

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Table of Contents
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.

Acknowledgments xix
About the Author xx

Introduction xxi
Real Code for Real Programmers xxii
How This Book Is Organized xxiii
Conventions xxvii
About the Web Site xxvii

Part 1
Servlets 2.1 and 2.2 2

Chapter 1
Overview of Servlets and JavaServer Pages 4

1.1 Servlets 5
1.2 The Advantages of Servlets Over “Traditional” CGI 7

Efficient 7
Convenient 7
v
Servlet and JSP training courses: http://courses.coreservlets.com.

vi Contents

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Powerful 8
Portable 8
Secure 8
Inexpensive 9

1.3 JavaServer Pages 9
1.4 The Advantages of JSP 10

Versus Active Server Pages (ASP) 10
Versus PHP 10
Versus Pure Servlets 11
Versus Server-Side Includes (SSI) 11
Versus JavaScript 11
Versus Static HTML 12

1.5 Installation and Setup 12
Obtain Servlet and JSP Software 12
Bookmark or Install the Servlet and JSP API Documentation 14
Identify the Classes to the Java Compiler 14
Package the Classes 15
Configure the Server 16
Start the Server 17
Compile and Install Your Servlets 18

Chapter 2
First Servlets 20

2.1 Basic Servlet Structure 21
2.2 A Simple Servlet Generating Plain Text 23

Compiling and Installing the Servlet 24
Invoking the Servlet 25

2.3 A Servlet That Generates HTML 26
2.4 Packaging Servlets 27

Creating Servlets in Packages 28
Compiling Servlets in Packages 29
Invoking Servlets in Packages 30

2.5 Simple HTML-Building Utilities 31
2.6 The Servlet Life Cycle 34

The init Method 34
The service Method 36

Contents vii

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The doGet, doPost, and doXxx Methods 37
The SingleThreadModel Interface 38
The destroy Method 38

2.7 An Example Using Initialization Parameters 39
2.8 An Example Using Servlet Initialization and Page Modification Dates 44
2.9 Debugging Servlets 50
2.10 WebClient: Talking to Web Servers Interactively 52

WebClient 52
HttpClient 55
NetworkClient 57
SocketUtil 59
CloseableFrame 60
LabeledTextField 61
Interruptible 63

Chapter 3
Handling the Client Request: Form Data 64

3.1 The Role of Form Data 65
3.2 Reading Form Data from Servlets 66
3.3 Example: Reading Three Explicit Parameters 67
3.4 Example: Reading All Parameters 70
3.5 A Resumé Posting Service 74
3.6 Filtering Strings for HTML-Specific Characters 87

Code for Filtering 88
Example 89

Chapter 4
Handling the Client Request: HTTP Request Headers 92

4.1 Reading Request Headers from Servlets 94
4.2 Printing All Headers 96
4.3 HTTP 1.1 Request Headers 98
4.4 Sending Compressed Web Pages 104
4.5 Restricting Access to Web Pages 107

viii Contents

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter 5
Accessing the Standard CGI Variables 114

5.1 Servlet Equivalent of CGI Variables 116
5.2 A Servlet That Shows the CGI Variables 119

Chapter 6
Generating the Server Response: HTTP Status Codes 122

6.1 Specifying Status Codes 124
6.2 HTTP 1.1 Status Codes and Their Purpose 126
6.3 A Front End to Various Search Engines 135

Chapter 7
Generating the Server Response: HTTP Response Headers 142

7.1 Setting Response Headers from Servlets 143
7.2 HTTP 1.1 Response Headers and Their Meaning 145
7.3 Persistent Servlet State and Auto-Reloading Pages 154
7.4 Using Persistent HTTP Connections 163
7.5 Using Servlets to Generate GIF Images 168

Chapter 8
Handling Cookies 178

8.1 Benefits of Cookies 179
Identifying a User During an E-commerce Session 180
Avoiding Username and Password 180
Customizing a Site 180
Focusing Advertising 181

8.2 Some Problems with Cookies 181
8.3 The Servlet Cookie API 183

Creating Cookies 183
Cookie Attributes 183
Placing Cookies in the Response Headers 186
Reading Cookies from the Client 186

8.4 Examples of Setting and Reading Cookies 186

Contents ix

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
8.5 Basic Cookie Utilities 190
Finding Cookies with Specified Names 190
Creating Long-Lived Cookies 191

8.6 A Customized Search Engine Interface 191

Chapter 9
Session Tracking 198

9.1 The Need for Session Tracking 199
Cookies 200
URL-Rewriting 200
Hidden Form Fields 201
Session Tracking in Servlets 201

9.2 The Session Tracking API 201
Looking Up the HttpSession Object Associated with the Current
Request 202
Looking Up Information Associated with a Session 202
Associating Information with a Session 205
Terminating Sessions 206
Encoding URLs Sent to the Client 206

9.3 A Servlet Showing Per-Client Access Counts 207
9.4 An On-Line Store Using a Shopping Cart and Session Tracking 209

Building the Front End 210
Handling the Orders 215
Behind the Scenes: Implementing the Shopping Cart and
Catalog Items 220

Part 2
JavaServer Pages 228

Chapter 10
JSP Scripting Elements 230

10.1 Scripting Elements 233
Template Text 234

10.2 JSP Expressions 234

x Contents

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Predefined Variables 234
XML Syntax for Expressions 235
Using Expressions as Attribute Values 235
Example 236

10.3 JSP Scriptlets 238
Using Scriptlets to Make Parts of the JSP File Conditional 241
Special Scriptlet Syntax 242

10.4 JSP Declarations 242
Special Declaration Syntax 244

10.5 Predefined Variables 244

Chapter 11
The JSP page Directive: Structuring Generated Servlets 246

11.1 The import Attribute 248
Directories for Custom Classes 248
Example 249

11.2 The contentType Attribute 251
Generating Plain Text Documents 252
Generating Excel Spreadsheets 254

11.3 The isThreadSafe Attribute 258
11.4 The session Attribute 259
11.5 The buffer Attribute 259
11.6 The autoflush Attribute 260
11.7 The extends Attribute 260
11.8 The info Attribute 260
11.9 The errorPage Attribute 261
11.10 The isErrorPage Attribute 261
11.11 The language Attribute 264
11.12 XML Syntax for Directives 265

Chapter 12
Including Files and Applets in JSP Documents 266

12.1 Including Files at Page Translation Time 268
12.2 Including Files at Request Time 270

Contents xi

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
12.3 Including Applets for the Java Plug-In 274
The jsp:plugin Element 275
The jsp:param and jsp:params Elements 277
The jsp:fallback Element 278
Example: Building Shadowed Text 279

Chapter 13
Using JavaBeans with JSP 286

13.1 Basic Bean Use 288
Accessing Bean Properties 290
Setting Bean Properties: Simple Case 290
Installing Bean Classes 291

13.2 Example: StringBean 292
13.3 Setting Bean Properties 294

Associating Individual Properties with Input Parameters 298
Automatic Type Conversions 300
Associating All Properties with Input Parameters 301

13.4 Sharing Beans 302
Conditional Bean Creation 304

Chapter 14
Creating Custom JSP Tag Libraries 308

14.1 The Components That Make Up a Tag Library 310
The Tag Handler Class 310
The Tag Library Descriptor File 311
The JSP File 313

14.2 Defining a Basic Tag 314
The Tag Handler Class 315
The Tag Library Descriptor File 316
The JSP File 318

14.3 Assigning Attributes to Tags 319
The Tag Handler Class 319
The Tag Library Descriptor File 321
The JSP File 322

14.4 Including the Tag Body 323

xii Contents

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The Tag Handler Class 324
The Tag Library Descriptor File 326
The JSP File 328

14.5 Optionally Including the Tag Body 329
The Tag Handler Class 329
The Tag Library Descriptor File 331
The JSP File 332

14.6 Manipulating the Tag Body 334
The Tag Handler Class 334
The Tag Library Descriptor File 335
The JSP File 336

14.7 Including or Manipulating the Tag Body Multiple Times 338
The Tag Handler Class 338
The Tag Library Descriptor File 340
The JSP File 341

14.8 Using Nested Tags 341
The Tag Handler Classes 342
The Tag Library Descriptor File 348
The JSP File 350

Chapter 15
Integrating Servlets and JSP 352

15.1 Forwarding Requests 354
Using Static Resources 354
Supplying Information to the Destination Pages 355
Interpreting Relative URLs in the Destination Page 357
Alternative Means of Getting a RequestDispatcher 358

15.2 Example: An On-Line Travel Agent 358
15.3 Including Static or Dynamic Content 375
15.4 Example: Showing Raw Servlet and JSP Output 377
15.5 Forwarding Requests From JSP Pages 380

Contents xiii

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Part 3
Supporting Technologies 382

Chapter 16
Using HTML Forms 384

16.1 How HTML Forms Transmit Data 385
16.2 The FORM Element 390
16.3 Text Controls 395

Textfields 395
Password Fields 397
Text Areas 398

16.4 Push Buttons 400
Submit Buttons 401
Reset Buttons 404
JavaScript Buttons 405

16.5 Check Boxes and Radio Buttons 405
Check Boxes 406
Radio Buttons 407

16.6 Combo Boxes and List Boxes 409
16.7 File Upload Controls 412
16.8 Server-Side Image Maps 414

IMAGE—Standard Server-Side Image Maps 414
ISMAP—Alternative Server-Side Image Maps 417

16.9 Hidden Fields 419
16.10 Grouping Controls 420
16.11 Controlling Tab Order 422
16.12 A Debugging Web Server 423

EchoServer 423
ThreadedEchoServer 427
NetworkServer 428

Chapter 17
Using Applets As Servlet Front Ends 432

17.1 Sending Data with GET and Displaying the Resultant Page 434

xiv Contents

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
17.2 A Multisystem Search Engine Front End 435
17.3 Sending Data with GET and Processing the Results Directly
(HTTP Tunneling) 438

Reading Binary or ASCII Data 439
Reading Serialized Data Structures 441

17.4 A Query Viewer That Uses Object Serialization and HTTP
Tunneling 443
17.5 Sending Data by POST and Processing the Results Directly
(HTTP Tunneling) 450
17.6 An Applet That Sends POST Data 453
17.7 Bypassing the HTTP Server 459

Chapter 18
JDBC and Database Connection Pooling 460

18.1 Basic Steps in Using JDBC 462
Load the Driver 462
Define the Connection URL 463
Establish the Connection 464
Create a Statement 465
Execute a Query 465
Process the Results 465
Close the Connection 466

18.2 Basic JDBC Example 467
18.3 Some JDBC Utilities 473
18.4 Applying the Database Utilities 482
18.5 An Interactive Query Viewer 487

Query Viewer Code 489
18.6 Prepared Statements (Precompiled Queries) 497
18.7 Connection Pooling 501
18.8 Connection Pooling: A Case Study 508
18.9 Sharing Connection Pools 515

Using the Servlet Context to Share Connection Pools 515
Using Singleton Classes to Share Connection Pools 516

Contents xv

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Appendix
Servlet and JSP Quick Reference 518

A.1 Overview of Servlets and JavaServer Pages 519
Advantages of Servlets 519
Advantages of JSP 519
Free Servlet and JSP Software 519
Documentation 520
Servlet Compilation: CLASSPATH Entries 520
Tomcat 3.0 Standard Directories 520
Tomcat 3.1 Standard Directories 520
JSWDK 1.0.1 Standard Directories 520
Java Web Server 2.0 Standard Directories 521

