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Introduction 

 This section focuses on programming on shared 

memory system (e.g SMP architecture).  

 Programming mainly discusses on: 

 Multi-processes: Unix/Linux fork(), wait()… 

 Multithreads: IEEE Pthreads, Java Thread… 

 



Multiprocessor system 

 Multiprocessor systems: two types 

 Shared memory multiprocessor. 

 Message-passing multicomputer. 

 In “Parallel programming:Techniques & applications using networked 

workstations & parallel computing” book. 

 Shared memory multiprocessor: 

 SMP-based architecture: IBM RS/6000, Big BLUE/Gene 

supercomputer, etc.  

 
Read more & report: 

IBM RS/6000 machine. 

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html 

http://docs.hp.com/en/B6056-96002/ch01s01.html 



Shared memory multiprocessor system 

 Based on SMP architecture. 

 Any memory location can be accessible by any of 

the processors. 

 A single address space exists, meaning that each 

memory location is given a unique address within 

a single range of addresses. 

 Generally, shared memory programming more 

convenient although it does require access to 

shared data to be controlled by the programmer 

(using critical sections: semaphore, lock, monitor…). 

 



Shared memory multiprocessor using a single 
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• A small number of processors. Perhaps, Up to 8 processors. 

• Bus is used by one processor at a time.  Bus contention increases 

by #processors. 



Shared memory multiprocessor using a 

crossbar switch 
 



IBM POWER4 Chip logical view 

Source: www.ibm.com 



Several alternatives for programming shared 

memory multiprocessors 
 Using library routines with an existing sequential programming 

language. 
 Multiprocesses programming:  

 fork(), execv()… 

 Multithread programming:  
 IEEE Pthreads library 

 Java Thread. http://java.sun.com 

 

 Using a completely new programming language for parallel 
programming - not popular.  
 High Performance Fortran, Fortran M, Compositional C++…. 

 

 Modifying the syntax of an existing sequential programming language 
to create a parallel programming language. Using an existing sequential 
programming language supplemented with compiler directives for 
specifying parallelism.  
 OpenMP. http://www.openmp.org 

http://java.sun.com/


Multi-processes programming 

 Operating systems often based upon notion of a process. 

 

 Processor time shares between processes, switching from 
one process to another. Might occur at regular intervals or 
when an active process becomes delayed. 

 

 Offers opportunity to de-schedule processes blocked from 
proceeding for some reasons, e.g. waiting for an I/O 
operation to complete. 

 

 Concept could be used for parallel programming. Not 
much used because of overhead but fork/join concepts 
used elsewhere. 

 



FORK-JOIN construct 
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UNIX System Calls 

 
 No join routine - use exit() and wait() 

 

 SPMD model 

.. 

pid = fork(); /* fork */ 

Code to be executed by both child and parent 

if (pid == 0) exit(0); else wait(0); /* join */ 

... 

 



UNIX System Calls (2) 

 SPMD model: master-workers model. 

1. … 

2. pid = fork(); 

3. if (pid == 0) { 

4.       Code to be executed by slave process 

5. } else { 

6.      Code to be executed by master process 

7. } 

8. if (pid == 0) exit(0); else wait(0); 

9. ... 

 



Process vs thread 

Process  

-   Completely separate 
program with its 
own variables, 
stack, and memory 
allocation. 

Threads  

–  Share the same 

memory space 

and global 

variables between 

routines 



IEEE Pthreads (1) 

 IEEE Portable Operating System Interface, 

POSIX, sec. 1003.1 standard 

Thread1 

 

proc1( &arg ) 

{ 

     …. 

     return( *status ); 

} 

Main program 

pthread_create( &thread, NULL, proc1, &arg ); 

Pthread_join( thread1, *status); 

Executing a Pthread thread 



The pthread_create() function 

 #include <pthread.h> 

 int pthread_create( 

  pthread_t *threadid,  

  pthread_attr_t * attr,  

  void * (*start_routine)(void *),  

  void * arg); 

 

 The pthread_create() function creates a new 

thread storing an identifier to the new thread in 

the argument pointed to by threadid. 

 



The pthread_join() function 

 #include <pthread.h> 

 void pthread_exit(void *retval); 

 int pthread_join(pthread_t threadid,  

   void **retval); 

 
 The function pthread_join() is used to suspend the current thread 

until the thread specified by threadid terminates. The other thread’s 

return value will be stored into the address pointed to by retval if 

this value is not NULL. 

 



Detached threads 

 It may be that threads are not bothered when a 

thread it creates terminates and then a join not 

needed. 

 Threads not joined are called detached threads. 

