
Programming with

Shared Memory

Nguyễn Quang Hùng

Outline

 Introduction

 Shared memory multiprocessors

 Constructs for specifying parallelism

 Creating concurrent processes

 Threads

 Sharing data

 Creating shared data

 Accessing shared data

 Language constructs for parallelism

 Dependency analysis

 Shared data in systems with caches

 Examples

 Pthreads example

 Exercises

Introduction

 This section focuses on programming on shared

memory system (e.g SMP architecture).

 Programming mainly discusses on:

 Multi-processes: Unix/Linux fork(), wait()…

 Multithreads: IEEE Pthreads, Java Thread…

Multiprocessor system

 Multiprocessor systems: two types

 Shared memory multiprocessor.

 Message-passing multicomputer.

 In “Parallel programming:Techniques & applications using networked

workstations & parallel computing” book.

 Shared memory multiprocessor:

 SMP-based architecture: IBM RS/6000, Big BLUE/Gene

supercomputer, etc.

Read more & report:

IBM RS/6000 machine.

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

http://docs.hp.com/en/B6056-96002/ch01s01.html

Shared memory multiprocessor system

 Based on SMP architecture.

 Any memory location can be accessible by any of

the processors.

 A single address space exists, meaning that each

memory location is given a unique address within

a single range of addresses.

 Generally, shared memory programming more

convenient although it does require access to

shared data to be controlled by the programmer

(using critical sections: semaphore, lock, monitor…).

Shared memory multiprocessor using a single

bus

BUS

Cache

Processors

........

Memory modules

........

• A small number of processors. Perhaps, Up to 8 processors.

• Bus is used by one processor at a time. Bus contention increases

by #processors.

Shared memory multiprocessor using a

crossbar switch

IBM POWER4 Chip logical view

Source: www.ibm.com

Several alternatives for programming shared

memory multiprocessors
 Using library routines with an existing sequential programming

language.
 Multiprocesses programming:

 fork(), execv()…

 Multithread programming:
 IEEE Pthreads library

 Java Thread. http://java.sun.com

 Using a completely new programming language for parallel
programming - not popular.
 High Performance Fortran, Fortran M, Compositional C++….

 Modifying the syntax of an existing sequential programming language
to create a parallel programming language. Using an existing sequential
programming language supplemented with compiler directives for
specifying parallelism.
 OpenMP. http://www.openmp.org

http://java.sun.com/

Multi-processes programming

 Operating systems often based upon notion of a process.

 Processor time shares between processes, switching from
one process to another. Might occur at regular intervals or
when an active process becomes delayed.

 Offers opportunity to de-schedule processes blocked from
proceeding for some reasons, e.g. waiting for an I/O
operation to complete.

 Concept could be used for parallel programming. Not
much used because of overhead but fork/join concepts
used elsewhere.

FORK-JOIN construct

Main program

FORK

FORK

FORK

JOIN

JOIN

JOIN
JOIN

Spawned processes

UNIX System Calls

 No join routine - use exit() and wait()

 SPMD model

..

pid = fork(); /* fork */

Code to be executed by both child and parent

if (pid == 0) exit(0); else wait(0); /* join */

...

UNIX System Calls (2)

 SPMD model: master-workers model.

1. …

2. pid = fork();

3. if (pid == 0) {

4. Code to be executed by slave process

5. } else {

6. Code to be executed by master process

7. }

8. if (pid == 0) exit(0); else wait(0);

9. ...

Process vs thread

Process

- Completely separate
program with its
own variables,
stack, and memory
allocation.

Threads

– Share the same

memory space

and global

variables between

routines

IEEE Pthreads (1)

 IEEE Portable Operating System Interface,

POSIX, sec. 1003.1 standard

Thread1

proc1(&arg)

{

 ….

 return(*status);

}

Main program

pthread_create(&thread, NULL, proc1, &arg);

Pthread_join(thread1, *status);

Executing a Pthread thread

The pthread_create() function

 #include <pthread.h>

 int pthread_create(

 pthread_t *threadid,

 pthread_attr_t * attr,

 void * (*start_routine)(void *),

 void * arg);

 The pthread_create() function creates a new

thread storing an identifier to the new thread in

the argument pointed to by threadid.

