
Copyright © George

Coulouris, Jean Dollimore,

Tim Kindberg 2001

email: authors@cdk2.net

This material is made

available for private study

and for direct use by

individual teachers.

It may not be included in any

product or employed in any

service without the written

permission of the authors.

Viewing: These slides

must be viewed in

slide show mode.

Teaching material

based on Distributed

Systems: Concepts

and Design, Edition 3,

Addison-Wesley 2001.

Copyright © George

Coulouris, Jean Dollimore,

Tim Kindberg 2001

email: authors@cdk2.net

This material is made

available for private study

and for direct use by

individual teachers.

It may not be included in any

product or employed in any

service without the written

permission of the authors.

Viewing: These slides

must be viewed in

slide show mode.

Distributed Systems Course

Distributed File Systems

Chapter 2 Revision: Failure model

Chapter 8:
8.1 Introduction

8.2 File service architecture

8.3 Sun Network File System (NFS)

[8.4 Andrew File System (personal study)]

8.5 Recent advances

8.6 Summary

2

Learning objectives

 Understand the requirements that affect the design

of distributed services

 NFS: understand how a relatively simple, widely-

used service is designed
– Obtain a knowledge of file systems, both local and networked

– Caching as an essential design technique

– Remote interfaces are not the same as APIs

– Security requires special consideration

 Recent advances: appreciate the ongoing research

that often leads to major advances

*

3

Chapter 2 Revision: Failure model

*

Figure 2.11

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary

(Byzantine)

Process

or channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an

incorrect step.

4

Storage systems and their properties

*

 In first generation of distributed systems (1974-95),

file systems (e.g. NFS) were the only networked

storage systems.

 With the advent of distributed object systems

(CORBA, Java) and the web, the picture has

become more complex.

5

Figure 8.1

Storage systems and their properties

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (Ch. 16)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Persistent distributed object store PerDiS, Khazana

1

1

1

*

Types of consistency between copies: 1 - strict one-copy consistency

√ - approximate consistency

X - no automatic consistency

6

What is a file system? 1

 Persistent stored data sets

 Hierarchic name space visible to all processes

 API with the following characteristics:
– access and update operations on persistently stored data sets

– Sequential access model (with additional random facilities)

 Sharing of data between users, with access control

 Concurrent access:
– certainly for read-only access

– what about updates?

 Other features:
– mountable file stores

– more? ...

*

7

What is a file system? 2

*

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

Figure 8.4 UNIX file system operations

9

updated

by system:

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list

E.g. for UNIX: rw-rw-r--

What is a file system? 4

*

Figure 8.3 File attribute record structure

updated

by owner:

10

Tranparencies

Access: Same operations

Location: Same name space after relocation of

files or processes

Mobility: Automatic relocation of files is possible

Performance: Satisfactory performance across a

specified range of system loads

Scaling: Service can be expanded to meet

additional loads

Concurrency properties

Isolation

File-level or record-level locking

Other forms of concurrency control to minimise

contention

Replication properties

File service maintains multiple identical copies of

files

• Load-sharing between servers makes service

more scalable

• Local access has better response (lower latency)

• Fault tolerance

Full replication is difficult to implement.

Caching (of all or part of a file) gives most of the

benefits (except fault tolerance)

Heterogeneity properties

Service can be accessed by clients running on

(almost) any OS or hardware platform.

Design must be compatible with the file systems of

different OSes

Service interfaces must be open - precise

specifications of APIs are published.

Fault tolerance

Service must continue to operate even when clients

make errors or crash.

• at-most-once semantics

• at-least-once semantics

•requires idempotent operations

Service must resume after a server machine

crashes.

If the service is replicated, it can continue to

operate even during a server crash.

Consistency

Unix offers one-copy update semantics for

operations on local files - caching is completely

transparent.

Difficult to achieve the same for distributed file

systems while maintaining good performance

and scalability.

Security

Must maintain access control and privacy as for

local files.

•based on identity of user making request

•identities of remote users must be authenticated

•privacy requires secure communication

Service interfaces are open to all processes not

excluded by a firewall.

•vulnerable to impersonation and other

attacks

Efficiency

Goal for distributed file systems is usually

performance comparable to local file system.

File service requirements

 Transparency

 Concurrency

 Replication

 Heterogeneity

 Fault tolerance

 Consistency

 Security

 Efficiency..

*

11

Model file service architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Lookup

AddName

UnName

GetNames

Read

Write

Create

Delete

GetAttributes

SetAttributes

*

Figure 8.5

12

FileId

A unique identifier for files anywhere in the

network.

Server operations for the model file service

Flat file service

Read(FileId, i, n) -> Data

Write(FileId, i, Data)

Create() -> FileId

Delete(FileId)

GetAttributes(FileId) -> Attr

SetAttributes(FileId, Attr)

Directory service

Lookup(Dir, Name) -> FileId

AddName(Dir, Name, File)

UnName(Dir, Name)

GetNames(Dir, Pattern) -> NameSeq

Pathname lookup

Pathnames such as '/usr/bin/tar' are resolved

by iterative calls to lookup(), one call for

each component of the path, starting with

the ID of the root directory '/' which is

known in every client.