 When detached threads terminate, they are 

destroyed and their resource released. 

 



Pthread detached threads  
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The pthread_detach() function 

 #include <pthread.h> 

 int pthread_detach(pthread_t threadid); 

• Put a running thread into detached state. 

• Can’t synchronize on termination of thread threadid using 

pthread_join(). 



Thread cancellation 

 #include <pthread.h> 

 int pthread_cancel(pthread_t thread); 

 int pthread_setcancelstate(int state, int *oldstate); 

 int pthread_setcanceltype(int type, int *oldtype); 

 void pthread_testcancel(void); 

 
• The pthread_cancel function allows the current thread to cancel 

another thread, identified by thread. 
• Cancellation is the mechanism by which a thread can terminate the execution  

of another thread. More precisely, a thread can send a cancellation request to 

another  thread. Depending  on  its  settings,  the  target thread can then either 

ignore the request, honor it immediately, or  defer it till it reaches a cancellation 

point. 

 



Other Pthreads functions 

 #include <pthread.h> 

 int pthread_atfork(void (*prepare)(void), void (*parent)(void), 

void (*child)(void)); 

 

 



Thread pools 

 Master-Workers Model: 

 A master thread controls a collection of worker thread. 

 Dynamic thread pools. 

 Static thread pools. 

 Threads can communicate through shared locations or 

signals. 



Statement execution order 
 Single processor: Processes/threads typically executed until blocked. 

 Multiprocessor: Instructions of processes/threads interleaved in 
time. 

Example 

Process 1    Process 2 

Instruction 1.1   Instruction 2.1 

Instruction 1.2  Instruction 2.2 

Instruction 1.3   Instruction 2.3 

 Several possible orderings, including 
Instruction 1.1 

Instruction 1.2 

Instruction 2.1 

Instruction 1.3 

Instruction 2.2 

Instruction 2.3 

assuming instructions cannot be divided into smaller interruptible steps. 



Statement execution order (2) 

 If two processes were to print messages, for 

example, the messages could appear in different 

orders depending upon the scheduling of 

processes calling the print routine. 

 Worse, the individual characters of each message 

could be interleaved if the machine instructions of 

instances of the print routine could be interleaved. 

 



Compiler/Processor optimization 

 Compiler and processor reorder instructions for optimization. 

 Example: the statements 

a = b + 5; 

x = y + 4; 

 could be compiled to execute in reverse order: 

x = y + 4; 

a = b + 5; 

 and still be logically correct. 

 May be advantageous to delay statement a = b + 5 because a 
previous instruction currently being executed in processor 
needs more time to produce the value for b. Very common for 
processors to execute machines instructions out of order for 
increased speed . 

 



Thread-safe routines 

 Thread safe if they can be called from multiple 
threads simultaneously and always produce 
correct results. 

 Standard I/O thread safe:  

 printf(): prints messages without interleaving the 
characters. 

 NOT thread-safe functions:  

 System routines that return time may not be thread 
safe. 

 Routines that access shared data may require 
special care to be made thread safe. 

 



SHARING DATA 



SHARING DATA 

 Every processor/thread can directly access shared 

variables, data structures rather than having to the 

pass data in messages. 

 Solution for critical sections: 

 Lock 

 Mutex 

 Semaphore 

 Conditional variables 

 Monitor 

 



Creating shared data 

 UNIX processes: each process has its own virtual 

address space within the virtual memory 

management system. 

 Shared memory system calls allow processes to attach 

a segment of physical memory to their virtual memory 

space. 

 shmget() – creates, returns shared memory segment identifier. 

 shmat() – returns the starting address of data segment. 

 It’s NOT necessary to create shared data items 

explicity when using threads. 

 Global variables: available to all threads. 



Acsessing shared data 

 Accessing shared data needs careful control. 

 Consider two processes each of which is to add one to a 

shared data item, x. Necessary for the contents of the 

location x to be read, x + 1 computed, and the result 

written back to the location: 

 Instruction  Process 1   Process 2 

 x = x + 1;  read x    read x 

   compute x + 1   compute x + 1 

   write to x   write to x 

Time 

 

 



Conflict in accessing shared variable 

Shared variable, x 

+1 +1 

read read write write 

Process 1 Process 2 



Critical section 

 A mechanism for ensuring that only one process 

accesses a particular resource at a time is to establish 

sections of code involving the resource as so-called 

critical sections and arrange that only one such 

critical section is executed at a time 

 

 This mechanism is known as mutual exclusion. 

 

 This concept also appears in an operating systems. 

 



Locks 

 Simplest mechanism for ensuring mutual exclusion 

of critical sections. 