The pthread_join() function

 #include <pthread.h>

 void pthread_exit(void *retval);

 int pthread_join(pthread_t threadid,

 void **retval);

 The function pthread_join() is used to suspend the current thread

until the thread specified by threadid terminates. The other thread’s

return value will be stored into the address pointed to by retval if

this value is not NULL.

Detached threads

 It may be that threads are not bothered when a

thread it creates terminates and then a join not

needed.

 Threads not joined are called detached threads.

 When detached threads terminate, they are

destroyed and their resource released.

Pthread detached threads

Main program

pthread_create()

pthread_create()

pthread_create()

Thread

Termination

Thread

Termination

Thread

Termination

Parameter (attribute)

specifies a detached thread

The pthread_detach() function

 #include <pthread.h>

 int pthread_detach(pthread_t threadid);

• Put a running thread into detached state.

• Can’t synchronize on termination of thread threadid using

pthread_join().

Thread cancellation

 #include <pthread.h>

 int pthread_cancel(pthread_t thread);

 int pthread_setcancelstate(int state, int *oldstate);

 int pthread_setcanceltype(int type, int *oldtype);

 void pthread_testcancel(void);

• The pthread_cancel function allows the current thread to cancel

another thread, identified by thread.
• Cancellation is the mechanism by which a thread can terminate the execution

of another thread. More precisely, a thread can send a cancellation request to

another thread. Depending on its settings, the target thread can then either

ignore the request, honor it immediately, or defer it till it reaches a cancellation

point.

Other Pthreads functions

 #include <pthread.h>

 int pthread_atfork(void (*prepare)(void), void (*parent)(void),

void (*child)(void));

Thread pools

 Master-Workers Model:

 A master thread controls a collection of worker thread.

 Dynamic thread pools.

 Static thread pools.

 Threads can communicate through shared locations or

signals.

Statement execution order
 Single processor: Processes/threads typically executed until blocked.

 Multiprocessor: Instructions of processes/threads interleaved in
time.

Example

Process 1 Process 2

Instruction 1.1 Instruction 2.1

Instruction 1.2 Instruction 2.2

Instruction 1.3 Instruction 2.3

 Several possible orderings, including
Instruction 1.1

Instruction 1.2

Instruction 2.1

Instruction 1.3

Instruction 2.2

Instruction 2.3

assuming instructions cannot be divided into smaller interruptible steps.

Statement execution order (2)

 If two processes were to print messages, for

example, the messages could appear in different

orders depending upon the scheduling of

processes calling the print routine.

 Worse, the individual characters of each message

could be interleaved if the machine instructions of

instances of the print routine could be interleaved.

Compiler/Processor optimization

 Compiler and processor reorder instructions for optimization.

 Example: the statements

a = b + 5;

x = y + 4;

 could be compiled to execute in reverse order:

x = y + 4;

a = b + 5;

 and still be logically correct.

 May be advantageous to delay statement a = b + 5 because a
previous instruction currently being executed in processor
needs more time to produce the value for b. Very common for
processors to execute machines instructions out of order for
increased speed .

Thread-safe routines

 Thread safe if they can be called from multiple
threads simultaneously and always produce
correct results.

 Standard I/O thread safe:

 printf(): prints messages without interleaving the
characters.

 NOT thread-safe functions:

 System routines that return time may not be thread
safe.

 Routines that access shared data may require
special care to be made thread safe.

SHARING DATA

SHARING DATA

 Every processor/thread can directly access shared

variables, data structures rather than having to the

pass data in messages.

 Solution for critical sections:

 Lock

 Mutex

 Semaphore

 Conditional variables

 Monitor

Creating shared data

 UNIX processes: each process has its own virtual

address space within the virtual memory

management system.

 Shared memory system calls allow processes to attach

a segment of physical memory to their virtual memory

space.

 shmget() – creates, returns shared memory segment identifier.

 shmat() – returns the starting address of data segment.

 It’s NOT necessary to create shared data items

explicity when using threads.

 Global variables: available to all threads.

Acsessing shared data

 Accessing shared data needs careful control.

