
Distributed Systems

Thoai Nam

Faculty of Computer Science and Engineering

HCMC University of Technology

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Chapter 2: Communication

 Issues in communication

 Message-oriented Communication

 Remote Procedure Calls

– Transparency but poor for passing references

 Remote Method Invocation

– RMIs are essentially RPCs but specific to remote objects

– System wide references passed as parameters

 Stream-oriented Communication

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Communication Protocols

 Protocols are agreements/rules on communication

 Protocols could be connection-oriented or

connectionless

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Layered Protocols

 A typical message as it appears on the network.

2-2

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Client-Server TCP

a) Normal operation of TCP.

b) Transactional TCP.

2-4

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Middleware Protocols

 Middleware: layer that resides between an OS and

an application

– May implement general-purpose protocols that warrant

their own layers. Ex: distributed commit

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Client-Server Communication

Model

 Structure: group of servers offering service to

clients

 Based on a request/response paradigm

 Techniques:

– Socket, remote procedure calls (RPC), Remote Method

Invocation (RMI)

kernel

client

kernel kernel kernel

file
server

process
server

terminal
server

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Issues in Client-Server

Communication

 Addressing

 Blocking versus non-blocking

 Buffered versus unbuffered

 Reliable versus unreliable

 Server architecture: concurrent versus sequential

 Scalability

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Addressing Issues

 Question: how is the server

located?

 Hard-wired address

– Machine address and process

address are known a priori

 Broadcast-based

– Server chooses address from a

sparse address space

– Client broadcasts request

– Can cache response for future

 Locate address via name server

user server

user server

user server NS

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Blocking versus Non-blocking

 Blocking communication (synchronous)

– Send blocks until message is actually sent

– Receive blocks until message is actually

received

 Non-blocking communication (asynchronous)

– Send returns immediately

– Return does not block either

 Examples

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Buffering Issues

 Unbuffered communication

– Server must call receive before client

can call send

 Buffered communication

– Client send to a mailbox

– Server receives from a mailbox

user server

user server

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Reliability

 Unreliable channel

– Need acknowledgements (ACKs)

– Applications handle ACKs

– ACKs for both request and reply

 Reliable channel

– Reply acts as ACK for request

– Explicit ACK for response

 Reliable communication on unreliable
channels

– Transport protocol handles lost messages

request

ACK
reply

ACK

U
se

r

S
e
rv

e
r

request

reply

ACK

U
se

r

S
e
rv

e
r

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Remote Procedure Calls

 Goal: Make distributed computing look like

centralized computing

 Allow remote services to be called as procedures

– Transparency with regard to location, implementation,

language

 Issues

– How to pass parameters

– Bindings

– Semantics in face of errors

 Two classes: integrated into prog, language and

separate

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Conventional Procedure Call

a) Parameter passing in a

local procedure call: the

stack before the call to

read

b) The stack while the called

procedure is active

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Parameter Passing

 Local procedure parameter passing

– Call-by-value

– Call-by-reference: arrays, complex data structures

 Remote procedure calls simulate this through:

– Stubs – proxies

– Flattening – marshalling

 Related issue: global variables are not allowed in

RPCs

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Client and Server Stubs

 Principle of RPC between a client and server

program.

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Stubs

 Client makes procedure call (just like a local

procedure call) to the client stub

 Server is written as a standard procedure

 Stubs take care of packaging arguments and

sending messages

 Packaging parameters is called marshalling

 Stub compiler generates stub automatically from

specs in an Interface Definition Language (IDL)

– Simplifies programmer task

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Example of an RPC

2-8

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Marshalling

 Problem: different machines have different data
formats
– Intel: little endian, SPARC: big endian

 Solution: use a standard representation
– Example: external data representation (XDR)

 Problem: how do we pass pointers?
– If it points to a well-defined data structure, pass a copy and the

server stub passes a pointer to the local copy

 What about data structures containing pointers?
– Prohibit

– Chase pointers over network

 Marshalling: transform parameters/results into a byte
stream

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Binding

 Problem: how does a client locate a server?