 A lock is a 1-bit variable that is a 1 to indicate that 

a process has entered the critical section and a 0 to 

indicate that no process is in the critical section. 

 Operates much like that of a door lock: 

 A process coming to the “door” of a critical section and 

finding it open may enter the critical section, locking the 

door behind it to prevent other processes from entering. 

Once the process has finished the critical section, it 

unlocks the door and leaves. 



Control of critical sections through busy waiting 

  Processs 1   Process 2 

while (lock == 1) do_nothing; 

lock = 1; 

Critical section 

 

Lock = 0; 

 

 

while (lock == 1) do_nothing; 

 

 

 

 

lock = 1; 

 

Critical section 

 

Lock = 0; 

 

 



Pthreads lock functions 

 Pthreads implements lock by mutally exclusive 

lock variables (mutex variables). 

pthread_mutex_t mutex1; 

pthread_mutex_init( &mutex1, NULL ); 

…….. 

pthread_mutex_lock ( &mutex1 ); 

 /// Critical section code here 

pthread_mutex_unlock( &mutex1 ); 
Only the thread that 

locks a mutex can 

unlock it. Otherwise, 

throws an error. 

Only 1 thread 

can enter the 

critical section 

code or wait 



IEEE Pthreads example 

 Calculating sum of an array a[ ].  

 N threads created, each taking numbers from list 
to add to their sums. When all numbers taken, 
threads can add their partial results to a  shared 
location sum. 

 The shared location global_index is used by each 
thread to select the next element of a[].  

 After index is read, it is incremented in 
preparation for the next element to be read. The 
result location is sum, as before, and will also 
need to be shared and access protected by a lock. 



IEEE Pthreads example (2) 

 Calculating sum of an array a[ ].  

addr 

………………………………………….. 

global_index 

sum 
Array a[  ] 

Code at page 254 



IEEE Pthreads example (3) 

1. #include <stdio.h> 

2. #include <pthread.h> 

3. #define ARRAY_SIZE 1000 

4. #define NUM_THREADS 10 

 

5. // Global Variables, Shared data 

6. int a[ ARRAY_SIZE ];  

7. int global_index = 0; 

8. int sum = 0; 

 

9. pthread_mutex_t mutex1; // mutually exclusive lock variable 

10. pthread_t worker_threads[ NUM_THREADS ]; 



IEEE Pthreads example (4) 

1. // Worker thread 

2. void *worker(void *ignored ) {  

3.         int local_index, partial_sum = 0; 

4.         do        { 

5.                 pthread_mutex_lock ( &mutex1 );  

6.                       local_index = global_index;         global_index++; 

7.                 pthread_mutex_unlock( &mutex1 ); 

8.                 if (local_index < ARRAY_SIZE)   { 

9.                         partial_sum += a [ local_index ]; 

10.                 } 

11.         } 

12.         while ( local_index < ARRAY_SIZE ); 

13.         pthread_mutex_lock( &mutex1 ); 

14.                 sum += partial_sum; 

15.         pthread_mutex_unlock( &mutex1 ); 

16. } 



IEEE Pthreads example (5) 

1. void master() { 

2.         int i; 

3.         // Initialize mutex 

4.         pthread_mutex_init( &mutex1, NULL );  

5.         init_data(); 

6.         create_workers( NUM_THREADS ); 

7.         // Join threads 

8.         for (i = 0; i < NUM_THREADS ; i++ )     { 

9.                 if ( pthread_join( worker_threads[i], NULL ) != 0 )       { 

10.                         perror( "PThread join fails" ); 

11.                 } 

12.         } 

13.         printf("The sum of 1 to %i is %d \n" , ARRAY_SIZE, sum ); 

14. } 



IEEE Pthreads example (6) 

1. void init_data() { 

2.         int i; 

3.         for (i = 0;  i < ARRAY_SIZE ;  i++ )    {   a[i] = i + 1;      } 

4. } 

 

5. // Create some worker threads 

6. void create_workers(int n){ 

7.         int i; 

8.         for (i = 0; i < n ; i++ )    { 

9.                 if (pthread_create(&worker_threads[i], NULL,  
   worker, NULL ) != 0 )      { 

10.                         perror( "Pthreads create fails" );    } 

11.         } 

12. } 



Java multithread programming 

 A class extends from java.lang.Thread class. 

 A class implements java.lang.Runnable interface. 