 Consider two processes each of which is to add one to a

shared data item, x. Necessary for the contents of the

location x to be read, x + 1 computed, and the result

written back to the location:

 Instruction Process 1 Process 2

 x = x + 1; read x read x

 compute x + 1 compute x + 1

 write to x write to x

Time

Conflict in accessing shared variable

Shared variable, x

+1 +1

read read write write

Process 1 Process 2

Critical section

 A mechanism for ensuring that only one process

accesses a particular resource at a time is to establish

sections of code involving the resource as so-called

critical sections and arrange that only one such

critical section is executed at a time

 This mechanism is known as mutual exclusion.

 This concept also appears in an operating systems.

Locks

 Simplest mechanism for ensuring mutual exclusion

of critical sections.

 A lock is a 1-bit variable that is a 1 to indicate that

a process has entered the critical section and a 0 to

indicate that no process is in the critical section.

 Operates much like that of a door lock:

 A process coming to the “door” of a critical section and

finding it open may enter the critical section, locking the

door behind it to prevent other processes from entering.

Once the process has finished the critical section, it

unlocks the door and leaves.

Control of critical sections through busy waiting

 Processs 1 Process 2

while (lock == 1) do_nothing;

lock = 1;

Critical section

Lock = 0;

while (lock == 1) do_nothing;

lock = 1;

Critical section

Lock = 0;

Pthreads lock functions

 Pthreads implements lock by mutally exclusive

lock variables (mutex variables).

pthread_mutex_t mutex1;

pthread_mutex_init(&mutex1, NULL);

……..

pthread_mutex_lock (&mutex1);

 /// Critical section code here

pthread_mutex_unlock(&mutex1);
Only the thread that

locks a mutex can

unlock it. Otherwise,

throws an error.

Only 1 thread

can enter the

critical section

code or wait

IEEE Pthreads example

 Calculating sum of an array a[].

 N threads created, each taking numbers from list
to add to their sums. When all numbers taken,
threads can add their partial results to a shared
location sum.

 The shared location global_index is used by each
thread to select the next element of a[].

 After index is read, it is incremented in
preparation for the next element to be read. The
result location is sum, as before, and will also
need to be shared and access protected by a lock.

IEEE Pthreads example (2)

 Calculating sum of an array a[].

addr

…………………………………………..

global_index

sum
Array a[]

Code at page 254

IEEE Pthreads example (3)

1. #include <stdio.h>

2. #include <pthread.h>

3. #define ARRAY_SIZE 1000

4. #define NUM_THREADS 10

5. // Global Variables, Shared data

6. int a[ARRAY_SIZE];

7. int global_index = 0;

8. int sum = 0;

9. pthread_mutex_t mutex1; // mutually exclusive lock variable

10. pthread_t worker_threads[NUM_THREADS];

IEEE Pthreads example (4)

1. // Worker thread

2. void *worker(void *ignored) {

3. int local_index, partial_sum = 0;

4. do {

5. pthread_mutex_lock (&mutex1);

6. local_index = global_index; global_index++;

7. pthread_mutex_unlock(&mutex1);

8. if (local_index < ARRAY_SIZE) {

9. partial_sum += a [local_index];

10. }

11. }

12. while (local_index < ARRAY_SIZE);

13. pthread_mutex_lock(&mutex1);

14. sum += partial_sum;

15. pthread_mutex_unlock(&mutex1);

16. }

IEEE Pthreads example (5)

1. void master() {

2. int i;

3. // Initialize mutex

4. pthread_mutex_init(&mutex1, NULL);

5. init_data();

6. create_workers(NUM_THREADS);

7. // Join threads

8. for (i = 0; i < NUM_THREADS ; i++) {

9. if (pthread_join(worker_threads[i], NULL) != 0) {

10. perror("PThread join fails");

11. }

12. }

13. printf("The sum of 1 to %i is %d \n" , ARRAY_SIZE, sum);

14. }

IEEE Pthreads example (6)

1. void init_data() {

2. int i;

3. for (i = 0; i < ARRAY_SIZE ; i++) { a[i] = i + 1; }

4. }

5. // Create some worker threads

6. void create_workers(int n){

7. int i;

8. for (i = 0; i < n ; i++) {

9. if (pthread_create(&worker_threads[i], NULL,
 worker, NULL) != 0) {

10. perror("Pthreads create fails"); }

11. }

12. }

Java multithread programming

 A class extends from java.lang.Thread class.

 A class implements java.lang.Runnable interface.