*

position of first byte

position of first byte

Figures 8.6 and 8.7

FileId

13

File Group

A collection of files that can be

located on any server or moved

between servers while

maintaining the same names.

– Similar to a UNIX filesystem

– Helps with distributing the load of file

serving between several servers.

– File groups have identifiers which are

unique throughout the system (and

hence for an open system, they must

be globally unique).

 Used to refer to file groups and files

To construct a globally unique

ID we use some unique

attribute of the machine on

which it is created, e.g. IP

number, even though the file

group may move subsequently.

IP address date

32 bits 16 bits

File Group ID:

*

14

Case Study: Sun NFS

 An industry standard for file sharing on local networks since the 1980s

 An open standard with clear and simple interfaces

 Closely follows the abstract file service model defined above

 Supports many of the design requirements already mentioned:

– transparency

– heterogeneity

– efficiency

– fault tolerance

 Limited achievement of:

– concurrency

– replication

– consistency

– security

*

15

NFS architecture

Client computer Server computer

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

Virtual file system Virtual file system

O
th

e
r

 f
ile

 s
y
s
te

m

UNIX kernel

system calls

NFS
protocol

(remote operations)

UNIX

Operations

on local files

Operations

on

remote files

*

Figure 8.8

Application
program

NFS

Client

Kernel
Application

program

NFS

Client

Client computer

16

*

NFS architecture:
does the implementation have to be in the system kernel?

No:
– there are examples of NFS clients and servers that run at application-

level as libraries or processes (e.g. early Windows and MacOS

implementations, current PocketPC, etc.)

But, for a Unix implementation there are advantages:
– Binary code compatible - no need to recompile applications

 Standard system calls that access remote files can be routed through the

NFS client module by the kernel

– Shared cache of recently-used blocks at client

– Kernel-level server can access i-nodes and file blocks directly

 but a privileged (root) application program could do almost the same.

– Security of the encryption key used for authentication.

17

• read(fh, offset, count) -> attr, data

• write(fh, offset, count, data) -> attr

• create(dirfh, name, attr) -> newfh, attr

• remove(dirfh, name) status

• getattr(fh) -> attr

• setattr(fh, attr) -> attr

• lookup(dirfh, name) -> fh, attr

• rename(dirfh, name, todirfh, toname)

• link(newdirfh, newname, dirfh, name)

• readdir(dirfh, cookie, count) -> entries

• symlink(newdirfh, newname, string) -> status

• readlink(fh) -> string

• mkdir(dirfh, name, attr) -> newfh, attr

• rmdir(dirfh, name) -> status

• statfs(fh) -> fsstats

NFS server operations (simplified)

fh = file handle:

Filesystem identifier i-node number i-node generation

*

Model flat file service

Read(FileId, i, n) -> Data

Write(FileId, i, Data)

Create() -> FileId

Delete(FileId)

GetAttributes(FileId) -> Attr

SetAttributes(FileId, Attr)

Model directory service

Lookup(Dir, Name) -> FileId

AddName(Dir, Name, File)

UnName(Dir, Name)

GetNames(Dir, Pattern)

->NameSeq

Figure 8.9

18

NFS access control and authentication

 Stateless server, so the user's identity and access rights must

be checked by the server on each request.
– In the local file system they are checked only on open()

 Every client request is accompanied by the userID and groupID
– not shown in the Figure 8.9 because they are inserted by the RPC system

 Server is exposed to imposter attacks unless the userID and

groupID are protected by encryption

 Kerberos has been integrated with NFS to provide a stronger

and more comprehensive security solution
– Kerberos is described in Chapter 7. Integration of NFS with Kerberos is covered

later in this chapter.

*

19

Mount service

 Mount operation:

 mount(remotehost, remotedirectory, localdirectory)

 Server maintains a table of clients who have

mounted filesystems at that server

 Each client maintains a table of mounted file

systems holding:

 < IP address, port number, file handle>

 Hard versus soft mounts

*

20

Local and remote file systems accessible on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

*

Figure 8.10

23

NFS optimization - server caching

 Similar to UNIX file caching for local files:
– pages (blocks) from disk are held in a main memory buffer cache until the space

is required for newer pages. Read-ahead and delayed-write optimizations.

– For local files, writes are deferred to next sync event (30 second intervals)

– Works well in local context, where files are always accessed through the local

cache, but in the remote case it doesn't offer necessary synchronization

guarantees to clients.

 NFS v3 servers offers two strategies for updating the disk:
– write-through - altered pages are written to disk as soon as they are received at

the server. When a write() RPC returns, the NFS client knows that the page is

on the disk.

