Pipeline

"Thoai Nam

Outline

a Pipelining concepts

a The DLX architecture

a A simple DLX pipeline

0 Pipeline Hazards and Solution to overcome

Reference:

Computer Architecture: A Quantitative Approach,
John L Hennessy & David a Patterson, Chapter 6

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Concepts

0 A technique to make fast CPUs by overlapping execution
of multiple instructions

Cycles

Instruction # 1 2 3 4 5 6 7 8

Instruction 1 S1 S2

Instruction 1+1 S1

Instruction 1+2

Instruction 1+3

Instruction 1+4

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Concepts (cont’d)

a Pipeline throughput
— Determined by how often an instruction exists the pipeline
— Depends on the overhead of clock skew and setup
— Depends on the time required for the slowest pipe stage

a Pipeline stall

— Delay the execution of some instructions and all
succeeding instructions

— “Slow down” the pipeline

Q Pipeline Designer’s goal
— Balance the length of pipeline stages
— Reduce / Avoid pipeline stalls

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Concepts (cont’d)

Average instruction time without pipeline

Pipeline speedup =

Average instruction time with pipeline

CPI without pipelining * Clock cycle without pipelining

CPI with pipelining * Clock cycle with pipelining

(CPI = number of Cycles Per Instruction)

CPI without pipelining= Ideal CPI * Pipeline depth
CPI with pipelining = Ideal CPI + Pipeline stall clock cycles per instruction

Pipeline speedup = |ldeal CPI * Pipeline depth

|ldeal CPI + Pipeline stall clock cycles per instruction

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

The DLX Architecture

a A mythical computer which architecture is based on
most frequently used primitives in programs

a Used to demonstrate and study computer
architecture organizations and techniques

0 A DLX instruction consists of 5 execution stages
— |IF — instruction fetch
— ID — instruction decode and register fetch
— EX — execution and effective address calculation
— MEM — memory access
— WB — write back

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

A Simple DLX Pipeline

a0 Fetch a new instruction on each clock cycle
a An instruction step = a pipe stage
Cycles

Instruction # 1 2

Instruction 1 IF 1D

Instruction 1+1 IF

Instruction 1+2

Instruction 1+3

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Pipeline Hazards

a Are situations that prevent the next
iInstruction in the instruction stream from
executing during its designated cycles

0 Leads to pipeline stalls
0 Reduce pipeline performance

0 Are classified into 3 types
— Structural hazards
— Data hazards
— Control hazards

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Structure Hazard

a Due to resource conflicts

0 Instances of structural hazards
— Some functional unit is not fully pipelined

» a sequence of instructions that all use that unit cannot
be sequentially initiated

— Some resource has not been duplicated enough. Eg:

» Has only 1 register-file write port while needing 2 write
in a cycle

» Using a single memory pipeline for data and instruction
a Why we allow this type of hazards?

— To reduce cost.
— To reduce the latency of the unit

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Data Hazard

0 Occurs when the order of access to operands is

changed by the pipeline, making data unavailable for
next instruction

0 Example: consider these 2 instructions
ADDR1,R2,R3 (R2+ R3 > R1)
SUB R4, R1, R5 (R1-—R5 > R4)

Cycles
Instruction # 1 2 3 4 5 6 7 8
ADD instruction| IF | ID WB€— Data written here
SUB instruction IF ID WB

Data read here =» instruction is stalled 2 cycles

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

‘Hardware Solution to Data
Hazard

a Forwarding (bypassing/short-circuiting) techniques
— Reduce the delay time between 2 depended instructions
— The ALU result is fed back to the ALU input latches

— Forwarding hardware check and forward the necessary result
to the ALU input for the 2 next instructions

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8,R1,R9

XOR R1, R10, R11

IF

ID

IF

IF

WB

WB No stall

- No stall

ID

QO | o

IF

o [N

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Types of Data Hazards

0o RAW(Read After Write)

— Instruction j tries to read a source before instruction i writes it
— Most common types

a0 WAR(Write After Read)

— Instruction j tries to write a destination before instruction i read it to
execute

— Can not happen in DLX pipeline. Why?
a WAW(Write After Write)

— Instruction j tries to write a operand before instruction i updates it
— The writes end up in the wrong order

0 Is RAR (Read After Read) a hazard?

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

3

0 Pipeline scheduling (Instruction scheduling)
— Use compiler to rearrange the generated code to eliminate hazard.

Software Solution to Data

Hazard

Example:

Generated code

LW Ra, a
LW @b
ADD Re, Ra,(Rb)
SW ¢, Rc
LW Re, e

LW

SW d, Rd

SUB Rd, Re,k

Source code

-~

>

c=a+tb

d=e-f

AN

Data hazards

Generated and rearranged code

(no hazard)

LW Ra, a

LW Rb, b

LW Re, e

ADD Rc, Ra, Rb
LW Rf,

SW ¢, Rc

SUB Rd, Re, Rf
SW d, Rd

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Control/Branch Hazard

a Occurs when a branch/jump instruction is taken
o Causes great performance loss

0 Example:
The PC register changed here

Unnecessary instructionW
\ N

Branch instruction IFLID EX @ WB

P

Instruction i+1 @ stall stall IF ID EX MEM WB

Instruction i+2 stall stall stall IF ID EX MEM WB
Instruction i+3 stall stall stall IF 1D EX MEM..
Instruction i+4 stall stall stall IF ID EX...
Instruction 1+5 stall stall stall IF ID
Instruction i+6 stall stall stall IF

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

‘Reducmg Control Hazard
Effects

0 Predict whether the branch is taken or not
0 Compute the branch target address earlier

0 Use many schemes
— Pipeline freezing
— Predict-not-taken scheme
— Predict-taken scheme (N/A in DLX)
— Delayed branch

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Pipeline Freezing

0 Hold any instruction after the branch until the
branch destination is known

0 Simple but not efficient

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Predict-Not-Taken Scheme

a Predict the branch as not taken and allow
execution to continue

— Must not change the machine state till the
branch outcome is known

a If the branch is not taken: no penalty

a If the branch is taken:
— Restart the fetch at the branch target
— Stall one cycle

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

‘Predlct -Not-Taken Scheme
(cont’d)

a Example

Instruction Fetch restarted

Taken branch instruction IF ID EXf/MEM WB

Instruction i+1 IF (E) ID EX MEM WB

Instruction i+2 stallQF) ID EX MEM WB
Instruction i+3 fstall IF ID EX MEM WB
Instruction i+4 / stall IF ID EX MEM

Right instruction fetched

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Branch Delayed

o Change the order of execution so that the
next instruction is always valid and useful

0 “From before” approach

ADD R1,R2, R3
becomes
If R2=0 then If R2=0 then
>
Delay slot ADD R1, R2, R3
< <

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Branch Delayed (cont’d)

0 “From target” approach

SUB R4,R5,R6 *—
ADD R1, R2, R3

becomes

If R1=0 then

Delay slot

>

47

ADD R1,R2,R3

If R1=0 then

SUB R4,R5,R6

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

Branch Delayed (cont’d)

0 “From fall through” approach

ADD R1, R2, R3
If R1=0 then becomes
Delay slot g
SUB R4,R5,R6
<

ADD R1, R2, R3
If R1=0 then

SUB R4,R5,R6

Khoa Céng Nghé Thong Tin — Pai Hoc Bach Khoa Tp.HCM