// A sample Runner class
public class Runner extends Thread

{

String name;

public Runner(String name) {

 this.name = name;

}

public void run() {

 int N = 10;

 for (int i = 0; i < N ; i++) {

 System.out.println("I am "+

 this.name + "runner at “ + I + “ km.");

 thread.delay(100);

 }

}

public static void main(String[] args)

{

 Runner hung = new Runner("Hung");

 Runner minh = new Runner("Minh");

 Runner ken = new Runner(“Ken");

 hung.start();

 minh.start();

 ken.start();

 System.out.println("Hello World!");

}

} // End main

Language Constructs for Parallelism

Language Constructs for Parallelism - Shared Data

 Shared Data:

 shared memory variables
might be declared as shared
with, say,

 shared int x;

 Par Construct

 par {

 S1;

 S2;

 .

 .

 Sn;

 }

 par {

 proc1();

 proc2();

 …

 }

Forall Construct

 Keywords: forall or parfor

 To start multiple similar
processes together: which
generates n processes each
consisting of the statements
forming the body of the for loop,
S1, S2, …, Sm. Each process
uses a different value of i.

 Example:

 forall (i = 0; i < 5; i++)

 a[i] = 0;

 clears a[0], a[1], a[2], a[3], and a[4] to zero concurrently.

forall (i = 0 ; i < N; i++) {

 S1;

 S2;

 …..

 Sm;

}

Dependency analysis

 To identify which processes could be executed
together.

 Example: can see immediately in the code

forall (i = 0; i < 5; i++)

a[i] = 0;

 that every instance of the body is independent of
other instances and all instances can be executed
simultaneously.

 However, it may not be that obvious. Need
algorithmic way of recognizing dependencies, for
a parallelizing compiler.

Bernstein's Conditions

  Set of conditions sufficient to determine whether two
processes can be executed simultaneously. Given:
 Ii is the set of memory locations read (input) by process Pi.

 Oj is the set of memory locations written (output) by process Pj.

 For two processes P1 and P2 to be executed
simultaneously, inputs to process P1 must not be part of
outputs of P2, and inputs of P2 must not be part of
outputs of P1; i.e.,
 I1  O2 = 

 I2  O1 = 

 where f is an empty set. Set of outputs of each process
must also be different; i.e.,
 O1  O2 = 

 If the three conditions are all satisfied, the two processes
can be executed concurrently.

Example

 Example: suppose the two statements are (in C)

 a = x + y;

 b = x + z;

 We have

 I1 = (x, y) O1 = (a)

 I2 = (x, z) O2 = (b)

 and the conditions

 I1  O2 = 

 I2  O1 = 

 O1  O2 = 

 are satisfied. Hence, the statements a = x + y and b = x +

z can be executed simultaneously.

OpenMP

 An accepted standard developed in the late 1990s by a

group of industry specialists.

 Consists of a small set of compiler directives, augmented

with a small set of library routines and environment

variables using the base language Fortran and C/C++.

 The compiler directives can specify such things as the par

and forall operations described previously.

 Several OpenMP compilers available.

 Exercise: read more & report:

 http://www.openmp.org

Shared Memory Programming Performance Issues

 Shared data in systems with caches

 Cache coherence protocols

 False Sharing:

 Solution: compiler to alter the layout of the data stored in the

main memory, separating data only altered by one processor

into different blocks.

 High performance programs should have as few

as possible critical sections as their use can

serialize the code.

Sequential Consistency

 Formally defined by Lamport (1979):

 A multiprocessor is sequentially consistent if the result

of any execution is the same as if the operations of all

the processors were executed in some sequential order,

and the operations of each individual processors occur

in this sequence in the order specified by its program.

 i.e. the overall effect of a parallel program is not

changed by any arbitrary interleaving of

instruction execution in time.

Sequential consistency (2)

Processors (Programs)

Sequential consistency (2)

 Writing a parallel program for a system which is known
to be sequentially consistent enables us to reason about
the result of the program. For example:

Process P1 Process 2

…

data = new; .

flag = TRUE; .

… . .

 while (flag != TRUE) {

};

 data_copy = data;

 . . Expect data_copy to be set to new because we expect the

statement data = new to be executed before flag = TRUE and the

statement while (flag != TRUE) { } to be executed before data_copy =

data. Ensures that process 2 reads new data from another process 1.

Process 2 will simple wait for the new data to be produced.

