow Critical Section
Exit
P_{2}
- Cache corruption
- Context switching overhead

Current approaches

- Global queue
- Variable partitioning
- Dynamic partitioning with two-level scheduling
- Gang scheduling
- A copy of uni-processor system on each node, while sharing the main data structures, specifically the run queue
a Used in small-scale bus-based UMA shared memory machines such as Sequent multiprocessors, SGI multiprocessor workstations and Mach OS
- Autonamic load sharing
- Cache corruption
- Preemption inside spinlock-controlled critical sections

Variable partitioning

- Processors are partitioned into disjoined sets and each job is run only in a distinct partition

Scheme	Parameters taken into account		
	User request	System load	Changes
Fixed	no	no	no
Variable	yes	no	no
Adaptive	yes	yes	no
Dynamic	yes	yes	yes

- Distributed memory machines: Intel and nCube hypercudes, IBM PS2, Intel Paragon, Cray T3D
- Problem: fragmentation, big jobs
- Changes in allocation during execution
- Workpile model:
- The work = an unordered pile of tasks or chores
- The computation = a set of worker threads, one per processor, that take one chore at time from the work pile
- Allowing for the adjustment to different numbers of processors by changing the number of the wokers
- Two-level scheduling scheme: the OS deals with the allocation of processors to jobs, while applications handle the scheduling of chores on those processors

Gang scheduling

- Problem: Interactive response times \Rightarrow time slicing
- Global queue: uncoordinated manner
- Observartion:
- Coordinated scheduling in only needed if the job's threads interact frequently
- The rare of interaction can be used to drive the grouping of threads into gangs
- Samples:
- Co-scheduling
- Family scheduling: which allows more threads than processors and uses a second level of internal time slicing

Several specific scheduling methods

- Co-scheduling
- Smart scheduling [Zahorijan et al.]
- Scheduling in the NYU Ultracomputer [Elter et al.]
- Affinity based scheduling
- Scheduling in the Mach OS

Co-Scheduling

- Context switching between applications rather then between tasks of several applications.
- Solving the problem of "preemption inside spinlock-controlled critical sections".
- Cache corruption???

Smart scheduling

- Advoiding:
(1) preempting a task when it is inside its critical section
(2) rescheduling tasks that were busy-waiting at the time of their preemption until the task that is executing the corresponding critical section releases it.
- The problem of "preemption inside spinlock-controlled critical sections" is solved.
- Cache corruption???.
- Tasks can be formed into groups
- Tasks in a group can be scheduled in any of the following ways:
- A task can be scheduled or preempted in the normal manner
- All the tasks in a group are scheduled or preempted simultaneously
- Tasks in a group are never preempted.
- In addition, a task can prevent its preemption irrespective of the scheduling policy (one of the above three) of its group.
- Policity: a tasks is scheduled on the processor where it last executed [Lazowska and Squillante]
- Alleviating the problem of cache corruption
- Problem: load imbalance
- Threads
- Processor sets: disjoin
- Processors in a processor set is assigned a subset of threads for execution.
- Priority scheduling: LQ, GQ(0),...,GQ(31)

- LQ and GQ(0-31) are empty: the processor executes an special idle thread until a thread becomes ready.
- Preemption: if an equal or higher priority ready thread is present

