
Clock and Time

THOAI NAM

Faculty of Information Technology

HCMC University of Technology

Using some slides of Prashant Shenoy,

UMass Computer Science

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Chapter 3: Clock and Time

 Time ordering and clock synchronization

 Virtual time (logical clock)

 Distributed snapshot (global state)

 Consistent/Inconsistent global state

 Rollback Recovery

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Clock Synchronization

 Time in unambiguous in centralized systems

– System clock keeps time, all entities use this for time

 Distributed systems: each node has own system clock

– Crystal-based clocks are less accurate (1 part in million)

– Problem: An event that occurred after another may be assigned an

earlier time

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Physical Clocks: A Primer

 Accurate clocks are atomic oscillators

– 1s ~ 9,192,631,770 transitions of the cesium 133 atom

 Most clocks are less accurate (e.g., mechanical watches)

– Computers use crystal-based blocks (one part in million)

– Results in clock drift

 How do you tell time?

– Use astronomical metrics (solar day)

 Universal coordinated time (UTC) – international standard based on atomic

time

– Add leap seconds to be consistent with astronomical time

– UTC broadcast on radio (satellite and earth)

– Receivers accurate to 0.1 – 10 ms

 Need to synchronize machines with a master or with one another

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Clock Synchronization

 Each clock has a maximum drift rate r

» 1-r <= dC/dt <= 1+r

– Two clocks may drift by 2r Dt in time Dt

– To limit drift to d => resynchronize every d/2r seconds

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Cristian’s Algorithm

 Synchronize machines to a

time server with a UTC

receiver

 Machine P requests time

from server every d/2r

seconds

– Receives time t from server, P

sets clock to t+treply where treply

is the time to send reply to P

– Use (treq+treply)/2 as an estimate

of treply

– Improve accuracy by making a

series of measurements

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Berkeley Algorithm

 Used in systems without UTC receiver

– Keep clocks synchronized with one another

– One computer is master, other are slaves

– Master periodically polls slaves for their times

» Average times and return differences to slaves

» Communication delays compensated as in Cristian’s

algorithm

– Failure of master => election of a new master

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values

b) The machines answer

c) The time daemon tells everyone how to adjust their clock

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Approaches

 Both approaches studied thus far are centralized

 Decentralized algorithms: use resynchronization intervals

– Broadcast time at the start of the interval

– Collect all other broadcast that arrive in a period S

– Use average value of all reported times

– Can throw away few highest and lowest values

 Approaches in use today

– rdate: synchronizes a machine with a specified machine

– Network Time Protocol (NTP)

» Uses advanced techniques for accuracies of 1-50 ms

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Logical Clocks

 For many problems, internal consistency of clocks

is important

– Absolute time is less important

– Use logical clocks

 Key idea:

– Clock synchronization need not be absolute

– If two machines do not interact, no need to synchronize

them

– More importantly, processes need to agree on the order

in which events occur rather than the time at which they

occurred

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Event Ordering

 Problem: define a total ordering of all events that occur in a

system

 Events in a single processor machine are totally ordered

 In a distributed system:

– No global clock, local clocks may be unsynchronized

– Can not order events on different machines using local times

 Key idea [Lamport]

– Processes exchange messages

– Message must be sent before received

– Send/receive used to order events (and synchronize clocks)

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Happened-Before Relation

 If A and B are events in the same process and A executed

before B, then A -> B

 If A represents sending of a message and B is the receipt of

this message, then A -> B

 Relation is transitive:

– A -> B and B -> C => A -> C

 Relation is undefined across processes that do not

exchange messages

– Partial ordering on events

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Event Ordering Using HB

 Goal: define the notion of time of an event such that

– If A-> B then C(A) < C(B)

– If A and B are concurrent, then C(A) <, = or > C(B)

 Solution:

– Each processor maintains a logical clock LCi

– Whenever an event occurs locally at I, LCi = LCi+1

– When i sends message to j, piggyback LCi

– When j receives message from i

» If LCj < LCi then LCj = LCi +1 else do nothing

– Claim: this algorithm meets the above goals

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Lamport’s Logical Clocks

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

More Canonical Problems

 Causality

– Vector timestamps

 Global state and termination detection

 Election algorithms

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Causality

 Lamport’s logical clocks

– If A -> B then C(A) < C(B)

– Reverse is not true!!

» Nothing can be said about events by comparing time-stamps!

» If C(A) < C(B), then ??

 Need to maintain causality

– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)

– Capture causal relationships between groups of processes

– Need a time-stamping mechanism such that:

» If T(A) < T(B) then A should have causally preceded B

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Vector Clocks

 Each process i maintains a vector Vi

– Vi[i] : number of events that have occurred at process i

– Vi[j] : number of events occurred at process j that process i knows

 Update vector clocks as follows
– Local event: increment Vi[i]

– Send a message: piggyback entire vector V

– Receipt of a message:

» Vj[i] = Vj[i]+1

» Receiver is told about how many events the sender knows
occurred at another process k

Vj[k] = max(Vj[k],Vi[k])

 Homework: convince yourself that if V(A)<V(B), then A
causally precedes B

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Global State

 Global state of a distributed system

– Local state of each process

– Messages sent but not received (state of the queues)

 Many applications need to know the state of the system

– Failure recovery, distributed deadlock detection

 Problem: how can you figure out the state of a distributed

system?

– Each process is independent

– No global clock or synchronization

 Distributed snapshot: a consistent global state

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Consistent/Inconsistent Cuts

a) A consistent cut

b) An inconsistent cut

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Snapshot Algorithm

 Assume each process communicates with another process
using unidirectional point-to-point channels (e.g, TCP
connections)

 Any process can initiate the algorithm
– Checkpoint local state

– Send marker on every outgoing channel

 On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:

– Subsequent marker on a channel: stop saving state for that channel

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Snapshot

 A process finishes when

– It receives a marker on each incoming channel and processes them

all

– State: local state plus state of all channels

– Send state to initiator

 Any process can initiate snapshot

– Multiple snapshots may be in progress

» Each is separate, and each is distinguished by tagging the

marker with the initiator ID (and sequence number)

A

C

B M

M

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Snapshot Algorithm Example (1)

(a) Organization of a process and channels for a

distributed snapshot

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Snapshot Algorithm Example (2)

(b) Process Q receives a marker for the first time and
records its local state

(c) Q records all incoming message

(d) Q receives a marker for its incoming channel and
finishes recording the state of the incoming channel

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Recovery

 Techniques thus far allow failure handling

 Recovery: operations that must be performed after

a failure to recover to a correct state

 Techniques:

– Checkpointing:

» Periodically checkpoint state

» Upon a crash roll back to a previous checkpoint with a

consistent state

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Independent Checkpointing

 Each processes periodically checkpoints independently of other

processes

 Upon a failure, work backwards to locate a consistent cut

 Problem: if most recent checkpoints form inconsistenct cut, will need

to keep rolling back until a consistent cut is found

 Cascading rollbacks can lead to a domino effect.

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Coordinated Checkpointing

 Take a distributed snapshot

 Upon a failure, roll back to the latest snapshot

– All process restart from the latest snapshot

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Message Logging

 Checkpointing is expensive
– All processes restart from previous consistent cut

– Taking a snapshot is expensive

– Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]

 Combine checkpointing (expensive) with message
logging (cheap)
– Take infrequent checkpoints

– Log all messages between checkpoints to local stable
storage

– To recover: simply replay messages from previous
checkpoint

» Avoids recomputations from previous checkpoint