– delayed commit - pages are held only in the cache until a commit() call is

received for the relevant file. This is the default mode used by NFS v3 clients. A

commit() is issued by the client whenever a file is closed.

*

24

NFS optimization - client caching

 Server caching does nothing to reduce RPC traffic between

client and server
– further optimization is essential to reduce server load in large networks

– NFS client module caches the results of read, write, getattr, lookup and readdir

operations

– synchronization of file contents (one-copy semantics) is not guaranteed when

two or more clients are sharing the same file.

 Timestamp-based validity check
– reduces inconsistency, but doesn't eliminate it

– validity condition for cache entries at the client:

(T - Tc < t) v (Tmclient = Tmserver)

– t is configurable (per file) but is typically set to

 3 seconds for files and 30 secs. for directories

– it remains difficult to write distributed

applications that share files with NFS
*

t freshness guarantee

Tc time when cache entry was last

validated

Tm time when block was last

updated at server

T current time

25

Other NFS optimizations

 Sun RPC runs over UDP by default (can use TCP if required)

 Uses UNIX BSD Fast File System with 8-kbyte blocks

 reads() and writes() can be of any size (negotiated between

client and server)

 the guaranteed freshness interval t is set adaptively for

individual files to reduce gettattr() calls needed to update Tm

 file attribute information (including Tm) is piggybacked in

replies to all file requests

*

27

NFS summary 1

 An excellent example of a simple, robust, high-performance
distributed service.

 Achievement of transparencies (See section 1.4.7):

Access: Excellent; the API is the UNIX system call interface for both local

and remote files.

Location: Not guaranteed but normally achieved; naming of filesystems is

controlled by client mount operations, but transparency can be ensured

by an appropriate system configuration.

Concurrency: Limited but adequate for most purposes; when read-write

files are shared concurrently between clients, consistency is not perfect.

Replication: Limited to read-only file systems; for writable files, the SUN

Network Information Service (NIS) runs over NFS and is used to

replicate essential system files, see Chapter 14.

cont'd *

28

NFS summary 2

Achievement of transparencies (continued):

Failure: Limited but effective; service is suspended if a server fails.

Recovery from failures is aided by the simple stateless design.

Mobility: Hardly achieved; relocation of files is not possible, relocation of

filesystems is possible, but requires updates to client configurations.

Performance: Good; multiprocessor servers achieve very high

performance, but for a single filesystem it's not possible to go beyond

the throughput of a multiprocessor server.

Scaling: Good; filesystems (file groups) may be subdivided and allocated

to separate servers. Ultimately, the performance limit is determined by

the load on the server holding the most heavily-used filesystem (file

group).

*

34

Recent advances in file services

NFS enhancements
WebNFS - NFS server implements a web-like service on a well-known port.

Requests use a 'public file handle' and a pathname-capable variant of lookup().

Enables applications to access NFS servers directly, e.g. to read a portion of a

large file.

One-copy update semantics (Spritely NFS, NQNFS) - Include an open()

operation and maintain tables of open files at servers, which are used to

prevent multiple writers and to generate callbacks to clients notifying them of

updates. Performance was improved by reduction in gettattr() traffic.

Improvements in disk storage organisation
RAID - improves performance and reliability by striping data redundantly across

several disk drives

Log-structured file storage - updated pages are stored contiguously in memory

and committed to disk in large contiguous blocks (~ 1 Mbyte). File maps are

modified whenever an update occurs. Garbage collection to recover disk space.

*

35

New design approaches 1

Distribute file data across several servers
– Exploits high-speed networks (ATM, Gigabit Ethernet)

– Layered approach, lowest level is like a 'distributed virtual disk'

– Achieves scalability even for a single heavily-used file

'Serverless' architecture
– Exploits processing and disk resources in all available network nodes

– Service is distributed at the level of individual files

Examples:
xFS (section 8.5): Experimental implementation demonstrated a substantial

performance gain over NFS and AFS

Frangipani (section 8.5): Performance similar to local UNIX file access

Tiger Video File System (see Chapter 15)

Peer-to-peer systems: Napster, OceanStore (UCB), Farsite (MSR), Publius (AT&T

research) - see web for documentation on these very recent systems

*

36 *

New design approaches 2

 Replicated read-write files
– High availability

– Disconnected working

 re-integration after disconnection is a major problem if conflicting updates

have ocurred

– Examples:

 Bayou system (Section 14.4.2)

 Coda system (Section 14.4.3)

37

Summary

 Sun NFS is an excellent example of a distributed service

designed to meet many important design requirements

 Effective client caching can produce file service performance

equal to or better than local file systems

 Consistency versus update semantics versus fault tolerance

remains an issue

 Most client and server failures can be masked

 Superior scalability can be achieved with whole-file serving

(Andrew FS) or the distributed virtual disk approach

*

Future requirements:
– support for mobile users, disconnected operation, automatic re-integration

(Cf. Coda file system, Chapter 14)

– support for data streaming and quality of service (Cf. Tiger file system,

Chapter 15)

