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Chapter 3: Clock and Time 

 Time ordering and clock synchronization 

 Virtual time (logical clock) 

 Distributed snapshot (global state) 

 Consistent/Inconsistent global state 

 Rollback Recovery 
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Clock Synchronization 

 Time in unambiguous in centralized systems 

– System clock keeps time, all entities use this for time 

 Distributed systems: each node has own system clock 

– Crystal-based clocks are less accurate (1 part in million) 

– Problem: An event that occurred after another may be assigned an 

earlier time 
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Physical Clocks: A Primer 

 Accurate clocks are atomic oscillators  

– 1s ~ 9,192,631,770 transitions of the cesium 133 atom  

 Most clocks are less accurate (e.g., mechanical watches) 

– Computers use crystal-based blocks (one part in million)  

– Results in clock drift 

 How do you tell time? 

– Use astronomical metrics (solar day) 

 Universal coordinated time (UTC) – international standard based on atomic 

time 

– Add leap seconds to be consistent with astronomical time 

– UTC broadcast on radio (satellite and earth) 

– Receivers accurate to 0.1 – 10 ms 

 Need to synchronize machines with a master or with one another 
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Clock Synchronization 

 Each clock has a maximum drift rate r 

» 1-r <= dC/dt <= 1+r 

– Two clocks may drift by 2r Dt  in time Dt 

– To limit drift to d => resynchronize every d/2r seconds 
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Cristian’s Algorithm 

 Synchronize machines to a 

time server with a UTC 

receiver 

 Machine P requests time 

from server every d/2r 

seconds 

– Receives time t from server, P 

sets clock to t+treply where treply 

is the time to send reply to P 

– Use (treq+treply)/2 as an estimate 

of treply 

– Improve accuracy by making a 

series of measurements 
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Berkeley Algorithm 

 Used in systems without UTC receiver 

– Keep clocks synchronized with one another  

– One computer is master, other are slaves 

– Master periodically polls slaves for their times 

» Average times and return differences to slaves 

» Communication delays compensated as in Cristian’s 

algorithm 

– Failure of master => election of a new master 
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Berkeley Algorithm 

a) The time daemon asks all the other machines for their clock values 

b) The machines answer 

c) The time daemon tells everyone how to adjust their clock 
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Distributed Approaches 

 Both approaches studied thus far are centralized 

 Decentralized algorithms: use resynchronization intervals 

– Broadcast time at the start of the interval 

– Collect all other broadcast that arrive in a period S 

– Use average value of all reported times 

– Can throw away few highest and lowest values 

 Approaches in use today 

– rdate: synchronizes a machine with a specified machine 

– Network Time Protocol (NTP) 

» Uses advanced techniques for accuracies of 1-50 ms 
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Logical Clocks 

 For many problems, internal consistency of clocks 

is important 

– Absolute time is less important 

– Use logical clocks 

 Key idea: 

– Clock synchronization need not be absolute 

– If two machines do not interact, no need to synchronize 

them 

– More importantly, processes need to agree on the order 

in which events occur rather than the time at which they 

occurred 
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Event Ordering 

 Problem: define a total ordering of all events that occur in a 

system 

 Events in a single processor machine are totally ordered 

 In a distributed system: 

– No global clock, local clocks may be unsynchronized 

– Can not order events on different machines using local times 

 Key idea [Lamport ] 

– Processes exchange messages 

– Message must be sent before received 

– Send/receive used to order events (and synchronize clocks) 
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Happened-Before Relation 

 

 If A and B are events in the same process and A executed 

before B, then  A -> B 

 If A represents sending of a message and B is the receipt of 

this message, then A -> B 

 Relation is transitive: 

– A -> B and B -> C  => A -> C 

 Relation is undefined across processes that do not 

exchange messages 

– Partial ordering on events 
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Event Ordering Using HB 

 Goal: define the notion of time of an event such that 

– If A-> B then C(A) < C(B) 

– If  A and B are concurrent, then C(A)  <, = or > C(B) 

 Solution:  

– Each processor maintains a logical clock  LCi 

– Whenever an event occurs locally at I, LCi = LCi+1 

– When i sends message to j, piggyback LCi 

– When  j receives message from i 

» If LCj < LCi then LCj = LCi +1 else do nothing 

– Claim: this algorithm meets the above goals 
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Lamport’s Logical Clocks 
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More Canonical Problems 

 

 Causality 

– Vector timestamps 

 

 Global state and termination detection 

 

 Election algorithms 
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Causality 

 Lamport’s logical clocks 

– If  A -> B then C(A) < C(B) 

– Reverse is not true!! 