A.2 First Servlets 521
Simple Servlet 521
Installing Servlets 521
Invoking Servlets 521
Servlet Life Cycle 522

A.3 Handling the Client Request: Form Data 523
Reading Parameters 523
Example Servlet 523
Example Form 524
Filtering HTML-Specific Characters 524

A.4 Handling the Client Request: HTTP Request Headers 524
Methods That Read Request Headers 524
Other Request Information 525
Common HTTP 1.1 Request Headers 525

A.5 Accessing the Standard CGI Variables 526
Capabilities Not Discussed Elsewhere 526
Servlet Equivalent of CGI Variables 526

A.6 Generating the Server Response: HTTP Status Codes 527
Format of an HTTP Response 527
Methods That Set Status Codes 527
Status Code Categories 527
Common HTTP 1.1 Status Codes 527

A.7 Generating the Server Response: HTTP Response Headers 528
Setting Arbitrary Headers 528

xvi Contents

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Setting Common Headers 528
Common HTTP 1.1 Response Headers 528
Generating GIF Images from Servlets 529

A.8 Handling Cookies 530
Typical Uses of Cookies 530
Problems with Cookies 530
General Usage 530
Cookie Methods 530

A.9 Session Tracking 531
Looking Up Session Information: getValue 531
Associating Information with a Session: putValue 531
HttpSession Methods 532
Encoding URLs 533

A.10 JSP Scripting Elements 533
Types of Scripting Elements 533
Template Text 533
Predefined Variables 533

A.11 The JSP page Directive: Structuring Generated Servlets 534
The import Attribute 534
The contentType Attribute 534
Example of Using contentType 534
Example of Using setContentType 535
The isThreadSafe Attribute 535
The session Attribute 536
The buffer Attribute 536
The autoflush Attribute 536
The extends Attribute 536
The info Attribute 536
The errorPage Attribute 536
The isErrorPage Attribute 536
The language Attribute 536
XML Syntax 537

A.12 Including Files and Applets in JSP Documents 537
Including Files at Page Translation Time 537
Including Files at Request Time 537
Applets for the Java Plug-In: Simple Case 537
Attributes of jsp:plugin 537

Contents xvii

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Parameters in HTML: jsp:param 538
Alternative Text 538

A.13 Using JavaBeans with JSP 539
Basic Requirements for Class to be a Bean 539
Basic Bean Use 539
Associating Properties with Request Parameters 539
Sharing Beans: The scope Attribute of jsp:useBean 539
Conditional Bean Creation 540

A.14 Creating Custom JSP Tag Libraries 540
The Tag Handler Class 540
The Tag Library Descriptor File 541
The JSP File 541
Assigning Attributes to Tags 541
Including the Tag Body 541
Optionally Including the Tag Body 542
Manipulating the Tag Body 542
Including or Manipulating the Tag Body Multiple Times 542
Using Nested Tags 542

A.15 Integrating Servlets and JSP 542
Big Picture 542
Request Forwarding Syntax 543
Forwarding to Regular HTML Pages 543
Setting Up Globally Shared Beans 543
Setting Up Session Beans 543
Interpreting Relative URLs in the Destination Page 543
Getting a RequestDispatcher by Alternative Means (2.2 Only) 543
Including Static or Dynamic Content 544
Forwarding Requests from JSP Pages 544

A.16 Using HTML Forms 544
The FORM Element 544
Textfields 544
Password Fields 544
Text Areas 545
Submit Buttons 545
Alternative Push Buttons 545
Reset Buttons 545
Alternative Reset Buttons 545

xviii Contents

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
JavaScript Buttons 546
Alternative JavaScript Buttons 546
Check Boxes 546
Radio Buttons 546
Combo Boxes 546
File Upload Controls 547
Server-Side Image Maps 547
Hidden Fields 547
Internet Explorer Features 547

A.17 Using Applets As Servlet Front Ends 547
Sending Data with GET and Displaying the Resultant Page 547
Sending Data with GET and Processing the Results Directly
(HTTP Tunneling) 548
Sending Serialized Data: The Applet Code 549
Sending Serialized Data: The Servlet Code 549
Sending Data by POST and Processing the Results Directly
(HTTP Tunneling) 550
Bypassing the HTTP Server 551

A.18 JDBC and Database Connection Pooling 552
Basic Steps in Using JDBC 552
Database Utilities 553
Prepared Statements (Precompiled Queries) 553
Steps in Implementing Connection Pooling 554

Index 557

Chapter
Many people have helped me out with this book. Without their assistance, I
would still be on the third chapter. John Guthrie, Amy Karlson, Rich Slywc-
zak, and Kim Topley provided valuable technical feedback on virtually every
chapter. Others pointing out errors and providing useful suggestions include
Don Aldridge, Camille Bell, Ben Benokraitis, Larry Brown, Carl Burnham,
Andrew Burton, Rick Cannon, Kevin Cropper, Chip Downs, Frank Erickson,
Payam Fard, Daniel Goldman, Rob Gordon, Andy Gravatt, Jeff Hall, Russell
Holley, David Hopkins, Lis Immer, Herman Ip, Truong Le, Frank Lewis,
Tanner Lovelace, Margaret Lyell, Paul McNamee, Mike Oliver, Barb Ride-
nour, Himanso Sahni, Bob Samson, Ron Tosh, Tsung-Wen Tsai, Peggy Sue
Vickers, and Maureen Knox Yencha. Hopefully I learned from their advice.
Mary Lou “Eagle Eye” Nohr spotted my errant commas, awkward sentences,
typographical errors, and grammatical inconsistencies. She improved the
result immensely. Joanne Anzalone produced the final version; she did a
great job despite my many last-minute changes. Ralph Semmel provided a
supportive work environment and a flexible schedule, not to mention inter-
esting projects on which to put servlets and JSP to work. Greg Doench of
Prentice Hall believed in the concept from the beginning and encouraged me
to write the book. Rachel Borden got Sun Microsystems Press to believe in it
also. Thanks to all.

Most of all, thanks to B.J., Lindsay, and Nathan for their patience with my
funny schedule and my hogging the computer when they wanted to work or
play on it. God has blessed me with a great family.
xix

xx About the Author
About the Author

Marty Hall is a Senior Computer Sci-
entist in the Research and Technology
Development Center at the Johns
Hopkins University Applied Physics
Lab, where he specializes in applica-
tions of Java and Web technology. He
also teaches Java and Web program-
ming in the Johns Hopkins part-time
graduate program in Computer Sci-
ence, where he directs the Distributed
Computing and Web Technology con-

centration areas. When he gets a chance, he also teaches industry short
courses on servlets, JavaServer Pages, and other Java technology areas.
Marty’s previous book is Core Web Programming (Prentice Hall, 1998). He
can be reached at the following address:

Research and Technology Development Center
The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, MD 20723
hall@coreservlets.com

Chapter
n early 1996, I started using the Java programming language for the
majority of my software development work. I did some CGI program-
ming and even worked a little with the early servlet versions, but for the

most part I did desktop and client-side applications. Over the last couple of
years, however, there has been a growing emphasis on server-side applications,
so I became more serious about servlets and JavaServer Pages. In the past year,
there has been a virtual stampede toward the technology among developers,
server vendors, and the authors of the Java platform specifications. So much so,
in fact, that the technology is rapidly becoming the standard tool for building
dynamic Web sites and connecting Web front ends to databases and applica-
tions on a server.

Unfortunately, however, it was extremely difficult to find good practical
advice on servlet and JSP development. I found a number of servlet books, but
only a handful of them covered recent versions of the specification, advanced
techniques, or reflected real-world experience. The few that did, if they cov-
ered JSP at all, hadn’t caught up to JSP 1.0, let alone JSP 1.1. Since JSP is a bet-
ter fit than servlets for many situations, what good was a servlet book that didn’t
also cover JSP? In the last couple of months, some JSP books have started com-
ing out. But the bulk of them don’t cover servlets. What good is that? Since an
integral part of JavaServer Pages is the use of scripting elements to create serv-
let code, you can’t do effective JSP development without a thorough under-
standing of servlets. Besides, most real-world sites don’t use just one of the two

I

xxi

xxii Introduction
technologies; they combine them both. Finally, as I discovered when I started
teaching servlet and JSP development to my students in the Johns Hopkins
part-time graduate program (most of whom were professional software devel-
opers), few programmers were already comfortable with HTTP 1.1, HTML
forms, and JDBC, three critical supporting technologies. Telling them to get a
separate book for each of these areas was hardly reasonable: that brought to
five the number of books programmers needed if they were going to do serious
servlet/JSP development.

So, in mid-1999, I put together a short servlet and JSP tutorial with a few
dozen examples, put it on the Web, and tried out the material in a couple of
my courses. The response was overwhelming. After only a few months, I
was getting several thousand visitors a day to the tutorial along with a myr-
iad of requests to expand the coverage of the material. I eventually bowed
to the inevitable and started writing. This book is the result. I hope you find
it useful.

Real Code for Real Programmers

This book is aimed at serious software developers. This is not a book that
touts the potential of e-commerce or pontificates about how Web-enabled
applications will revolutionize your business. Instead, it is a hands-on book
aimed at helping programmers who are already convinced of the need for
dynamic Web sites get started building them right away. In showing how to
build these sites, I try to illustrate the most important approaches and warn
you of the most common pitfalls. Along the way, I include plenty of working
code: more than a hundred documented Java classes, for instance. I try to
give detailed examples of the most important and frequently used features,
summarize the lesser-used ones, and refer you to the APIs (available
on-line) for a few of the rarely used ones.

Nor is this a book that skims dozens of technologies at a high level.
Although I don’t claim that this is a definitive reference on every technology
it touches on (e.g., there are a number of books this size just on JDBC), if the
book covers a topic, it does so in enough detail for you to sit down and start
writing real programs. The one exception to this rule is the Java programming
language itself. Although I don’t assume any familiarity with server-side pro-
gramming, I do expect you to be familiar with the basics of Java language
development. If you’re not, you will need to pick up a good tutorial like Core
Java, Core Web Programming, or Thinking in Java.

How This Book Is Organized xxiii
A word of caution, however. Nobody becomes a great developer just by
reading. You have to write some real code, too. The more, the better. In each
chapter, I suggest that you start by making a simple program or a small varia-
tion of one of the examples given, then strike off on your own with a more sig-
nificant project. Skim the sections you don’t plan on using right away, then
come back when you are ready to try them out.

If you do this, you should quickly develop the confidence to handle the
real-world problems that brought you here in the first place. You should be
able to decide where servlets apply well, where JSP is better, and where a com-
bination is best. You should not only know how to generate HTML content, but
you should also understand building other media types like GIF images or
Excel spreadsheets. You should understand HTTP 1.1 well enough to use its
capabilities to enhance the effectiveness of your pages. You should have no
qualms about developing Web interfaces to your corporate databases, using
either HTML forms or applets as front ends. You should be able to spin off
complex behaviors into JavaBeans components or custom JSP tag libraries,
then decide when to use these components directly and when to start requests
with servlets that set things up for separate presentation pages. You should have
fun along the way. You should get a raise.

How This Book Is Organized

This book is divided into three parts: Servlets, JavaServer Pages, and Sup-
porting Technologies.

