Parallel Paradigms
&
Programming Models

"Thoai Nam

Outline

a Parallel programming paradigms
a Programmability Issues

a Parallel programming models
— Implicit parallelism
— Explicit parallel models
— Other programming models

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM

Parallel Programming
Paradigms

Q Parallel programming paradigms/models are the
ways to

Design a parallel program
Structure the algorithm of a parallel program
Deploy/run the program on a parallel computer system

0 Commonly-used algorithmic paradigms

Phase parallel

Synchronous and asynchronous iteration
Divide and conquer

Pipeline

Process farm

Work pool

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

Parallel Programmability
€9 |ssues

Q The programmability of a parallel programming
models is

- How much easy to use this system for developing and
deploying parallel programs

- How much the system supports for various parallel
algorithmic paradigms
a Programmability is the combination of
— Structuredness
- Generality
— Portability

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

Structuredness

Q A program is structured if it is comprised of
structured constructs each of which has these 3
properties
— Is a single-entry, single-exit construct
- Different semantic entities are clearly identified
- Related operations are enclosed in one construct

Q The structuredness mostly depends on
- The programming language
- The design of the program

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM

Generality

a A program class C is as general as or more general
than program class D if:
- For any program Q in D, we can write a program P in C
- Both P & Q have the same semantics
- P performs as well as or better than Q

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM -6-

Portability

O A program is portable across a set of computer
system if it can be transferred from one machine
to another with little effort

Q Portability largely depends on
- The language of the program
- The target machine’s architecture
Q Levels of portability
Users must change the program’s algorithm
Only have to change the source code

Only have to recompile and relink the program
Can use the executable directly

s bh -~

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM

Parallel Programming Models

a Widely-accepted programming models are
— Impilicit parallelism
— Data-parallel model
- Message-passing model
- Shared-variable model (Shared Address Space model)

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

Implicit Parallelism

Q The compiler and the run-time support system
automatically exploit the parallelism from the
sequential-like program written by users

a Ways to implement implicit parallelism
- Parallelizing Compilers
— User directions
— Run-time parallelization

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

Parallelizing Compiler

Q A parallelizing (restructuring) compiler must

- Performs dependence analysis on a sequential
program’s source code

- Uses transformation techniques to convert sequential
code into native parallel code

a Dependence analysis is the identifying of
- Data dependence
- Control dependence

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM

-10-

Parallelizing Compiler(cont’d)

a Data dependence

X = x + 1
Y =X+ Y

0 Control dependence

0 When dependencies do exist, transformation
techniques/ optimizing techniques should be used

- To eliminate those dependencies or
- To make the code parallelizable, if possible

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM 11-

Some Optimizing Techniques for
e Eliminating Data Dependencies

a Privatization tec

Do i=1,N

P: @=

Q. X(i)=A+..

End Do

—>

Q needs the value A of
P, so N iterations of the
Do loop can not be
parallelized

nnique

ParDo i=1,N

P (A= ..

Q. X(i)=A() + ...

End Do

Each iteration of the Do loop
have a private copy A(i), so
we can execute the Do loop in
parallel

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM 19-

Some Optimizing Techniques for
e Eliminating Data Dependencies(cont’d)

0 Reduction technique

Do i=1,N
P: X(@i) = ...
Q: Sum = Sum + X(i)

End Do

The Do loop can not be
executed in parallel since the
computing of Sum in the i-th
iteration needs the values of
the previous iteration

—>

ParDo i=1,N
P: X(i) =...

Q: Sum = sum_reduce(X(i))

End Do

A parallel reduction function is used
to avoid data dependency

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-13-

User Direction

Q Users help the compiler in parallelizing by
- Providing additional information to guide the parallelization process
- Inserting compiler directives (pragmas) in the source code

0 User is responsible for ensuring that the code is correct after
parallelization

0 Example (Convex Exemplar C)

#pragma_CNX loop_parallel
for (i=0; i <1000;i++){
A[i] = foo (BJi], CIi]);

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM 14-

Run-Time Parallelization

Qa Parallelization involves both the compiler and the
run-time system

— Additional construct is used to decompose the sequential
program into multiple tasks and to specify how each task
will access data

- The compiler and the run-time system recognize and
exploit parallelism at both the compile time and run-time

a Example: Jade language (Stanford Univ.)
— More parallelism can be recognized

— Automatically exploit the irregular and dynamic
parallelism

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM 15-

Conclusion -
=< Implicit Parallelism

0 Advantages of the implicit programming model
- Ease of use for users (programmers)

- Reusability of old-code and legacy sequential
applications

- Faster application development time
a Disadvantages

- The implementation of the underlying run-time systems
and parallelizing compilers is so complicated and
requires a lot of research and studies

- Research outcome shows that automatic parallelization
is not so efficient (from 4% to 38% of parallel code
written by experienced programmers)

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM 16-

Explicit Programming Models

Q Data-Parallel
a Message-Passing
Q Shared-Variable

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-17-

Data-Parallel Model

0 Applies to either SIMD or SPMD modes

a The same instruction or program segment executes
over different data sets simultaneously

a Massive parallelism is exploited at data set level
0 Has a single thread of control

