
MapReduce

Nguyen Quang Hung

Objectives

 This slides is used to introduce students about

MapReduce framework: programming model and

implementation.

Outline

 Challenges

 Motivation

 Ideas

 Programming model

 Implementation

 Related works

 References

Introduction

 Challenges?

– Applications face with large-scale of data (e.g. multi-terabyte).

» High Energy Physics (HEP) and Astronomy.

» Earth climate weather forecasts.

» Gene databases.

» Index of all Internet web pages (in-house).

» etc

– Easy programming to non-CS scientists (e.g. biologists)

MapReduce

 Motivation: Large scale data processing

– Want to process huge of datasets (>1 TB).

– Want to parallelize across hundreds/thousands of CPUs.

– Want to make this easy.

MapReduce: ideas

 Automatic parallel and data distribution

 Fault-tolerant

 Provides status and monitoring tools

 Clean abstraction for programmers

MapReduce: programming model

 Borrows from functional programming

 Users implement interface of two functions: map and

reduce:

 map (k1,v1)  list(k2,v2)

 reduce (k2,list(v2))  list(v2)

map() function

 Records from the data source (lines out of files, rows of a

database, etc) are fed into the map function as key*value

pairs: e.g., (filename, line).

 map() produces one or more intermediate values along

with an output key from the input.

reduce() function

 After the map phase is over, all the intermediate values

for a given output key are combined together into a list

 reduce() combines those intermediate values into one or

more final values for that same output key

 (in practice, usually only one final value per key)

Parallelism

 map() functions run in parallel, creating different

intermediate values from different input data sets

 reduce() functions also run in parallel, each working on a

different output key

 All values are processed independently

 Bottleneck: reduce phase can’t start until map phase is

completely finished.

MapReduce: execution flows

Example: word counting

 map(String input_key, String input_doc):

 // input_key: document name

 // input_doc: document contents

 for each word w in input_doc:

 EmitIntermediate(w, "1"); // intermediate values

 reduce(String output_key, Iterator
 intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += ParseInt(v);

 Emit(AsString(result));

 More examples: Distributed Grep, Count of URL access frequency,

etc.

Locality

 Master program allocates tasks based on location of

data: tries to have map() tasks on same machine as

physical file data, or at least same rack (cluster rack)

 map() task inputs are divided into 64 MB blocks: same

size as Google File System chunks

Fault tolerance

 Master detects worker failures

– Re-executes completed & in-progress map() tasks

– Re-executes in-progress reduce() tasks

 Master notices particular input key/values cause crashes

in map(), and skips those values on re-execution.

Optimizations (1)

 No reduce can start until map is complete:

– A single slow disk controller can rate-limit the whole process

 Master redundantly executes “slow-moving” map tasks;

uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess

up the total computation?

Optimizations (2)

 “Combiner” functions can run on same machine as a

mapper

 Causes a mini-reduce phase to occur before the real

reduce phase, to save bandwidth

Under what conditions is it sound to use a combiner?

MapReduce: implementations

 Google MapReduce: C/C++

 Hadoop: Java

 Phoenix: C/C++ multithread

 Etc.

Google MapReduce evaluation (1)

 Cluster: approximately 1800 machines.

 Each machine: 2x2GHz Intel Xeon processors with

Hyper-Threading enabled, 4GB of memory, two 160GB

IDE disks and a gigabit Ethernet link.

 Network of cluster:

– Two-level tree-shaped switched network with approximately 100-

200 Gbps of aggregate bandwidth available at the root.

– Round-trip time any pair of machines: < 1 msec.

Google MapReduce evaluation (2)

Data transfer rates over time for different executions of the sort

program (J.Dean and S.Ghemawat shows in their paper [1, page 9])

Google MapReduce evaluation (3)

J.Dean and S.Ghemawat shows in theirs paper [1]

Related works

 Bulk Synchronous Programming [6]

 MPI primitives [4]

 Condor [5]

 SAGA-MapReduce [8]

 CGI-MapReduce [7]

SAGA-MapReduce

High-level control flow diagram for SAGA-MapReduce. SAGA uses a

master-worker paradigm to implement the MapReduce pattern. The

diagram shows that there are several different infrastructure options to

a SAGA based application [8]

CGL-MapReduce

Components of the CGL-MapReduce , extracted from [8]

CGL-MapReduce: sample

applications

MapReduce for HEP MapReduce for Kmeans

CGL-MapReduce: evaluation

HEP data analysis, execution

time vs. the volume of data

(fixed compute resources)

Total Kmeans time against the

number of data points (Both

axes are in log scale)

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]

Hadoop vs. CGL-MapReduce

Total time vs. the number of

compute nodes (fixed data)

Speedup for 100GB of HEP

data

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]

Hadoop vs. SAGA-MapReduce

C.Miceli, M.Miceli, S. Jha, H. Kaiser, A. Merzky show in [8]

Exercise

 Write again “word counting” program by using Hadoop

framework.

– Input: text files

– Result: show number of words in these inputs files

Conclusions

 MapReduce has proven to be a useful abstraction

 Simplifies large-scale computations on cluster of

commodity PCs

 Functional programming paradigm can be applied to

large-scale applications

 Focus on problem, let library deal w/ messy details

References

1. Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplied Data Processing

on Large Clusters, 2004

2. Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Distributed

Computing Seminar, Lecture 2: MapReduce Theory and Implementation,

Summer 2007, © Copyright 2007 University of Washington and licensed under

the Creative Commons Attribution 2.5 License.

3. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file

system. In 19th Symposium on Operating Systems Principles, pages 29.43,

Lake George, New York, 2003.

4. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable

Parallel Programming with the Message-Passing Interface. MIT Press,

Cambridge, MA, 1999.

5. Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in

practice: The Condor experience. Concurrency and Computation: Practice and

Experience, 2004.

6. L. G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103.111, 1997.

7. Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox, MapReduce for Data

Intensive Scientific Analyses,

8. Chris Miceli12, Michael Miceli12, Shantenu Jha123, Hartmut Kaiser1, Andre

Merzky, Programming Abstractions for Data Intensive Computing on Clouds

and Grids.

Q/A