Part I: Servlets
Part I covers servlet development with the 2.1 and 2.2 specifications.
Although version 2.2 (along with JSP 1.1) is mandated by the Java 2
Platform, Enterprise Edition (J2EE), many commercial products are
still at the earlier releases, so it is important to understand the differ-
ences. Also, although servlet code is portable across a huge variety of
servers and operating systems, server setup and configuration details
are not standardized. So, I include specific details for Apache Tomcat,
Sun’s JavaServer Web Development Kit (JSWDK), and the Java Web
Server. Servlet topics include:

• When and why you would use servlets
• Obtaining and configuring the servlet and JSP software

xxiv Introduction
• The basic structure of servlets
• The process of compiling, installing, and invoking servlets
• Generating HTML from servlets
• The servlet life cycle
• Page modification dates and browser caches
• Servlet debugging strategies
• Reading form data from servlets
• Handling both GET and POST requests with a single servlet
• An on-line resume posting service
• Reading HTTP request headers from servlets
• The purpose of each of the HTTP 1.1 request headers
• Reducing download times by compressing pages
• Restricting access with password-protected servlets
• The servlet equivalent of each standard CGI variable
• Using HTTP status codes
• The meaning of each of the HTTP 1.1 status code values
• A search engine front end
• Setting response headers from servlets
• The purpose of each of the HTTP 1.1 response headers
• Common MIME types
• A servlet that uses the Refresh header to repeatedly access

ongoing computations
• Servlets that exploit persistent (keep-alive) HTTP connections
• Generating GIF images from servlets
• Cookie purposes and problems
• The Cookie API
• Some utilities that simplify cookie handling
• A customized search engine front end
• The purposes of session tracking
• The servlet session tracking API
• Using sessions to show per-client access counts
• An on-line store that uses session tracking, shopping carts, and

pages automatically built from catalog entries

How This Book Is Organized xxv
Part II: JavaServer Pages
JSP provides a convenient alternative to servlets for pages that mostly
consist of fixed content. Part II covers the use of JavaServer Pages ver-
sion 1.0 and 1.1. JSP topics include:

• When and why you would use JavaServer Pages
• How JSP pages are invoked
• Using JSP expressions, scriptlets, and declarations
• Predefined variables that can be used within expressions and

scriptlets
• The page directive
• Designating which classes are imported
• Specifying the MIME type of the page
• Generating Excel spreadsheets
• Controlling threading behavior
• Participating in sessions
• Setting the size and behavior of the output buffer
• Designating pages to process JSP errors
• XML-compatible syntax for directives
• Including JSP files at the time the main page is translated into a

servlet
• Including HTML or plain text files at the time the client

requests the page
• Including applets that use the Java Plug-In
• Using JavaBeans with JSP
• Creating and accessing beans
• Setting bean properties explicitly
• Associating bean properties with input parameters
• Automatic conversion of bean property types
• Sharing beans among multiple JSP pages and servlets
• Creating JSP tag libraries
• Tag handler classes
• Tag library descriptor files
• The JSP taglib directive
• Simple tags
• Tags that use attributes
• Tags that use the body content between their start and end tags
• Tags that modify their body content
• Looping tags
• Nested tags

xxvi Introduction
• Integrating servlets and JSP
• Forwarding requests from servlets to static and dynamic

resources
• Using servlets to set up beans for use by JSP pages
• An on-line travel agency combining servlets and JSP
• Including JSP output in servlets
• Forwarding requests from JSP pages

Part III: Supporting Technologies
Part III covers three topics that are commonly used in conjunction
with servlets and JSP: HTML forms, applets talking to servlets, and
JDBC. Topics include:

• Sending data from forms
• Text controls
• Push buttons
• Check boxes and radio buttons
• Combo boxes and list boxes
• File upload controls
• Server-side image maps
• Hidden fields
• Grouping controls
• Tab ordering
• A Web server for debugging forms
• Sending GET data from an applet and having the browser

display the results
• Having applets send GET data and process the results

themselves (HTTP tunneling)
• Using object serialization to exchange high-level data structures

between applets and servlets
• Having applets send POST data and process the results

themselves
• Applets bypassing the HTTP server altogether

Conventions xxvii
Conventions

Throughout the book, concrete programming constructs or program output are
presented in a monospaced font. For example, when abstractly discussing
server-side programs that use HTTP, I might refer to “HTTP servlets” or just
“servlets,” but when I say HttpServlet I am talking about a specific Java class.

User input is indicated in boldface, and command-line prompts are either
generic (Prompt>) or indicate the operating system to which they apply
(DOS>). For instance, the following indicates that “Some Output” is the result
when “java SomeProgram” is executed on any platform.

Prompt> java SomeProgram

Some Output

Important standard techniques are indicated by specially marked entries,
as in the following example.

Core Approach

Pay particular attention to items in “Core Approach” sections. They indicate
techniques that should always or almost always be used.

Notes and warnings are called out in a similar manner.

About the Web Site

The book has a companion Web site at http://www.coreservlets.com/.
This free site includes:

• Documented source code for all examples shown in the book;
this code can be downloaded for unrestricted use

• On-line API (in Javadoc format) for all classes developed in the
book

• Up-to-date download sites for servlet and JSP software
• Links to all URLs mentioned in the text of the book
• Information on book discounts
• Reports on servlet and JSP short courses
• Book additions, updates, and news

xxviii Introduction

1

Servlets
2.1 and 2.2

Chapter 1 Overview of Servlets and
JavaServer Pages, 4

Chapter 2 First Servlets, 20
Chapter 3 Handling the Client Request:

Form Data, 64
Chapter 4 Handling the Client Request:

HTTP Request Headers, 92
Chapter 5 Accessing the Standard CGI

Variables, 114
Chapter 6 Generating the Server Response:

HTTP Status Codes, 122
Chapter 7 Generating the Server Response:

HTTP Response Headers, 142
Chapter 8 Handling Cookies, 178
Chapter 9 Session Tracking, 198

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Overview of
Servlets and

JavaServer Pages
Topics in This Chapter

• What servlets are

• When and why you would use servlets

• What JavaServer Pages are

• When and why you would use JSP

• Obtaining the servlet and JSP software

• Software installation and setup
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
his chapter gives a quick overview of servlets and JavaServer Pages
(JSP), outlining the major advantages of each. It then summarizes
how to obtain and configure the software you need to write servlets

and develop JSP documents.

1.1 Servlets

Servlets are Java technology’s answer to Common Gateway Interface (CGI)
programming. They are programs that run on a Web server, acting as a mid-
dle layer between a request coming from a Web browser or other HTTP cli-
ent and databases or applications on the HTTP server. Their job is to:

1. Read any data sent by the user.
This data is usually entered in a form on a Web page, but could
also come from a Java applet or a custom HTTP client program.

2. Look up any other information about the request that is
embedded in the HTTP request.
This information includes details about browser capabilities,
cookies, the host name of the requesting client, and so forth.

T

5

6 Chapter 1 Overview of Servlets and JavaServer Pages

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
3. Generate the results.
This process may require talking to a database, executing an
RMI or CORBA call, invoking a legacy application, or comput-
ing the response directly.

4. Format the results inside a document.
In most cases, this involves embedding the information inside
an HTML page.

5. Set the appropriate HTTP response parameters.
This means telling the browser what type of document is being
returned (e.g., HTML), setting cookies and caching parameters,
and other such tasks.

6. Send the document back to the client.
This document may be sent in text format (HTML), binary for-
mat (GIF images), or even in a compressed format like gzip that
is layered on top of some other underlying format.

Many client requests can be satisfied by returning pre-built documents,
and these requests would be handled by the server without invoking servlets.
In many cases, however, a static result is not sufficient, and a page needs to
be generated for each request. There are a number of reasons why Web
pages need to be built on-the-fly like this:

• The Web page is based on data submitted by the user.
For instance, the results page from search engines and
order-confirmation pages at on-line stores are specific to
particular user requests.

• The Web page is derived from data that changes
frequently.
For example, a weather report or news headlines page might
build the page dynamically, perhaps returning a previously built
page if it is still up to date.

• The Web page uses information from corporate
databases or other server-side sources.
For example, an e-commerce site could use a servlet to build a
Web page that lists the current price and availability of each
item that is for sale.

In principle, servlets are not restricted to Web or application servers that
handle HTTP requests, but can be used for other types of servers as well. For
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

1.2 The Advantages of Servlets Over “Traditional” CGI 7

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

example, servlets could be embedded in mail or FTP servers to extend their
functionality. In practice, however, this use of servlets has not caught on, and
I’ll only be discussing HTTP servlets.

1.2 The Advantages of Servlets
Over “Traditional” CGI

Java servlets are more efficient, easier to use, more powerful, more portable,
safer, and cheaper than traditional CGI and many alternative CGI-like tech-
nologies.

Efficient

With traditional CGI, a new process is started for each HTTP request. If the
CGI program itself is relatively short, the overhead of starting the process can
dominate the execution time. With servlets, the Java Virtual Machine stays
running and handles each request using a lightweight Java thread, not a
heavyweight operating system process. Similarly, in traditional CGI, if there
are N simultaneous requests to the same CGI program, the code for the CGI
program is loaded into memory N times. With servlets, however, there would
be N threads but only a single copy of the servlet class. Finally, when a CGI
program finishes handling a request, the program terminates. This makes it
difficult to cache computations, keep database connections open, and per-
form other optimizations that rely on persistent data. Servlets, however,
remain in memory even after they complete a response, so it is straightfor-
ward to store arbitrarily complex data between requests.

Convenient

Servlets have an extensive infrastructure for automatically parsing and decod-
ing HTML form data, reading and setting HTTP headers, handling cookies,
tracking sessions, and many other such high-level utilities. Besides, you already
know the Java programming language. Why learn Perl too? You’re already con-
vinced that Java technology makes for more reliable and reusable code than
does C++. Why go back to C++ for server-side programming?
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

8 Chapter 1 Overview of Servlets and JavaServer Pages

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Powerful

Servlets support several capabilities that are difficult or impossible to accom-
plish with regular CGI. Servlets can talk directly to the Web server, whereas
regular CGI programs cannot, at least not without using a server-specific
API. Communicating with the Web server makes it easier to translate relative
URLs into concrete path names, for instance. Multiple servlets can also share
data, making it easy to implement database connection pooling and similar
resource-sharing optimizations. Servlets can also maintain information from
request to request, simplifying techniques like session tracking and caching
of previous computations.

Portable

Servlets are written in the Java programming language and follow a standard
API. Consequently, servlets written for, say, I-Planet Enterprise Server can
run virtually unchanged on Apache, Microsoft Internet Information Server
(IIS), IBM WebSphere, or StarNine WebStar. For example, virtually all of
the servlets and JSP pages in this book were executed on Sun’s Java Web
Server, Apache Tomcat and Sun’s JavaServer Web Development Kit
(JSWDK) with no changes whatsoever in the code. Many were tested on
BEA WebLogic and IBM WebSphere as well. In fact, servlets are supported
directly or by a plug-in on virtually every major Web server. They are now
part of the Java 2 Platform, Enterprise Edition (J2EE; see
http://java.sun.com/j2ee/), so industry support for servlets is becoming
even more pervasive.

Secure

One of the main sources of vulnerabilities in traditional CGI programs
stems from the fact that they are often executed by general-purpose operat-
ing system shells. So the CGI programmer has to be very careful to filter
out characters such as backquotes and semicolons that are treated specially
by the shell. This is harder than one might think, and weaknesses stemming
from this problem are constantly being uncovered in widely used CGI
libraries. A second source of problems is the fact that some CGI programs
are processed by languages that do not automatically check array or string
bounds. For example, in C and C++ it is perfectly legal to allocate a
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

1.3 JavaServer Pages 9

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

100-element array then write into the 999th “element,” which is really some
random part of program memory. So programmers who forget to do this
check themselves open their system up to deliberate or accidental buffer
overflow attacks. Servlets suffer from neither of these problems. Even if a
servlet executes a remote system call to invoke a program on the local oper-
ating system, it does not use a shell to do so. And of course array bounds
checking and other memory protection features are a central part of the
Java programming language.

