
Pipeline

Thoai Nam

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Outline

 Pipelining concepts

 The DLX architecture

 A simple DLX pipeline

 Pipeline Hazards and Solution to overcome

Reference:

 Computer Architecture: A Quantitative Approach,

John L Hennessy & David a Patterson, Chapter 6

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Concepts

 A technique to make fast CPUs by overlapping execution

of multiple instructions

Instruction i S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

Instruction # 1 2 3 4 5 6 7 8

Cycles

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

 Pipeline throughput

– Determined by how often an instruction exists the pipeline

– Depends on the overhead of clock skew and setup

– Depends on the time required for the slowest pipe stage

 Pipeline stall

– Delay the execution of some instructions and all

succeeding instructions

– “Slow down” the pipeline

 Pipeline Designer’s goal

– Balance the length of pipeline stages

– Reduce / Avoid pipeline stalls

Concepts (cont’d)

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Pipeline speedup
Average instruction time without pipeline

Average instruction time with pipeline

=

CPI without pipelining * Clock cycle without pipelining

CPI with pipelining * Clock cycle with pipelining

Ideal CPI * Pipeline depth = CPI without pipelining

CPI with pipelining Ideal CPI + Pipeline stall clock cycles per instruction =

Pipeline speedup =
Ideal CPI * Pipeline depth

Ideal CPI + Pipeline stall clock cycles per instruction

(CPI = number of Cycles Per Instruction)

=

Concepts (cont’d)

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

The DLX Architecture

 A mythical computer which architecture is based on
most frequently used primitives in programs

 Used to demonstrate and study computer
architecture organizations and techniques

 A DLX instruction consists of 5 execution stages
– IF – instruction fetch

– ID – instruction decode and register fetch

– EX – execution and effective address calculation

– MEM – memory access

– WB – write back

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

A Simple DLX Pipeline

Instruction i IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

IF ID EX MEM

Instruction i+1

Instruction i+2

Instruction i+3

Instruction # 1 2 3 4 5 6 7 8

Cycles

WB

WB

WB

WB

 Fetch a new instruction on each clock cycle

 An instruction step = a pipe stage

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

 Are situations that prevent the next
instruction in the instruction stream from
executing during its designated cycles

 Leads to pipeline stalls

 Reduce pipeline performance

 Are classified into 3 types
– Structural hazards

– Data hazards

– Control hazards

Pipeline Hazards

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Structure Hazard

 Due to resource conflicts

 Instances of structural hazards

– Some functional unit is not fully pipelined

» a sequence of instructions that all use that unit cannot

be sequentially initiated

– Some resource has not been duplicated enough. Eg:

» Has only 1 register-file write port while needing 2 write

in a cycle

» Using a single memory pipeline for data and instruction

 Why we allow this type of hazards?

– To reduce cost.

– To reduce the latency of the unit

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Data Hazard

 Occurs when the order of access to operands is

changed by the pipeline, making data unavailable for

next instruction

 Example: consider these 2 instructions

ADD R1, R2, R3 (R2 + R3 R1)

SUB R4, R1, R5 (R1 – R5 R4)

ADD instruction IF ID EX MEM

IF ID EX MEM SUB instruction

Instruction # 1 2 3 4 5 6 7 8

Cycles

WB

WB

Data written here

Data read here instruction is stalled 2 cycles

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Hardware Solution to Data

Hazard

 Forwarding (bypassing/short-circuiting) techniques

– Reduce the delay time between 2 depended instructions

– The ALU result is fed back to the ALU input latches

– Forwarding hardware check and forward the necessary result

to the ALU input for the 2 next instructions

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8,R1,R9

XOR R1, R10, R11

IF ID EX MEM

IF ID EX MEM

WB

WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

No stall

No stall

No stall

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Types of Data Hazards

 RAW(Read After Write)
– Instruction j tries to read a source before instruction i writes it

– Most common types

 WAR(Write After Read)
– Instruction j tries to write a destination before instruction i read it to

execute

– Can not happen in DLX pipeline. Why?

 WAW(Write After Write)
– Instruction j tries to write a operand before instruction i updates it

– The writes end up in the wrong order

 Is RAR (Read After Read) a hazard?

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

 Pipeline scheduling (Instruction scheduling)
– Use compiler to rearrange the generated code to eliminate hazard.

Example:

Software Solution to Data

Hazard

c=a+b

d=e-f
LW Ra, a

LW Rb, b

ADD Rc, Ra, Rb

SW c, Rc

LW Re, e

LW Rf, f

SUB Rd, Re, Rf

SW d, Rd

LW Ra, a

LW Rb, b

LW Re, e

ADD Rc, Ra, Rb

LW Rf, f

SW c, Rc

SUB Rd, Re, Rf

SW d, Rd

Source code
Generated code

Generated and rearranged code

(no hazard)

Data hazards

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Control/Branch Hazard

 Occurs when a branch/jump instruction is taken

 Causes great performance loss

 Example:

Branch instruction IF ID EX MEM WB

Instruction i+1 IF stall stall IF ID EX MEM WB

Instruction i+2 stall stall stall IF ID EX MEM WB

Instruction i+3 stall stall stall IF ID EX MEM..

Instruction i+4 stall stall stall IF ID EX…

Instruction i+5 stall stall stall IF ID

Instruction i+6 stall stall stall IF

The PC register changed here
Unnecessary instruction loaded

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Reducing Control Hazard

Effects

 Predict whether the branch is taken or not

 Compute the branch target address earlier

 Use many schemes

– Pipeline freezing

– Predict-not-taken scheme

– Predict-taken scheme (N/A in DLX)

– Delayed branch

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Pipeline Freezing

 Hold any instruction after the branch until the

branch destination is known

 Simple but not efficient

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Predict-Not-Taken Scheme

 Predict the branch as not taken and allow

execution to continue

– Must not change the machine state till the

branch outcome is known

 If the branch is not taken: no penalty

 If the branch is taken:

– Restart the fetch at the branch target

– Stall one cycle

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Predict-Not-Taken Scheme

(cont’d)

 Example

Taken branch instruction IF ID EX MEM WB

Instruction i+1 IF IF ID EX MEM WB

Instruction i+2 stall IF ID EX MEM WB

Instruction i+3 stall IF ID EX MEM WB

Instruction i+4 stall IF ID EX MEM

Instruction Fetch restarted

Right instruction fetched

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

If R2=0 then

Branch Delayed

 Change the order of execution so that the

next instruction is always valid and useful

 “From before” approach

ADD R1, R2, R3

If R2=0 then

Delay slot ADD R1, R2, R3

becomes

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

SUB R4,R5,R6

ADD R1, R2, R3

If R1=0 then

Branch Delayed (cont’d)

 “From target” approach

Delay slot

becomes

ADD R1, R2, R3

If R1=0 then

SUB R4,R5,R6

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Branch Delayed (cont’d)

 “From fall through” approach

ADD R1, R2, R3

If R1=0 then

SUB R4,R5,R6

Delay slot

becomes

ADD R1, R2, R3

If R1=0 then

SUB R4,R5,R6