– Use Bindings

 Server

– Export server interface during initialization

– Send name, version no, unique identifier, handle

(address) to binder

 Client

– First RPC: send message to binder to import server

interface

– Binder: check to see if server has exported interface

» Return handle and unique identifier to client

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Case Study: SUNRPC

 One of the most widely used RPC systems

 Developed for use with NFS

 Built on top of UDP or TCP
– TCP: stream is divided into records

– UDP: max packet size < 8912 bytes

– UDP: timeout plus limited number of retransmissions

– TCP: return error if connection is terminated by server

 Multiple arguments marshaled into a single structure

 At-least-once semantics if reply received, at-least-zero
semantics if no reply. With UDP tries at-most-once

 Use SUN’s eXternal Data Representation (XDR)
– Big endian order for 32 bit integers, handle arbitrarily large data

structures

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Binder: Port Mapper

 Server start-up: create port

 Server stub calls

svc_register to register

prog. #, version # with local

port mapper

 Port mapper stores prog #,

version #, and port

 Client start-up: call

clnt_create to locate server

port

 Upon return, client can call

procedures at the server

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Rpcgen: generating stubs

 Q_xdr.c: do XDR conversion

 Detailed example: later in this course

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Lightweight RPCs

 Many RPCs occur between client and server on

same machine

– Need to optimize RPCs for this special case => use a

lightweight RPC mechanism (LRPC)

 Server S exports interface to remote procedures

 Client C on same machine imports interface

 OS kernel creates data structures including an

argument stack shared between S and C

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Lightweight RPCs

 RPC execution

– Push arguments onto stack

– Trap to kernel

– Kernel changes mem map of client to server address

space

– Client thread executes procedure (OS upcall)

– Thread traps to kernel upon completion

– Kernel changes the address space back and returns

control to client

 Called “doors” in Solaris

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Doors

 Which RPC to use? - run-time bit allows stub to choose

between LRPC and RPC

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Other RPC Models

 Asynchronous RPC

– Request-reply behavior often not needed

– Server can reply as soon as request is received and

execute procedure later

 Deferred-synchronous RPC

– Use two asynchronous RPCs

– Client needs a reply but can’t wait for it; server sends

reply via another asynchronous RPC

 One-way RPC

– Client does not even wait for an ACK from the server

– Limitation: reliability not guaranteed (Client does not

know if procedure was executed by the server).

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Asynchronous RPC

a) The interconnection between client and server in a

traditional RPC

b) The interaction using asynchronous RPC

2-12

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

 Deferred Synchronous RPC

 A client and server interacting through two

asynchronous RPCs
2-13

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Remote Method Invocation (RMI)

 RPCs applied to objects, i.e., instances of a class

– Class: object-oriented abstraction; module with data and

operations

– Separation between interface and implementation

– Interface resides on one machine, implementation on

another

 RMIs support system-wide object references

– Parameters can be object references

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Objects

 When a client binds to a distributed object, load the interface
(“proxy”) into client address space
– Proxy analogous to stubs

 Server stub is referred to as a skeleton

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Proxies and Skeletons

 Proxy: client stub

– Maintains server ID, endpoint, object ID

– Sets up and tears down connection with the server

– [Java:] does serialization of local object parameters

– In practice, can be downloaded/constructed on the fly

(why can’t this be done for RPCs in general?)

 Skeleton: server stub

– Does deserialization and passes parameters to server

and sends result to proxy

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Java RMI

 Server
– Defines interface and implements interface methods

– Server program

» Creates server object and registers object with
“remote object” registry

 Client
– Looks up server in remote object registry

– Uses normal method call syntax for remote methos

 Java tools
– Rmiregistry: server-side name server

– Rmic: uses server interface to create client and server
stubs

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Message-oriented Transient

Communication

 Many distributed systems built on top of simple

message-oriented model

– Example: Berkeley sockets

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Berkeley Socket Primitives

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