Inexpensive

There are a number of free or very inexpensive Web servers available that are
good for “personal” use or low-volume Web sites. However, with the major
exception of Apache, which is free, most commercial-quality Web servers are
relatively expensive. Nevertheless, once you have a Web server, no matter its
cost, adding servlet support to it (if it doesn’t come preconfigured to support
servlets) costs very little extra. This is in contrast to many of the other CGI
alternatives, which require a significant initial investment to purchase a pro-
prietary package.

1.3 JavaServer Pages

JavaServer Pages (JSP) technology enables you to mix regular, static HTML
with dynamically generated content from servlets. Many Web pages that
are built by CGI programs are primarily static, with the parts that change
limited to a few small locations. For example, the initial page at most
on-line stores is the same for all visitors, except for a small welcome mes-
sage giving the visitor’s name if it is known. But most CGI variations,
including servlets, make you generate the entire page via your program,
even though most of it is always the same. JSP lets you create the two parts
separately. Listing 1.1 gives an example. Most of the page consists of regu-
lar HTML, which is passed to the visitor unchanged. Parts that are gener-
ated dynamically are marked with special HTML-like tags and mixed right
into the page.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

10 Chapter 1 Overview of Servlets and JavaServer Pages

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
1.4 The Advantages of JSP

JSP has a number of advantages over many of its alternatives. Here are a
few of them.

Versus Active Server Pages (ASP)

ASP is a competing technology from Microsoft. The advantages of JSP are
twofold. First, the dynamic part is written in Java, not VBScript or another
ASP-specific language, so it is more powerful and better suited to complex
applications that require reusable components. Second, JSP is portable to
other operating systems and Web servers; you aren’t locked into Windows
NT/2000 and IIS. You could make the same argument when comparing JSP
to ColdFusion; with JSP you can use Java and are not tied to a particular
server product.

Versus PHP

PHP is a free, open-source HTML-embedded scripting language that is some-
what similar to both ASP and JSP. The advantage of JSP is that the dynamic
part is written in Java, which you probably already know, which already has an

Listing 1.1 A sample JSP page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD><TITLE>Welcome to Our Store</TITLE></HEAD>
<BODY>
<H1>Welcome to Our Store</H1>
<SMALL>Welcome,
<!-- User name is "New User" for first-time visitors -->
<%= Utils.getUserNameFromCookie(request) %>
To access your account settings, click
here.</SMALL>
<P>
Regular HTML for all the rest of the on-line store’s Web page.
</BODY>
</HTML>
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

1.4 The Advantages of JSP 11

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

extensive API for networking, database access, distributed objects, and the like,
whereas PHP requires learning an entirely new language.

Versus Pure Servlets

JSP doesn’t provide any capabilities that couldn’t in principle be accom-
plished with a servlet. In fact, JSP documents are automatically translated
into servlets behind the scenes. But it is more convenient to write (and to
modify!) regular HTML than to have a zillion println statements that gen-
erate the HTML. Plus, by separating the presentation from the content, you
can put different people on different tasks: your Web page design experts can
build the HTML using familiar tools and leave places for your servlet pro-
grammers to insert the dynamic content.

Versus Server-Side Includes (SSI)

SSI is a widely supported technology for inserting externally defined pieces
into a static Web page. JSP is better because you have a richer set of tools for
building that external piece and have more options regarding the stage of the
HTTP response at which the piece actually gets inserted. Besides, SSI is
really intended only for simple inclusions, not for “real” programs that use
form data, make database connections, and the like.

Versus JavaScript

JavaScript, which is completely distinct from the Java programming language,
is normally used to generate HTML dynamically on the client, building parts
of the Web page as the browser loads the document. This is a useful capabil-
ity but only handles situations where the dynamic information is based on the
client’s environment. With the exception of cookies, the HTTP request data
is not available to client-side JavaScript routines. And, since JavaScript lacks
routines for network programming, JavaScript code on the client cannot
access server-side resources like databases, catalogs, pricing information, and
the like. JavaScript can also be used on the server, most notably on Netscape
servers and as a scripting language for IIS. Java is far more powerful, flexible,
reliable, and portable.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

12 Chapter 1 Overview of Servlets and JavaServer Pages

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Versus Static HTML

Regular HTML, of course, cannot contain dynamic information, so static
HTML pages cannot be based upon user input or server-side data sources.
JSP is so easy and convenient that it is quite reasonable to augment HTML
pages that only benefit slightly by the insertion of dynamic data. Previously,
the difficulty of using dynamic data precluded its use in all but the most valu-
able instances.

1.5 Installation and Setup

Before you can get started, you have to download the software you need and
configure your system to take advantage of it. Here’s an outline of the steps
involved. Please note, however, that although your servlet code will follow a
standard API, there is no standard for downloading and configuring Web or
application servers. Thus, unlike most sections of this book, the methods
described here vary significantly from server to server, and the examples in
this section should be taken only as representative samples. Check your
server’s documentation for authoritative instructions.

Obtain Servlet and JSP Software

Your first step is to download software that implements the Java Servlet 2.1 or
2.2 and JavaServer Pages 1.0 or 1.1 specifications. If you are using an
up-to-date Web or application server, there is a good chance that it already
has everything you need. Check your server documentation or see the latest
list of servers that support servlets at http://java.sun.com/prod-

ucts/servlet/industry.html. Although you’ll eventually want to deploy
in a commercial-quality server, when first learning it is useful to have a free
system that you can install on your desktop machine for development and
testing purposes. Here are some of the most popular options:

• Apache Tomcat.
Tomcat is the official reference implementation of the servlet 2.2
and JSP 1.1 specifications. It can be used as a small stand-alone
server for testing servlets and JSP pages, or can be integrated into
the Apache Web server. However, many other servers have
announced upcoming support, so these specifications will be
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

1.5 Installation and Setup 13

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

covered in detail throughout this book. Tomcat, like Apache
itself, is free. However, also like Apache (which is very fast, highly
reliable, but a bit hard to configure and install), Tomcat requires
significantly more effort to set up than do the commercial servlet
engines. For details, see http://jakarta.apache.org/.

• JavaServer Web Development Kit (JSWDK).
The JSWDK is the official reference implementation of the
servlet 2.1 and JSP 1.0 specifications. It is used as a small
stand-alone server for testing servlets and JSP pages before they
are deployed to a full Web server that supports these
technologies. It is free and reliable, but takes quite a bit of
effort to install and configure. For details, see
http://java.sun.com/products/servlet/download.html.

• Allaire JRun.
JRun is a servlet and JSP engine that can be plugged into
Netscape Enterprise or FastTrack servers, IIS, Microsoft
Personal Web Server, older versions of Apache, O’Reilly’s
WebSite, or StarNine WebSTAR. A limited version that
supports up to five simultaneous connections is available for
free; the commercial version removes this restriction and adds
capabilities like a remote administration console. For details,
see http://www.allaire.com/products/jrun/.

• New Atlanta’s ServletExec. ServletExec is a servlet and JSP
engine that can be plugged into most popular Web servers for
Solaris, Windows, MacOS, HP-UX and Linux. You can
download and use it for free, but many of the advanced features
and administration utilities are disabled until you purchase a
license. For details, see http://newatlanta.com/.

• LiteWebServer (LWS) from Gefion Software.
LWS is a small free Web server derived from Tomcat that
supports servlets version 2.2 and JSP 1.1. Gefion also has a free
plug-in called WAICoolRunner that adds servlet 2.2 and JSP 1.1
support to Netscape FastTrack and Enterprise servers. For details,
see http://www.gefionsoftware.com/.

• Sun’s Java Web Server.
This server is written entirely in Java and was one of the first
Web servers to fully support the servlet 2.1 and JSP 1.0
specifications. Although it is no longer under active
development because Sun is concentrating on the
Netscape/I-Planet server, it is still a popular choice for learning
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

14 Chapter 1 Overview of Servlets and JavaServer Pages

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
servlets and JSP. For a free trial version, see
http://www.sun.com/software/jwebserver/try/. For a
free non-expiring version for teaching purposes at academic
institutions, see http://freeware.thesphere.com/.

Bookmark or Install the Servlet and JSP API
Documentation

Just as no serious programmer should develop general-purpose Java applica-
tions without access to the JDK 1.1 or 1.2 API documentation, no serious pro-
grammer should develop servlets or JSP pages without access to the API for
classes in the javax.servlet packages. Here is a summary of where to find
the API:

• http://java.sun.com/products/jsp/download.html

This site lets you download either the 2.1/1.0 API or the 2.2/1.1
API to your local system. You may have to download the entire
reference implementation and then extract the documentation.

• http://java.sun.com/products/servlet/2.2/javadoc/

This site lets you browse the servlet 2.2 API on-line.
• http://www.java.sun.com/j2ee/j2sdkee/techdocs/api/

This address lets you browse the complete API for the Java 2
Platform, Enterprise Edition (J2EE), which includes the servlet
2.2 and JSP 1.1 packages.

If Sun or Apache place any new additions on-line (e.g., a place to browse
the 2.1/1.0 API), they will be listed under Chapter 1 in the book source
archive at http://www.coreservlets.com/.

Identify the Classes to the Java Compiler

Once you’ve obtained the necessary software, you need to tell the Java com-
piler (javac) where to find the servlet and JSP class files when it compiles
your servlets. Check the documentation of your particular package for defini-
tive details, but the necessary class files are usually in the lib subdirectory of
the server’s installation directory, with the servlet classes in servlet.jar and
the JSP classes in jsp.jar, jspengine.jar, or jasper.jar. There are a
couple of different ways to tell javac about these classes, the easiest of which
is to put the JAR files in your CLASSPATH. If you’ve never dealt with the
CLASSPATH before, it is the variable that specifies where javac looks for
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

1.5 Installation and Setup 15

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

classes when compiling. If the variable is unspecified, javac looks in the cur-
rent directory and the standard system libraries. If you set CLASSPATH your-
self, be sure to include “.”, signifying the current directory.

Following is a brief summary of how to set the environment variable on a
couple of different platforms. Assume dir is the directory in which the serv-
let and JSP classes are found.

Unix (C Shell)

setenv CLASSPATH .:dir/servlet.jar:dir/jspengine.jar

Add :$CLASSPATH to the end of the setenv line if your CLASSPATH is
already set and you want to add more to it, not replace it. Note that on Unix
systems you use forward slashes to separate directories within an entry and
colons to separate entries, whereas you use backward slashes and semicolons
on Windows. To make this setting permanent, you would typically put this
statement in your .cshrc file.

Windows

set CLASSPATH=.;dir\servlet.jar;dir\jspengine.jar

Add ;%CLASSPATH% to the end of the above line if your CLASSPATH is
already set and you want to add more to it, not replace it. Note that on Win-
dows you use backward slashes to separate directories within an entry and
semicolons to separate entries, while you use forward slashes and colons on
Unix. To make this setting permanent on Windows 95/98, you’d typically put
this statement in your autoexec.bat file. On Windows NT or 2000, you
would go to the Start menu, select Settings, select Control Panel, select Sys-
tem, select Environment, then enter the variable and value.