0 Has a global naming space

Qa Applies loosely synchronous operation

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM 18-

Data-Parallel:

An Example

Example: a data-parallel program

1] b

to compute the constant “pi

main() {
double local[N], tmp[N], pi, w;
long i, j, t, N=100000;
A: w=1.0/N;
B: forall(i=0; i<N; i++) {
—P: local[i]=(i +0.5)*w;

Data-parallel operations —————"

> Q: tmp][i]=4.0/(1.0+locali]*local[i]);
}

Reduction operation

» C: pi=sum(tmp);
D: printf(“pi is %f\n”, pi*w);

} //lend main

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-19-

Message-Passing Model

Q Multithreading: program consists of multiple
processes

- Each process has its own thread of control

— Both control parallelism (MPMD) and data parallelism
(SPMD) are supported

a Asynchronous Parallelism
— All process execute asynchronously
- Must use special operation to synchronize processes

0 Multiple Address Spaces

- Data variables in one process is invisible to the others
- Processes interact by sending/receiving messages

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM -20-

‘ Message-Passing Model
(cont’d)

Q Explicit Interactions

- Programmer must resolve all the interaction issues:
data mapping, communication, synchronization and
aggregation

a Explicit Allocation

- Both workload and data are explicitly allocated to the
process by the user

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-21-

Message-Passing Model:
€4 An Example

Example: a message-passing program to compute the constant “pi”

Message-Passing
operations

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

#define N 1000000
main() {

double local, pi, w;
long i, taskid, numtask;

A: w=1.0/N;

/MPI_Init(&argc, &argv);

__MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

—MP|_Comm_size(MP|_COMM_WORLD, &numtask);

B: for (i=taskid;i<N;i=i+numtask) {
P: local= (i +0.5)*w;

\&A local=4.0/(1.0+local*local); }
C.™»MPI_Reduce(&local, &pi, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
B\if (taskid==0) printf(“pi is %f\n”, pi*w);
MPI_Finalize();
} //lend main

-22-

Shared-Variable Model

Q Has a single address space
Q Has multithreading and asynchronous model

a Data reside in a single, shared address space, thus
does not have to be explicitly allocated

Q Workload can be implicitly or explicitly allocated

0O Communication is done implicitly
- Through reading and writing shared variables

Q Synchronization is explicit

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM _23-

Shared-Variable Model:
An Example

#define N 1000000

main() {

double local, pi=0.0, w;
long i;

w=1.0/N;

#pragma parallel
#pragma shared (pi,w)
#pragma local(i,local)

w >

{

#pragma pfor iterate (i=0;N;1)
for(i=0;i<N;i++){

P: local= (i +0.5)*w;

Q: local=4.0/(1.0+local*local);
}

C: #pragma critical

pi=pi+local;
}
D: if (taskid==0) printf(“pi is %f\n”, pi*w);
} /lend main

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-24-

Issues Implicit Data-parallel Message-passing Shared-Variable
Platform-independent Kap, Forge Fortran 90, HPF, PVM, MPI X3H5
examples HPC++
Platform-dependent CM C* SP2 MPL, Cray Craft,
examples Paragon Nx SGI Power C
Parallelism issues * k Kk k * * * * * *
Allocation issues * k Kk k * * * * Kk K
Communication * Kk Kk Kk * * * * * Kk K
Synchronization * k Kk Kk * Kk Kk Kk * K *
Aggregation * Kk Kk Kk * *k ok * Kk Kk Kk *
Irregularity * Kk Kk Kk * * * Kk K
Termination * Kk Kk Kk * Kk Kk ok * K *
Determinacy * k Kk Kk * Kk Kk k * * *
Correctness * K Kk Kk * Kk Kk * X *
Generality * * * Kk Kk * Kk Kk
Portability * Kk k k * k * * *
Structuredness * k k X * * * *

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-25-

‘ Comparision of Four Models
(cont’d)

a Implicit parallelism
- Easy to use
- Can reuse existing sequential programs
- Programs are portable among different architectures

a Data parallelism

- Programs are always determine and free of
deadlocks/livelocks

— Difficult to realize some loosely sync. program

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-26-

3

Comparision of Four Models
(cont’d)

a Message-passing model

More flexible than the data-parallel model

Lacks support for the work pool paradigm and applications
that need to manage a global data structure

Be widely-accepted

Expoit large-grain parallelism and can be executed on
machines with native shared-variable model (multiprocessors:
DSMs, PVPs, SMPs)

Q Shared-variable model

No widely-accepted standard = programs have low portability

Programs are more difficult to debug than message-passing
programs

Khoa Khoa hoc ¥ Ky thuat My tinh - Dai hoc Bch Khoa TP.HCM 7.

Other Programming Models

a Functional programming

a Logic programming
0 Computing-by-learning
Q Object-oriented programming

Khoa Khoa hoc ¥ K§ thuat My tinh - Pai hoc Bch Khoa TP.HCM

-28-

