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Scheduling on UMA 

Multiprocessors 

 Schedule:  

allocation of tasks to processors 

 Dynamic scheduling 

– A single queue of ready processes 

– A physical processor accesses the queue to run the next 

process 

– The binding of processes to processors is not tight 

 Static scheduling 

– Only one process per processor 

– Speedup can be predicted 
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Classes of scheduling  

 Static scheduling 

– An application is modeled as an directed acyclic graph (DAG) 

– The system is modeled as a set of homogeneous processors 

– An optimal schedule: NP-complete 

 Scheduling in the runtime system 

– Multithreads: functions for thread creation, synchronization, and 

termination 

– Parallelizing compilers: parallelism from the loops of the sequential 

programs 

 Scheduling in the OS 

– Multiple programs must co-exist in the same system 

 Administrative scheduling 
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Deterministic model 

 A parallel program is a 
collection of tasks, some 
of which must be 
completed before others 
begin 

 Deterministic model: 
The execution time needed 

by each task and the 
precedence relations 
between tasks are fixed 
and known before run time 

 Task graph 
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Gantt chart 

 Gantt chart indicates the time each task 

spends in execution, as well as the 

processor on which it executes 
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Optimal schedule 

 If all of the tasks take unit time, and the task graph is a 

forest (i.e., no task has more than one predecessor), then a 

polynomial time algorithm exists to find an optimal schedule 

  If all of the tasks take unit time, and the number of 

processors is two, then a polynomial time algorithm exists to 

find an optimal schedule 

 If the task lengths vary at all, or if there are more than two 

processors, then the problem of finding an optimal schedule 
is NP-hard. 
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Graham’s list scheduling algorithm 

 T = {T1, T2,…, Tn}  

a set of tasks 

 : T  (0,)  

a function associates an execution time with each task 

 A partial order < on T 

 L is a list of task on T 

 Whenever a processor has no work to do, it instantaneously 

removes from L the first ready task; that is, an unscheduled 
task whose predecessors under < have all completed 

execution. (The processor with the lower index is prior) 
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Graham’s list scheduling algorithm 

- Example 

T4 

T3 T6 

T1 T2 T5 T7 

T1 
-------- 

2 

T2 
------- 

3 

T3 
-------- 

1 

T4 
-------- 

2 

T5 
-------- 

3 

T6 
-------- 

3 

T7 
-------- 

1 

Time 

P
r
o
c
e
s
s
o
r
s
 

L = {T1, T2, T3, T4, T5, T6, T7} 
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Graham’s list scheduling algorithm 

- Problem 
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Coffman-Graham’s scheduling 

algorithm (1) 

 Graham’s list scheduling algorithm depends upon a 

prioritized list of tasks to execute 

 Coffman and Graham (1972) construct a list of tasks for the 

simple case when all tasks take the same amount of time. 
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Coffman-Graham’s scheduling 

algorithm (2) 

 Let T = T1, T2,…, Tn be a set of n unit-time tasks to be 

executed on p processors 

 If Ti < Tj, then task is Ti an immediate predecessor of task Tj, 

and Tj is an immediate successor of task Ti 

 Let S(Ti) denote the set of immediate successor of task Ti 

 Let (Ti) be an integer label assigned to Ti. 

 N(T) denotes the decreasing sequence of integers formed 

by ordering of the set {(T’)| T’  S(T)} 
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Coffman-Graham’s scheduling 

algorithm (3) 

1. Choose an arbitrary task Tk from T such that S(Tk) = 0, and define (Tk) 

to be 1 

2. for i  2 to n do 

  a. R be the set of unlabeled tasks with no unlabeled successors 

  b. Let T* be the task in R such that N(T*) is lexicographically smaller   

 than N(T) for all T in R 

  c. Let (T*)  i 

 endfor 

3. Construct a list of tasks L = {Un, Un-1,…, U2, U1} such that (Ui) = i for all i 

where 1  i  n 

4. Given (T, <, L), use Graham’s list scheduling algorithm to schedule the 

tasks in T 
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Coffman-Graham’s scheduling 

algorithm – Example (1) 
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Coffman-Graham’s scheduling 

algorithm – Example (2) 

Step1 of algorithm  

     task T9 is the only task with no immediate successor. Assign 1 to (T9) 
 