Package the Classes

As you’ll see in the next chapter, you probably want to put your servlets into
packages to avoid name conflicts with servlets other people write for the
same Web or application server. In that case, you may find it convenient to
add the top-level directory of your package hierarchy to the CLASSPATH as
well. See Section 2.4 (Packaging Servlets) for details.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

16 Chapter 1 Overview of Servlets and JavaServer Pages

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

No
te

:i
fy

ou
us

e
To

m
ca

t3
.2

or
4.

x,
se

e
up

da
te

d
in

fo
rm

at
io

n
at

ht
tp

://
ar

ch
iv

e.
co

re
se

rv
le

ts
.c

om
/U

si
ng

-T
om

ca
t.h

tm
l

Configure the Server

Before you start the server, you may want to designate parameters like the
port on which it listens, the directories in which it looks for HTML files, and
so forth. This process is totally server-specific, and for commercial-quality
Web servers should be clearly documented in the installation notes. How-
ever, with the small stand-alone servers that Apache and Sun provide as ref-
erence implementations of the servlet 2.2/JSP 1.1 specs (Apache Tomcat) or
2.1/1.0 specs (Sun JSWDK), there are a number of important but poorly doc-
umented settings that I’ll describe here.

Port Number

Tomcat and the JSWDK both use a nonstandard port by default in order to
avoid conflicts with existing Web servers. If you use one of these products for
initial development and testing, and don’t have another Web server running,
you will probably find it convenient to switch to 80, the standard HTTP port
number. With Tomcat 3.0, do so by editing install_dir/server.xml,
changing 8080 to 80 in the line

<ContextManager port="8080" hostName="" inet="">

With the JSWDK 1.0.1, edit the install_dir/webserver.xml file and
replace 8080 with 80 in the line

port NMTOKEN "8080"

The Java Web Server 2.0 also uses a non-standard port. To change it, use
the remote administration interface, available by visiting http://some-
hostname:9090/, where somehostname is replaced by either the real name
of the host running the server or by localhost if the server is running on the
local machine.

JAVA_HOME Setting

If you use JDK 1.2 or 1.3 with Tomcat or the JSWDK, you must set the
JAVA_HOME environment variable to refer to the JDK installation directory.
This setting is unnecessary with JDK 1.1. The easiest way to specify this vari-
able is to insert a line that sets it into the top of the startup (Tomcat) or
startserver (JSWDK) script. For example, here’s the top of the modified
version of startup.bat and startserver.bat that I use:

rem Marty Hall: added JAVA_HOME setting below

set JAVA_HOME=C:\jdk1.2.2
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

1.5 Installation and Setup 17

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

DOS Memory Setting

If you start Tomcat or the JSWDK server from Windows 95 or 98, you proba-
bly have to modify the amount of memory DOS allocates for environment
variables. To do this, start a fresh DOS window, click on the MS-DOS icon in
the top-left corner of the window, and select Properties. From there,
choose the Memory tab, go to the Initial Environment setting, and change
the value from Auto to 2816. This configuration only needs to be done once.

Tomcat 3.0 CR/LF Settings

The first releases of Tomcat suffered from a serious problem: the text files
were saved in Unix format (where the end of line is marked with a linefeed),
not Windows format (where the end of the line is marked with a carriage
return/linefeed pair). As a result, the startup and shutdown scripts failed on
Windows. You can determine if your version suffers from this problem by
opening install_dir/startup.bat in Notepad; if it appears normal you
have a patched version. If the file appears to be one long jumbled line, then
quit Notepad and open and immediately save the following files using Word-
pad (not Notepad):

• install_dir/startup.bat

• install_dir/tomcat.bat

• install_dir/shutdown.bat

• install_dir/tomcatEnv.bat

• install_dir/webpages/WEB-INF/web.xml

• install_dir/examples/WEB-INF/web.xml

Start the Server

To start one of the “real” Web servers, check its documentation. In many
cases, starting it involves executing a command called httpd either from the
command line or by instructing the operating system to do so automatically
when the system is first booted.

With Tomcat 3.0, you start the server by executing a script called startup
in the main installation directory. With the JSWDK 1.0.1, you execute a simi-
lar script called startserver.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

18 Chapter 1 Overview of Servlets and JavaServer Pages

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Compile and Install Your Servlets

Once you’ve properly set your CLASSPATH, as described earlier in this sec-
tion, just use “javac ServletName.java” to compile a servlet. The result-
ant class file needs to go in a location that the server knows to check during
execution. As you might expect, this location varies from server to server. Fol-
lowing is a quick summary of the locations used by the latest releases of Tom-
cat, the JSWDK, and the Java Web Server. In all three cases, assume
install_dir is the server’s main installation directory.

Tomcat

• install_dir/webpages/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

Tomcat 3.1
Just before this book went to press, Apache released a beta version of
Tomcat 3.1. If there is a final version of this version available when you go to
download Tomcat, you should use it. Here is the new directory organization
that Tomcat 3.1 uses:

• install_dir/webapps/ROOT/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

The JSWDK
• install_dir/webpages/WEB-INF/servlets

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

1.5 Installation and Setup 19

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Java Web Server 2.0

• install_dir/servlets

Location for frequently changing servlet classes. The server
automatically detects when servlets in this directory change,
and reloads them if necessary. This is in contrast to Tomcat and
the JSWDK, where you have to restart the server when a servlet
that is already in server memory changes. Most commercial
servers have an option similar to this auto-reloading feature.

• install_dir/classes

Location for infrequently changing servlet classes.
• install_dir/lib

Location for JAR files containing classes.

I realize that this sounds a bit overwhelming. Don’t worry, I’ll walk you
through the process with a couple of different servers when I introduce some
real servlet code in the next chapter.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

First Servlets
Topics in This Chapter

• The basic structure of servlets

• A simple servlet that generates plain text

• The process of compiling, installing, and invoking servlets

• A servlet that generates HTML

• Some utilities to help build HTML

• The life cycle of servlets

• An example of reading initialization parameters

• An example that uses initialization and page modification
dates

• Servlet debugging strategies

• A tool for interactively talking to servlets
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
he previous chapter showed you how to install the software you need
and how to set up your development environment. Now you want to
really write a few servlets. Good. This chapter shows you how, outlin-

ing the structure that almost all servlets follow, walking you through the steps
required to compile and execute a servlet, and giving details on how servlets
are initialized and when the various methods are called. It also introduces a
few general tools that you will find helpful in your servlet development.

2.1 Basic Servlet Structure

Listing 2.1 outlines a basic servlet that handles GET requests. GET requests, for
those unfamiliar with HTTP, are the usual type of browser requests for Web
pages. A browser generates this request when the user types a URL on the
address line, follows a link from a Web page, or submits an HTML form that
does not specify a METHOD. Servlets can also very easily handle POST requests,
which are generated when someone submits an HTML form that specifies
METHOD="POST". For details on using HTML forms, see Chapter 16.

To be a servlet, a class should extend HttpServlet and override doGet or
doPost, depending on whether the data is being sent by GET or by POST. If
you want the same servlet to handle both GET and POST and to take the same
action for each, you can simply have doGet call doPost, or vice versa.

T

21

22 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Both of these methods take two arguments: an HttpServletRequest and
an HttpServletResponse. The HttpServletRequest has methods by
which you can find out about incoming information such as form data, HTTP
request headers, and the client’s hostname. The HttpServletResponse lets
you specify outgoing information such as HTTP status codes (200, 404, etc.),
response headers (Content-Type, Set-Cookie, etc.), and, most importantly,
lets you obtain a PrintWriter used to send the document content back to the
client. For simple servlets, most of the effort is spent in println statements
that generate the desired page. Form data, HTTP request headers, HTTP
responses, and cookies will all be discussed in detail in the following chapters.

Since doGet and doPost throw two exceptions, you are required to
include them in the declaration. Finally, you have to import classes in
java.io (for PrintWriter, etc.), javax.servlet (for HttpServlet, etc.),
and javax.servlet.http (for HttpServletRequest and HttpServlet-
Response).

Strictly speaking, HttpServlet is not the only starting point for servlets, since
servlets could, in principle, extend mail, FTP, or other types of servers. Servlets
for these environments would extend a custom class derived from Generic-
Servlet, the parent class of HttpServlet. In practice, however, servlets are
used almost exclusively for servers that communicate via HTTP (i.e., Web and
application servers), and the discussion in this book will be limited to this usage.

Listing 2.1 ServletTemplate.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Use "request" to read incoming HTTP headers
 // (e.g. cookies) and HTML form data (e.g. data the user
 // entered and submitted).

 // Use "response" to specify the HTTP response status
 // code and headers (e.g. the content type, cookies).

 PrintWriter out = response.getWriter();
 // Use "out" to send content to browser
 }
}

this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.2 A Simple Servlet Generating Plain Text 23

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

2.2 A Simple Servlet Generating
Plain Text

Listing 2.2 shows a simple servlet that just generates plain text, with the out-
put shown in Figure 2–1. Section 2.3 (A Servlet That Generates HTML)
shows the more usual case where HTML is generated. However, before mov-
ing on, it is worth spending some time going through the process of installing,
compiling, and running this simple servlet. You’ll find this a bit tedious the
first time you try it. Be patient; since the process is the same each time, you’ll
quickly get used to it, especially if you partially automate the process by
means of a script file such as that presented in the following section.

Listing 2.2 HelloWorld.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 out.println("Hello World");
 }
}

Figure 2–1 Result of Listing 2.2 (HelloWorld.java).
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

24 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

No
te

:i
fy

ou
us

e
To

m
ca

t3
.2

or
4.

x,
se

e
up

da
te

d
in

fo
rm

at
io

n
at

ht
tp

://
ar

ch
iv

e.
co

re
se

rv
le

ts
.c

om
/U

si
ng

-T
om

ca
t.h

tm
l

Compiling and Installing the Servlet

The first thing you need to do is to make sure that your server is configured
properly and that your CLASSPATH refers to the JAR files containing the stan-
dard servlet classes. Please refer to Section 1.5 (Installation and Setup) for an
explanation of this process.

The next step is to decide where to put the servlet classes. This location
varies from server to server, so refer to your Web server documentation for
definitive directions. However, there are some moderately common conven-
tions. Most servers have three distinct locations for servlet classes, as detailed
below.

1. A directory for frequently changing servlet classes.
Servlets in this directory are automatically reloaded when
their class file changes, so you should use this directory during
development. For example, this is normally
install_dir/servlets with Sun’s Java Web Server and
IBM’s WebSphere and install_dir/myserver/servlet-
classes for BEA WebLogic, although most servers let the
server administrator specify a different location. Neither
Tomcat nor the JSWDK support automatic servlet reloading.
Nevertheless, they still have a similar directory in which to
place servlets; you just have to stop and restart the mini-server
each time you change an existing servlet. With Tomcat 3.0,
place servlets in install_dir/webpages/WEB-INF/classes.
With the JSWDK 1.0.1, use
install_dir/webpages/WEB-INF/servlets.