» Nothing can be  said about events by comparing time-stamps! 

» If C(A) < C(B), then ?? 

 Need to maintain causality 

– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n) 

– Capture causal relationships between groups of processes 

– Need a time-stamping mechanism such that: 

» If T(A) < T(B) then A should have causally preceded B 
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Vector Clocks 

 Each process i maintains a vector Vi 

– Vi[i] : number of events that have occurred at process i 

– Vi[j] : number of events occurred at process j that process i knows 

 Update vector clocks as follows 
– Local event: increment Vi[i] 

– Send a message: piggyback entire vector V 

– Receipt of a message: 

» Vj[i] = Vj[i]+1 

» Receiver is told about how many events the sender knows 
occurred at another process k 

Vj[k] = max( Vj[k],Vi[k] ) 

 Homework: convince yourself that if V(A)<V(B), then A 
causally precedes B 
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Global State 

 Global state of a distributed system 

– Local state of each process 

– Messages sent but not received (state of the queues) 

 Many applications need to know the state of the system 

– Failure recovery, distributed deadlock detection 

 Problem: how can you figure out the state of a distributed 

system? 

– Each process is independent 

– No global clock or synchronization 

 Distributed snapshot: a consistent global state 
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Consistent/Inconsistent Cuts 

a) A consistent cut 

b) An inconsistent cut 
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Distributed Snapshot Algorithm 

 Assume each process communicates with another process 
using unidirectional point-to-point channels (e.g, TCP 
connections) 

 Any process can initiate the algorithm 
– Checkpoint local state  

– Send marker on every outgoing channel 

 On receiving a marker 
– Checkpoint state if first marker and send marker on outgoing 

channels, save messages on all other channels until: 

– Subsequent marker on a channel: stop saving state for that channel 
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Distributed Snapshot 

 A process finishes when 

– It receives a marker on each incoming channel and processes them 

all 

– State: local state plus state of all channels 

– Send state to initiator 

 Any process can initiate snapshot 

– Multiple snapshots may be in progress  

» Each is separate, and each is distinguished by tagging the 

marker with the initiator ID (and sequence number) 

A 

C 

B M 

M 



Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM 

Snapshot Algorithm Example (1) 

(a)  Organization of a process and channels for a 

distributed snapshot 
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Snapshot Algorithm Example (2) 

(b)  Process Q receives a marker for the first time and 
records its local state 

(c)  Q records all incoming message 

(d)  Q receives a marker for its incoming channel and 
finishes recording the state of the incoming channel 
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Recovery 

 Techniques thus far allow failure handling 

 Recovery: operations that must be performed after 

a failure to recover to a correct state 

 Techniques: 

– Checkpointing: 

» Periodically checkpoint state  

» Upon a crash roll back to a previous checkpoint with a 

consistent state 
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Independent Checkpointing 

 Each processes periodically checkpoints independently of other 

processes 

 Upon a failure, work backwards to locate a consistent cut 

 Problem: if most recent checkpoints form inconsistenct cut, will need 

to keep rolling back until a consistent cut is found 

 Cascading rollbacks can lead to a domino effect. 
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Coordinated Checkpointing 

 Take a distributed snapshot 

 Upon a failure, roll back to the latest snapshot  

– All process restart from the latest snapshot 
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Message Logging 

 Checkpointing is expensive 
– All processes restart from previous consistent cut 

– Taking a snapshot is expensive 

– Infrequent snapshots => all computations after previous 
snapshot will need to be redone [wasteful] 

 Combine checkpointing (expensive) with message 
logging (cheap) 
– Take infrequent checkpoints 

– Log all messages between checkpoints to local stable 
storage 

– To recover: simply replay messages from previous 
checkpoint 

» Avoids recomputations from previous checkpoint 