Step2 of algorithm 

 i=2: R = {T7, T8}, N(T7)= {1} and N(T8)= {1}  Arbitrarily choose task T7 

and assign 2 to (T7) 

 i=3: R = {T3, T4, T5, T8}, N(T3)= {2}, N(T4)= {2}, N(T5)= {2} and N(T8)= {1}  

Choose task T8 and assign 3 to (T8) 

 i=4: R = {T3, T4, T5, T6}, N(T3)= {2}, N(T4)= {2}, N(T5)= {2} and N(T6)= {3}  

Arbitrarily choose task T4 and assign 4 to (T4) 

 i=5: R = {T3, T5, T6}, N(T3)= {2}, N(T5)= {2} and N(T6)= {3}  Arbitrarily 

choose task T5 and assign 5 to (T5) 

 i=6: R = {T3, T6}, N(T3)= {2} and N(T6)= {3}  Choose task T3 and assign 6 

to (T3) 
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Coffman-Graham’s scheduling 

algorithm – Example (3) 

 i=7: R = {T1, T6}, N(T1)= {6, 5, 4} and N(T6)= {3}  Choose task T6 and 

assign 7 to (T6) 

 i=8: R = {T1, T2}, N(T1)= {6, 5, 4} and N(T2)= {7}  Choose task T1 and 

assign 8 to (T1) 

 i=9: R = {T2}, N(T2)= {7}  Choose task T2 and assign 9 to (T2) 
 

Step 3 of algorithm 

     L = {T2, T1, T6, T3, T5, T4, T8, T7, T9} 
 

Step 4 of algorithm 

    Schedule is the result of applying Graham’s list-scheduling algorithm to 

task graph T and list L 
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Issues in processor scheduling 

 Preemption inside spinlock-controlled critical sections 

 

 

 

 

 

 Cache corruption 

 Context switching overhead 
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Current approaches  

 Global queue 

 Variable partitioning 

 Dynamic partitioning with two-level scheduling 

 Gang scheduling 
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Global queue  

 A copy of uni-processor system on each node, while sharing 

the main data structures, specifically the run queue 

 Used in small-scale bus-based UMA shared memory 

machines such as Sequent multiprocessors, SGI 

multiprocessor workstations and Mach OS 

 Autonamic load sharing 

 Cache corruption 

 Preemption inside spinlock-controlled critical sections 
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Variable partitioning  

 Processors are partitioned into disjoined sets and each job is 

run only in a distinct partition 

 

 

 

 

 

 

 Distributed memory machines: Intel and nCube hypercudes, 

IBM PS2, Intel Paragon, Cray T3D 

 Problem: fragmentation, big jobs 

 

Scheme 

Parameters taken into account 

User request System load Changes 

Fixed no no no 

Variable yes no no 

Adaptive yes yes no 

Dynamic yes yes yes 
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Dynamic partitioning with  

two-level scheduling 

 Changes in allocation during execution 

 Workpile model:  

– The work = an unordered pile of tasks or chores 

– The computation = a set of worker threads, one per processor, that 

take one chore at time from the work pile 

– Allowing for the adjustment to different numbers of processors by 

changing the number of the wokers 

– Two-level scheduling scheme: the OS deals with the allocation of 

processors to jobs, while applications handle the scheduling of chores 

on those processors 
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Gang scheduling 

 Problem: Interactive response times  time slicing 

– Global queue: uncoordinated manner 

 Observartion: 

– Coordinated scheduling in only needed if the job’s threads interact 

frequently 

– The rare of interaction can be used to drive the grouping of threads 

into gangs 

 Samples:  

– Co-scheduling 

– Family scheduling: which allows more threads than processors and 

uses a second level of internal time slicing 
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Several specific  

scheduling methods 

 Co-scheduling 

 Smart scheduling [Zahorijan et al.] 

 Scheduling in the NYU Ultracomputer [Elter et al.] 

 Affinity based scheduling 

 Scheduling in the Mach OS 

 



Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM 

Co-Scheduling 

 Context switching between applications rather then between  

tasks of several applications. 

 Solving the problem of “preemption inside spinlock-controlled 

critical sections”. 

 Cache corruption??? 
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Smart scheduling 

 Advoiding: 

 (1) preempting a task when it is inside its critical section 

 (2) rescheduling tasks that were busy-waiting at the time of 

their preemption until the task that is executing the 

corresponding critical section releases it. 

 The problem of “preemption inside spinlock-controlled critical 

sections” is solved. 

 Cache corruption???. 
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Scheduling in  

the NYU Ultracomputer 

 Tasks can be formed into groups 

 Tasks in a group can be scheduled in any of the following 

ways: 

– A task can be scheduled or preempted in the normal manner 

– All the tasks in a group are scheduled or preempted simultaneously 

– Tasks in a group are never preempted. 

 In addition, a task can prevent its preemption irrespective of 

the scheduling policy (one of the above three) of its group. 
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Affinity based scheduling 

 Policity: a tasks is scheduled on the processor where it last 

executed [Lazowska and Squillante] 

 Alleviating the problem of cache corruption 

 Problem: load imbalance 
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 Threads 

 Processor sets: disjoin 

 Processors in a processor set is assigned a subset of threads 

for execution. 

– Priority scheduling: LQ, GQ(0),…,GQ(31) 

 

 

 

 

–  LQ and GQ(0-31) are empty: the processor executes an special idle 

thread until a thread becomes ready. 

– Preemption: if an equal or higher priority ready thread is present 

Scheduling in the Mach OS 
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