2. A directory for infrequently changing servlet classes.
Servlets placed in this location are slightly more efficient since
the server doesn’t have to keep checking their modification
dates. However, changes to class files in this directory require
you to restart the server. This option (or Option 3 below) is the
one to use for “production” servlets deployed to a high-volume
site. This directory is usually something like
install_dir/classes, which is the default name with Tom-
cat, the JSWDK, and the Java Web Server. Since Tomcat and
the JSWDK do not support automatic servlet reloading, this
directory works the same as the one described in Option 1, so
most developers stick with that previous option.
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.2 A Simple Servlet Generating Plain Text 25

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

3. A directory for infrequently changing servlets in JAR files.
With the second option above, the class files are placed directly
in the classes directory or in subdirectories corresponding to
their package name. Here, the class files are packaged in a JAR
file, and that file is then placed in the designated directory. With
Tomcat, the JSWDK, the Java Web Server, and most other serv-
ers, this directory is install_dir/lib. You must restart the
server whenever you change files in this directory.

Once you’ve configured your server, set your CLASSPATH, and placed the
servlet in the proper directory, simply do “javac HelloWorld.java” to
compile the servlet. In production environments, however, servlets are fre-
quently placed into packages to avoid name conflicts with servlets written by
other developers. Using packages involves a couple of extra steps that are
covered in Section 2.4 (Packaging Servlets). Also, it is common to use HTML
forms as front ends to servlets (see Chapter 16). To use them, you’ll need to
know where to place regular HTML files to make them accessible to the
server. This location varies from server to server, but with the JSWDK and
Tomcat, you place an HTML file in
install_dir/webpages/path/file.html and then access it via
http://localhost/path/file.html (replace localhost with the real
hostname if running remotely). A JSP page can be installed anywhere that a
normal HTML page can be.

Invoking the Servlet

With different servers, servlet classes can be placed in a variety of different
locations, and there is little standardization among servers. To invoke servlets,
however, there is a common convention: use a URL of the form
http://host/servlet/ServletName. Note that the URL refers to serv-
let, singular, even if the real directory containing the servlet code is called
servlets, plural, or has an unrelated name like classes or lib.

Figure 2–1, shown earlier in this section, gives an example with the Web
server running directly on my PC (“localhost” means “the current machine”).

Most servers also let you register names for servlets, so that a servlet can
be invoked via http://host/any-path/any-file. The process for doing
this is server-specific; check your server’s documentation for details.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

26 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
2.3 A Servlet That Generates HTML

Most servlets generate HTML, not plain text as in the previous example. To
build HTML, you need two additional steps:

1. Tell the browser that you’re sending back HTML, and
2. Modify the println statements to build a legal Web page.

You accomplish the first step by setting the HTTP Content-Type
response header. In general, headers are set by the setHeader method of
HttpServletResponse, but setting the content type is such a common task
that there is also a special setContentType method just for this purpose.
The way to designate HTML is with a type of text/html, so the code would
look like this:

response.setContentType("text/html");

Although HTML is the most common type of document servlets create, it is
not unusual to create other document types. For example, Section 7.5 (Using
Servlets to Generate GIF Images) shows how servlets can build and return cus-
tom images, specifying a content type of image/gif. As a second example,
Section 11.2 (The contentType Attribute) shows how to generate and return
Excel spreadsheets, using a content type of application/vnd.ms-excel.

Don’t be concerned if you are not yet familiar with HTTP response head-
ers; they are discussed in detail in Chapter 7. Note that you need to set
response headers before actually returning any of the content via the Print-
Writer. That’s because an HTTP response consists of the status line, one or
more headers, a blank line, and the actual document, in that order. The head-
ers can appear in any order, and servlets buffer the headers and send them all
at once, so it is legal to set the status code (part of the first line returned) even
after setting headers. But servlets do not necessarily buffer the document
itself, since users might want to see partial results for long pages. In version
2.1 of the servlet specification, the PrintWriter output is not buffered at all,
so the first time you use the PrintWriter, it is too late to go back and set
headers. In version 2.2, servlet engines are permitted to partially buffer the
output, but the size of the buffer is left unspecified. You can use the get-
BufferSize method of HttpServletResponse to determine the size, or use
setBufferSize to specify it. In version 2.2 with buffering enabled, you can
set headers until the buffer fills up and is actually sent to the client. If you
aren’t sure if the buffer has been sent, you can use the isCommitted method
to check.
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.4 Packaging Servlets 27

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Core Approach

Always set the content type before transmitting the actual document.

The second step in writing a servlet that builds an HTML document is to
have your println statements output HTML, not plain text. The structure of
an HTML document is discussed more in Section 2.5 (Simple HTML-Build-
ing Utilities), but it should be familiar to most readers. Listing 2.3 gives an
example servlet, with the result shown in Figure 2–2.

2.4 Packaging Servlets

In a production environment, multiple programmers may be developing
servlets for the same server. So, placing all the servlets in the top-level servlet
directory results in a massive hard-to-manage directory and risks name con-
flicts when two developers accidentally choose the same servlet name. Pack-
ages are the natural solution to this problem. Using packages results in
changes in the way the servlets are created, the way that they are compiled,

Listing 2.3 HelloWWW.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWW extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +
 "<BODY>\n" +
 "<H1>Hello WWW</H1>\n" +
 "</BODY></HTML>");
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

28 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
and the way they’re invoked. Let’s take these areas one at a time in the follow-
ing three subsections. The first two changes are exactly the same as with any
other Java class that uses packages; there is nothing specific to servlets.

Creating Servlets in Packages

Two steps are needed to place servlets in packages:

1. Move the files to a subdirectory that matches the
intended package name.
For example, I’ll use the coreservlets package for most of the
rest of the servlets in this book. So, the class files need to go in a
subdirectory called coreservlets.

2. Insert a package statement in the class file.
For example, to place a class file in a package called somePack-
age, the first line of the file should read

package somePackage;

For example, Listing 2.4 presents a variation of the HelloWWW

servlet that is in the coreservlets package. The class file goes in
install_dir/webpages/WEB-INF/classes/coreservlets for Tomcat
3.0, in install_dir/webpages/WEB-INF/servlets/coreservlets for
the JSWDK 1.0.1, and in install_dir/servlets/coreservlets for the
Java Web Server 2.0.

Figure 2–2 Result of Listing 2.3 (HelloWWW.java).
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.4 Packaging Servlets 29

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Compiling Servlets in Packages

There are two main ways to compile classes that are in packages. The first
option is to place your package subdirectory right in the directory where the
Web server expects servlets to go. Then, you would set the CLASSPATH vari-
able to point to the directory above the one actually containing your servlets,
that is, to the main servlet directory used by the Web server. You can then
compile normally from within the package-specific subdirectory. For exam-
ple, if your base servlet directory is C:\JavaWebServer2.0\servlets and
your package name (and thus subdirectory name) is coreservlets, and you
are running Windows, you would do:

DOS> set CLASSPATH=C:\JavaWebServer2.0\servlets;%CLASSPATH%

DOS> cd C:\JavaWebServer2.0\servlets\coreservlets

DOS> javac HelloWorld.java

The first part, setting the CLASSPATH, you probably want to do permanently,
rather than each time you start a new DOS window. On Windows 95/98 you
typically put the set CLASSPATH=... statement in your autoexec.bat file
somewhere after the line that sets the CLASSPATH to point to servlet.jar

Listing 2.4 HelloWWW2.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWW2 extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +
 "<BODY>\n" +
 "<H1>Hello WWW</H1>\n" +
 "</BODY></HTML>");
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

30 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
and the JSP JAR file. On Windows NT or Windows 2000, you go to the Start
menu, select Settings, select Control Panel, select System, select Environment,
then enter the variable and value. On Unix (C shell), you set the CLASSPATH
variable by

setenv CLASSPATH /install_dir/servlets:$CLASSPATH

Put this in your .cshrc file to make it permanent.
If your package were of the form name1.name2.name3 rather than simply

name1 as here, the CLASSPATH should still point to the top-level servlet direc-
tory, that is, the directory containing name1.

A second way to compile classes that are in packages is to keep the source
code in a location distinct from the class files. First, you put your package direc-
tories in any location you find convenient. The CLASSPATH refers to this loca-
tion. Second, you use the -d option of javac to install the class files in the
directory the Web server expects. An example follows. Again, you will probably
want to set the CLASSPATH permanently rather than set it each time.

DOS> cd C:\MyServlets\coreservlets
DOS> set CLASSPATH=C:\MyServlets;%CLASSPATH%
DOS> javac -d C:\tomcat\webpages\WEB-INF\classes HelloWWW2.java

Keeping the source code separate from the class files is the approach I use
for my own development. To complicate my life further, I have a number of
different CLASSPATH settings that I use for different projects, and typically
use JDK 1.2, not JDK 1.1 as the Java Web Server expects. So, on Windows I
find it convenient to automate the servlet compilation process with a batch
file servletc.bat, as shown in Listing 2.5 (line breaks in the set CLASS-
PATH line inserted only for readability). I put this batch file in C:\Win-
dows\Command or somewhere else in the Windows PATH. After this, to
compile the HelloWWW2 servlet and install it with the Java Web Server, I
merely go to C:\MyServlets\coreservlets and do “servletc
HelloWWW2.java”. The source code archive at http://www.coreserv-
lets.com/ contains variations of servletc.bat for the JSWDK and Tom-
cat. You can do something similar on Unix with a shell script.

Invoking Servlets in Packages

To invoke a servlet that is in a package, use the URL
http://host/servlet/packageName.ServletName

instead of
http://host/servlet/ServletName

Thus, if the Web server is running on the local system,
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.5 Simple HTML-Building Utilities 31

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

http://localhost/servlet/coreservlets.HelloWWW2

would invoke the HelloWWW2 servlet, as illustrated in Figure 2–3.

2.5 Simple HTML-Building Utilities

An HTML document is structured as follows:
<!DOCTYPE ...>
<HTML>
<HEAD><TITLE>...</TITLE>...</HEAD>
<BODY ...>
...
</BODY>
</HTML>

You might be tempted to omit part of this structure, especially the DOC-
TYPE line, noting that virtually all major browsers ignore it, even though the

Listing 2.5 servletc.bat

@echo off

rem This is the version for the Java Web Server.
rem See http://www.coreservlets.com/ for other versions.

set CLASSPATH=C:\JavaWebServer2.0\lib\servlet.jar;
C:\JavaWebServer2.0\lib\jsp.jar;
C:\MyServlets

C:\JDK1.1.8\bin\javac -d C:\JavaWebServer2.0\servlets %1%

Figure 2–3 Invoking a servlet in a package via
http://hostname/servlet/packagename.servletName.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

32 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
HTML 3.2 and 4.0 specifications require it. I strongly discourage this prac-
tice. The advantage of the DOCTYPE line is that it tells HTML validators
which version of HTML you are using, so they know which specification to
check your document against. These validators are very valuable debugging
services, helping you catch HTML syntax errors that your browser guesses
well on, but that other browsers will have trouble displaying. The two most
popular on-line validators are the ones from the World Wide Web Consor-
tium (http://validator.w3.org/) and from the Web Design Group
(http://www.htmlhelp.com/tools/validator/). They let you submit a
URL, then they retrieve the page, check the syntax against the formal HTML
specification, and report any errors to you. Since a servlet that generates
HTML looks like a regular Web page to visitors, it can be validated in the
normal manner unless it requires POST data to return its result. Remember
that GET data is attached to the URL, so you can submit a URL that includes
GET data to the validators.

Core Approach

Use an HTML validator to check the syntax of pages that your servlets
generate.