 

 

// A sample Runner class 
public class Runner extends Thread  

{ 

String name; 

public Runner(String name) { 

     this.name = name; 

} 

public void run() { 

     int N = 10;  

     for (int i = 0; i < N ; i++) { 

     System.out.println("I am "+ 

     this.name + "runner at “ + I + “ km."); 

     thread.delay(100);  

     } 

} 

  

public static void main(String[] args)  

{ 

     Runner hung = new Runner("Hung"); 

     Runner minh = new Runner("Minh"); 

     Runner ken = new Runner(“Ken"); 

     hung.start(); 

     minh.start(); 

     ken.start(); 

     System.out.println("Hello World!"); 

} 

} // End main 



Language Constructs for Parallelism 

 

 



Language Constructs for Parallelism - Shared Data 

 
 Shared Data:  

 shared memory variables 
might be declared as shared 
with, say, 

  shared int x; 

 

 Par Construct 

  par { 

 S1; 

 S2; 

 . 

 . 

 Sn; 

  } 

 

  par { 

   proc1(); 

   proc2(); 

   … 

  } 

 



Forall Construct 

 Keywords: forall or parfor 

 To start multiple similar 
processes together: which 
generates n processes each 
consisting of the statements 
forming the body of the for loop, 
S1, S2, …, Sm. Each process 
uses a different value of i. 

  Example: 

 forall (i = 0; i < 5; i++) 

  a[i] = 0; 

  

    clears a[0], a[1], a[2], a[3], and a[4] to zero concurrently. 

forall (i = 0 ; i < N; i++ ) { 

      S1; 

      S2; 

       ….. 

      Sm; 

} 



Dependency analysis  

 To identify which processes could be executed 
together. 

 Example: can see immediately in the code 

forall (i = 0; i < 5; i++) 

a[i] = 0; 

 that every instance of the body is independent of 
other instances and all instances can be executed  
simultaneously. 

 However, it may not be that obvious. Need 
algorithmic way of recognizing dependencies, for 
a parallelizing compiler. 

 



Bernstein's Conditions 

  Set of conditions sufficient to determine whether two 
processes can be executed simultaneously. Given:  
 Ii is the set of memory locations read (input) by process Pi. 

 Oj is the set of memory locations written (output) by process Pj. 

 For two processes P1 and P2 to be executed 
simultaneously, inputs to process P1 must not be part of 
outputs of P2, and inputs of P2 must not be part of 
outputs of P1; i.e., 
 I1  O2 =  

 I2  O1 =  

 where f is an empty set. Set of outputs of each process 
must also be different; i.e., 
 O1  O2 =  

 If the three conditions are all satisfied, the two processes 
can be executed concurrently. 

 



Example 

 Example: suppose the two statements are (in C) 

 a = x + y; 

 b = x + z; 

 We have 

 I1 = (x, y) O1 = (a) 

 I2 = (x, z) O2 = (b) 

 and the conditions 

 I1  O2 =  

 I2  O1 =  

 O1  O2 =  

 are satisfied. Hence, the statements a = x + y and b = x + 

z can be executed simultaneously. 



OpenMP 

 An accepted standard developed in the late 1990s by a 

group of industry specialists.  

 Consists of a small set of compiler directives, augmented 

with a small set of library routines and environment 

variables using the base language Fortran and C/C++. 

 The compiler directives can specify such things as the par 

and forall operations described previously. 

 Several OpenMP compilers available. 

 Exercise: read more & report: 

 http://www.openmp.org 

 



Shared Memory Programming Performance Issues 

 
 Shared data in systems with caches 

 Cache coherence protocols 

 False Sharing:  

 Solution: compiler to alter the layout of the data stored in the 

main memory, separating data only altered by one processor 

into different blocks. 

 High performance programs should have as few 

as possible critical sections as their use can 

serialize the code. 

 

 

 

 



Sequential Consistency 

 Formally defined by Lamport (1979): 

 A multiprocessor is sequentially consistent if the result 

of any execution is the same as if the operations of all 

the processors were executed in some sequential order, 

and the operations of each individual processors occur 

in this sequence in the order specified by its program. 

 i.e. the overall effect of a parallel program is not 

changed by any arbitrary interleaving of 

instruction execution in time. 

 



Sequential consistency (2) 

Processors (Programs) 



Sequential consistency (2) 

 Writing a parallel program for a system which is known 
to be sequentially consistent enables us to reason about 
the result of the program. For example: 

Process P1   Process 2 

… 

data = new; . 

flag = TRUE; . 

…   . . 

   while (flag != TRUE) { 

}; 

   data_copy = data; 

   . . Expect data_copy to be set to new because we expect the 

statement data = new to be executed before flag = TRUE and the 

statement while (flag != TRUE) { } to be executed before data_copy = 

data. Ensures that process 2 reads new data from another process 1. 

Process 2 will simple wait for the new data to be produced. 