Admittedly it is a bit cumbersome to generate HTML with println state-
ments, especially long tedious lines like the DOCTYPE declaration. Some people
address this problem by writing detailed HTML generation utilities in Java,
then use them throughout their servlets. I’m skeptical of the utility of an exten-
sive library for this. First and foremost, the inconvenience of generating
HTML programmatically is one of the main problems addressed by JavaServer
Pages (discussed in the second part of this book). JSP is a better solution, so
don’t waste effort building a complex HTML generation package. Second,
HTML generation routines can be cumbersome and tend not to support the
full range of HTML attributes (CLASS and ID for style sheets, JavaScript event
handlers, table cell background colors, and so forth). Despite the questionable
value of a full-blown HTML generation library, if you find you’re repeating the
same constructs many times, you might as well create a simple utility file that
simplifies those constructs. For standard servlets, there are two parts of the
Web page (DOCTYPE and HEAD) that are unlikely to change and thus could ben-
efit from being incorporated into a simple utility file. These are shown in List-
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.5 Simple HTML-Building Utilities 33

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ing 2.6, with Listing 2.7 showing a variation of HelloWWW2 that makes use of
this utility. I’ll add a few more utilities throughout the book.

Listing 2.6 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
 public static final String DOCTYPE =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">";

 public static String headWithTitle(String title) {
 return(DOCTYPE + "\n" +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");
 }
...

}

Listing 2.7 HelloWWW3.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWW3 extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(ServletUtilities.headWithTitle("Hello WWW") +
 "<BODY>\n" +
 "<H1>Hello WWW</H1>\n" +
 "</BODY></HTML>");
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

34 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
2.6 The Servlet Life Cycle

Earlier in this book, I vaguely referred to the fact that only a single instance
of a servlet gets created, with each user request resulting in a new thread that
is handed off to doGet or doPost as appropriate. I’ll now be more specific
about how servlets are created and destroyed, and how and when the various
methods are invoked. I’ll give a quick summary here, then elaborate in the
following subsections.

When the servlet is first created, its init method is invoked, so that is
where you put one-time setup code. After this, each user request results in a
thread that calls the service method of the previously created instance.
Multiple concurrent requests normally result in multiple threads calling ser-
vice simultaneously, although your servlet can implement a special interface
that stipulates that only a single thread is permitted to run at any one time.
The service method then calls doGet, doPost, or another doXxx method,
depending on the type of HTTP request it received. Finally, when the server
decides to unload a servlet, it first calls the servlet’s destroy method.

The init Method

The init method is called when the servlet is first created and is not called
again for each user request. So, it is used for one-time initializations, just as
with the init method of applets. The servlet can be created when a user first
invokes a URL corresponding to the servlet or when the server is first started,

Figure 2–4 Result of the HelloWWW3 servlet.
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.6 The Servlet Life Cycle 35

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

depending on how you have registered the servlet with the Web server. It will
be created for the first user request if it is not explicitly registered but is
instead just placed in one of the standard server directories. See the discus-
sion of Section 2.2 (A Simple Servlet Generating Plain Text) for details on
these directories.

There are two versions of init: one that takes no arguments and one that
takes a ServletConfig object as an argument. The first version is used when
the servlet does not need to read any settings that vary from server to server.
The method definition looks like this:

public void init() throws ServletException {
// Initialization code...

}

For examples of this type of initialization, see Section 2.8 (An Example
Using Servlet Initialization and Page Modification Dates) later in this chap-
ter. Section 18.8 (Connection Pooling: A Case Study) in the chapter on JDBC
gives a more advanced application where init is used to preallocate multiple
database connections.

The second version of init is used when the servlet needs to read
server-specific settings before it can complete the initialization. For example,
the servlet might need to know about database settings, password files,
server-specific performance parameters, hit count files, or serialized cookie
data from previous requests. The second version of init looks like this:

public void init(ServletConfig config)
throws ServletException {

super.init(config);
// Initialization code...

}

Notice two things about this code. First, the init method takes a Servlet-
Config as an argument. ServletConfig has a getInitParameter method
with which you can look up initialization parameters associated with the servlet.
Just as with the getParameter method used in the init method of applets,
both the input (the parameter name) and the output (the parameter value) are
strings. For a simple example of the use of initialization parameters, see Section
2.7 (An Example Using Initialization Parameters); for a more complex exam-
ple, see Section 4.5 (Restricting Access to Web Pages) where the location of a
password file is given through the use of getInitParameter. Note that
although you look up parameters in a portable manner, you set them in a
server-specific way. For example, with Tomcat, you embed servlet properties in
a file called web.xml, with the JSWDK you use servlets.properties, with
the WebLogic application server you use weblogic.properties, and with
the Java Web Server you set the properties interactively via the administration
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

36 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
console. For examples of these settings, see Section 2.7 (An Example Using
Initialization Parameters).

The second thing to note about the second version of init is that the first
line of the method body is a call to super.init. This call is critical! The
ServletConfig object is used elsewhere in the servlet, and the init method
of the superclass registers it where the servlet can find it later. So, you can
cause yourself huge headaches later if you omit the super.init call.

Core Approach

If you write an init method that takes a ServletConfig as an
argument, always call super.init on the first line.

The service Method

Each time the server receives a request for a servlet, the server spawns a new
thread and calls service. The service method checks the HTTP request
type (GET, POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDe-
lete, etc., as appropriate. Now, if you have a servlet that needs to handle
both POST and GET requests identically, you may be tempted to override ser-
vice directly as below, rather than implementing both doGet and doPost.

public void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

// Servlet Code
}

This is not a good idea. Instead, just have doPost call doGet (or vice
versa), as below.

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
// Servlet Code

}

public void doPost(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {
doGet(request, response);

}

Although this approach takes a couple of extra lines of code, it has five
advantages over directly overriding service:
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.6 The Servlet Life Cycle 37

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

1. You can add support for other services later by adding doPut,
doTrace, etc., perhaps in a subclass. Overriding service
directly precludes this possibility.

2. You can add support for modification dates by adding a get-
LastModified method. If you use doGet, the standard ser-
vice method uses the getLastModified method to set
Last-Modified headers and to respond properly to conditional
GET requests (those containing an If-Modified-Since
header). See Section 2.8 (An Example Using Servlet Initializa-
tion and Page Modification Dates) for an example.

3. You get automatic support for HEAD requests. The system just
returns whatever headers and status codes doGet sets, but omits
the page body. HEAD is a useful request method for custom
HTTP clients. For example, link validators that check a page for
dead hypertext links often use HEAD instead of GET in order to
reduce server load.

4. You get automatic support for OPTIONS requests. If a doGet
method exists, the standard service method answers OPTIONS
requests by returning an Allow header indicating that GET,
HEAD, OPTIONS, and TRACE are supported.

5. You get automatic support for TRACE requests. TRACE is a
request method used for client debugging: it just returns the
HTTP request headers back to the client.

Core Tip

If your servlet needs to handle both GET and POST identically, have your
doPost method call doGet, or vice versa. Don’t override service
directly.

The doGet, doPost, and doXxx Methods

These methods contain the real meat of your servlet. Ninety-nine percent of
the time, you only care about GET and/or POST requests, so you override
doGet and/or doPost. However, if you want to, you can also override doDe-
lete for DELETE requests, doPut for PUT, doOptions for OPTIONS, and doT-
race for TRACE. Recall, however, that you have automatic support for
OPTIONS and TRACE, as described in the previous section on the service
method. Note that there is no doHead method. That’s because the system
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

38 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
automatically uses the status line and header settings of doGet to answer
HEAD requests.

The SingleThreadModel Interface

Normally, the system makes a single instance of your servlet and then creates
a new thread for each user request, with multiple simultaneous threads run-
ning if a new request comes in while a previous request is still executing. This
means that your doGet and doPost methods must be careful to synchronize
access to fields and other shared data, since multiple threads may be trying to
access the data simultaneously. See Section 7.3 (Persistent Servlet State and
Auto-Reloading Pages) for more discussion of this. If you want to prevent this
multithreaded access, you can have your servlet implement the SingleTh-
readModel interface, as below.

public class YourServlet extends HttpServlet

implements SingleThreadModel {

...

}

If you implement this interface, the system guarantees that there is never
more than one request thread accessing a single instance of your servlet. It
does so either by queuing up all the requests and passing them one at a time
to a single servlet instance, or by creating a pool of multiple instances, each of
which handles one request at a time. This means that you don’t have to worry
about simultaneous access to regular fields (instance variables) of the servlet.
You do, however, still have to synchronize access to class variables (static
fields) or shared data stored outside the servlet.

Synchronous access to your servlets can significantly hurt performance
(latency) if your servlet is accessed extremely frequently. So think twice
before using the SingleThreadModel approach.

The destroy Method

The server may decide to remove a previously loaded servlet instance, per-
haps because it is explicitly asked to do so by the server administrator, or per-
haps because the servlet is idle for a long time. Before it does, however, it
calls the servlet’s destroy method. This method gives your servlet a chance
to close database connections, halt background threads, write cookie lists or
hit counts to disk, and perform other such cleanup activities. Be aware, how-
ever, that it is possible for the Web server to crash. After all, not all Web serv-
ers are written in reliable programming languages like Java; some are written
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.7 An Example Using Initialization Parameters 39

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

in languages (such as ones named after letters of the alphabet) where it is
easy to read or write off the ends of arrays, make illegal typecasts, or have
dangling pointers due to memory reclamation errors. Besides, even Java
technology won’t prevent someone from tripping over the power cable run-
ning to the computer. So, don’t count on destroy as the only mechanism for
saving state to disk. Activities like hit counting or accumulating lists of cookie
values that indicate special access should also proactively write their state to
disk periodically.

2.7 An Example Using
Initialization Parameters

Listing 2.8 shows a servlet that reads the message and repeats initialization
parameters when initialized. Figure 2–5 shows the result when message is
Shibboleth, repeats is 5, and the servlet is registered under the name
ShowMsg. Remember that, although servlets read init parameters in a stan-
dard way, developers set init parameters in a server-specific manner. Please
refer to your server documentation for authoritative details. Listing 2.9 shows
the configuration file used with Tomcat to obtain the result of Figure 2–5,
Listing 2.10 shows the configuration file used with the JSWDK, and Figures
2–6 and 2–7 show how to set the parameters interactively with the Java Web
Server. The result is identical to Figure 2–5 in all three cases.

Because the process of setting init parameters is server-specific, it is a good
idea to minimize the number of separate initialization entries that have to be
specified. This will limit the work you need to do when moving servlets that
use init parameters from one server to another. If you need to read a large
amount of data, I recommend that the init parameter itself merely give the
location of a parameter file, and that the real data go in that file. An example
of this approach is given in Section 4.5 (Restricting Access to Web Pages),
where the initialization parameter specifies nothing more than the location of
the password file.

Core Approach

For complex initializations, store the data in a separate file and use the init
parameters to give the location of that file.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

40 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 2.8 ShowMessage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Example using servlet initialization. Here, the message
 * to print and the number of times the message should be
 * repeated is taken from the init parameters.
 */

public class ShowMessage extends HttpServlet {
 private String message;
 private String defaultMessage = "No message.";
 private int repeats = 1;

 public void init(ServletConfig config)
 throws ServletException {
 // Always call super.init
 super.init(config);
 message = config.getInitParameter("message");
 if (message == null) {
 message = defaultMessage;
 }
 try {
 String repeatString = config.getInitParameter("repeats");
 repeats = Integer.parseInt(repeatString);
 } catch(NumberFormatException nfe) {
 // NumberFormatException handles case where repeatString
 // is null *and* case where it is something in an
 // illegal format. Either way, do nothing in catch,
 // as the previous value (1) for the repeats field will
 // remain valid because the Integer.parseInt throws
 // the exception *before* the value gets assigned
 // to repeats.
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "The ShowMessage Servlet";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>");
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.7 An Example Using Initialization Parameters 41

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 2.9 shows the setup file used to supply initialization parameters to
servlets used with Tomcat 3.0. The idea is that you first associate a name with
the servlet class file, then associate initialization parameters with that name
(not with the actual class file). The setup file is located in
install_dir/webpages/WEB-INF. Rather than recreating a similar version
by hand, you might want to download this file from http://www.core-
servlets.com/, modify it, and copy it to
install_dir/webpages/WEB-INF.

Listing 2.10 shows the properties file used to supply initialization parame-
ters to servlets in the JSWDK. As with Tomcat, you first associate a name
with the servlet class, then associate the initialization parameters with the
name. The properties file is located in install_dir/webpages/WEB-INF.

 for(int i=0; i<repeats; i++) {
 out.println(message + "
");
 }
 out.println("</BODY></HTML>");
 }
}

Listing 2.8 ShowMessage.java (continued)

Figure 2–5 The ShowMessage servlet with server-specific initialization parameters.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

42 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 2.9 web.xml (for Tomcat)

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
 <servlet>
 <servlet-name>
 ShowMsg
 </servlet-name>

 <servlet-class>
 coreservlets.ShowMessage
 </servlet-class>

 <init-param>
 <param-name>
 message
 </param-name>
 <param-value>
 Shibboleth
 </param-value>
 </init-param>

 <init-param>
 <param-name>
 repeats
 </param-name>
 <param-value>
 5
 </param-value>
 </init-param>
 </servlet>
</web-app>
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.7 An Example Using Initialization Parameters 43

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 2.10 servlets.properties

servlets.properties used with the JSWDK

Register servlet via servletName.code=servletClassFile
You access it via http://host/examples/servlet/servletName
ShowMsg.code=coreservlets.ShowMessage

Set init params via
servletName.initparams=param1=val1,param2=val2,...
ShowMsg.initparams=message=Shibboleth,repeats=5

Standard setting
jsp.code=com.sun.jsp.runtime.JspServlet

Set this to keep servlet source code built from JSP
jsp.initparams=keepgenerated=true

Figure 2–6 Registering a name for a servlet with the Java Web Server. Servlets that
use initialization parameters must first be registered this way.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

44 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
2.8 An Example Using Servlet Initialization
and Page Modification Dates

Listing 2.11 shows a servlet that uses init to do two things. First, it builds an
array of 10 integers. Since these numbers are based upon complex calcula-
tions, I don’t want to repeat the computation for each request. So I have
doGet look up the values that init computed instead of generating them
each time. The results of this technique are shown in Figure 2–8.

However, since all users get the same result, init also stores a page modifi-
cation date that is used by the getLastModified method. This method should
return a modification time expressed in milliseconds since 1970, as is standard

Figure 2–7 Specifying initialization parameters for a named servlet with the Java Web
Server.
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.8 An Example Using Servlet Initialization and Page Modification Dates 45

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

with Java dates. The time is automatically converted to a date in GMT appro-
priate for the Last-Modified header. More importantly, if the server receives
a conditional GET request (one specifying that the client only wants pages
marked If-Modified-Since a particular date), the system compares the
specified date to that returned by getLastModified, only returning the page
if it has been changed after the specified date. Browsers frequently make these
conditional requests for pages stored in their caches, so supporting conditional
requests helps your users as well as reducing server load. Since the Last-Mod-
ified and If-Modified-Since headers use only whole seconds, the get-
LastModified method should round times down to the nearest second.

Figures 2–9 and 2–10 show the result of requests for the same servlet with
two slightly different If-Modified-Since dates. To set the request headers
and see the response headers, I used WebClient, a Java application shown in
Section 2.10 (WebClient: Talking to Web Servers Interactively) that lets you
interactively set up HTTP requests, submit them, and see the results.

Figure 2–8 Output of LotteryNumbers servlet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

46 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 2.11 LotteryNumbers.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Example using servlet initialization and the
 * getLastModified method.
 */

public class LotteryNumbers extends HttpServlet {
 private long modTime;
 private int[] numbers = new int[10];

 /** The init method is called only when the servlet
 * is first loaded, before the first request
 * is processed.
 */

 public void init() throws ServletException {
 // Round to nearest second (ie 1000 milliseconds)
 modTime = System.currentTimeMillis()/1000*1000;
 for(int i=0; i<numbers.length; i++) {
 numbers[i] = randomNum();
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Your Lottery Numbers";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.8 An Example Using Servlet Initialization and Page Modification Dates 47

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 "Based upon extensive research of " +
 "astro-illogical trends, psychic farces, " +
 "and detailed statistical claptrap, " +
 "we have chosen the " + numbers.length +
 " best lottery numbers for you." +
 "");
 for(int i=0; i<numbers.length; i++) {
 out.println(" " + numbers[i]);
 }
 out.println("" +
 "</BODY></HTML>");
 }

 /** The standard service method compares this date
 * against any date specified in the If-Modified-Since
 * request header. If the getLastModified date is
 * later, or if there is no If-Modified-Since header,
 * the doGet method is called normally. But if the
 * getLastModified date is the same or earlier,
 * the service method sends back a 304 (Not Modified)
 * response, and does not call doGet.
 * The browser should use its cached version of
 * the page in such a case.
 */

 public long getLastModified(HttpServletRequest request) {
 return(modTime);
 }

 // A random int from 0 to 99.

 private int randomNum() {
 return((int)(Math.random() * 100));
 }
}

Listing 2.11 LotteryNumbers.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

48 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 2–9 Accessing the LotteryNumbers servlet with an unconditional GET
request or with a conditional request specifying a date before servlet initialization results
in the normal Web page.
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.8 An Example Using Servlet Initialization and Page Modification Dates 49

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 2–10 Accessing the LotteryNumbers servlet with a conditional GET request
specifying a date at or after servlet initialization results in a 304 (Not Modified)
response.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

50 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
2.9 Debugging Servlets

Naturally, when you write servlets, you never make mistakes. However, some
of your colleagues might make an occasional error, and you can pass this
advice on to them. Seriously, though, debugging servlets can be tricky
because you don’t execute them directly. Instead, you trigger their execution
by means of an HTTP request, and they are executed by the Web server. This
remote execution makes it difficult to insert break points or to read debug-
ging messages and stack traces. So, approaches to servlet debugging differ
somewhat from those used in general development. Here are seven general
strategies that can make your life easier.

1. Look at the HTML source.
If the result you see in the browser looks funny, choose “View
Source” from the browser’s menu. Sometimes a small HTML
error like <TABLE> instead of </TABLE> can prevent much of
the page from being viewed. Even better, use a formal HTML
validator on the servlet’s output. See Section 2.5 (Simple
HTML-Building Utilities) for a discussion of this approach.

2. Return error pages to the client.
Sometimes certain classes of errors can be anticipated by the serv-
let. In these cases, the servlet should build descriptive information
about the problem and return it to the client in a regular page or
by means of the sendError method of HttpServletResponse.
See Chapter 6 (Generating the Server Response: HTTP Status
Codes) for details on sendError. For example, you should plan
for cases when the client forgets some of the required form data
and send an error page detailing what was missing. Error pages
are not always possible, however. Sometimes something unex-
pected goes wrong with your servlet, and it simply crashes. The
remaining approaches help you in those situations.

3. Start the server from the command line.
Most Web servers execute from a background process, and this
process is often automatically started when the system is
booted. If you are having trouble with your servlet, you should
consider shutting down the server and restarting it from the
command line. After this, System.out.println or Sys-
tem.err.println calls can be easily read from the window in
which the server was started. When something goes wrong with
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.9 Debugging Servlets 51

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

your servlet, your first task is to discover exactly how far the
servlet got before it failed and to gather some information about
the key data structures during the time period just before it
failed. Simple println statements are surprisingly effective for
this purpose. If you are running your servlets on a server that
you cannot easily halt and restart, then do your debugging with
the JSWDK, Tomcat, or the Java Web Server on your personal
machine, and save deployment to the real server for later.

4. Use the log file.
The HttpServlet class has a method called log that lets you
write information into a logging file on the server. Reading debug-
ging messages from the log file is a bit less convenient than watch-
ing them directly from a window as with the previous approach,
but using the log file does not require stopping and restarting the
server. There are two variations of this method: one that takes a
String, and the other that takes a String and a Throwable (an
ancestor class of Exception). The exact location of the log file is
server-specific, but it is generally clearly documented or can be
found in subdirectories of the server installation directory.

5. Look at the request data separately.
Servlets read data from the HTTP request, construct a response,
and send it back to the client. If something in the process goes
wrong, you want to discover if it is because the client is sending
the wrong data or because the servlet is processing it incorrectly.
The EchoServer class, shown in Section 16.12 (A Debugging
Web Server), lets you submit HTML forms and get a result that
shows you exactly how the data arrived at the server.

6. Look at the response data separately.
Once you look at the request data separately, you’ll want to do
the same for the response data. The WebClient class, presented
next in Section 2.10 (WebClient: Talking to Web Servers Inter-
actively), permits you to connect to the server interactively,
send custom HTTP request data, and see everything that comes
back, HTTP response headers and all.

7. Stop and restart the server.
Most full-blown Web servers that support servlets have a desig-
nated location for servlets that are under development. Servlets in
this location (e.g., the servlets directory for the Java Web
Server) are supposed to be automatically reloaded when their
associated class file changes. At times, however, some servers can
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

52 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
get confused, especially when your only change is to a lower-level
class, not to the top-level servlet class. So, if it appears that
changes you make to your servlets are not reflected in the servlet’s
behavior, try restarting the server. With the JSWDK and Tomcat,
you have to do this every time you make a change, since these
mini-servers have no support for automatic servlet reloading.

2.10 WebClient: Talking to Web
Servers Interactively

This section presents the source code for the WebClient program discussed
in Section 2.9 (Debugging Servlets) and used in Section 2.8 (An Example
Using Servlet Initialization and Page Modification Dates) and extensively
throughout Chapter 16 (Using HTML Forms). As always, the source code
can be downloaded from the on-line archive at http://www.coreserv-
lets.com/, and there are no restrictions on its use.

WebClient

This class is the top-level program that you would use. Start it from the com-
mand line, then customize the HTTP request line and request headers, then
press “Submit Request.”

Listing 2.12 WebClient.java

import java.awt.*;
import java.awt.event.*;
import java.util.*;

/**
 * A graphical client that lets you interactively connect to
 * Web servers and send custom request lines and
 * request headers.
 */

public class WebClient extends CloseableFrame
 implements Runnable, Interruptible, ActionListener {
 public static void main(String[] args) {
 new WebClient("Web Client");
 }
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.10 WebClient: Talking to Web Servers Interactively 53

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 private LabeledTextField hostField, portField,
 requestLineField;
 private TextArea requestHeadersArea, resultArea;
 private String host, requestLine;
 private int port;
 private String[] requestHeaders = new String[30];
 private Button submitButton, interruptButton;
 private boolean isInterrupted = false;

 public WebClient(String title) {
 super(title);
 setBackground(Color.lightGray);
 setLayout(new BorderLayout(5, 30));
 int fontSize = 14;
 Font labelFont =
 new Font("Serif", Font.BOLD, fontSize);
 Font headingFont =
 new Font("SansSerif", Font.BOLD, fontSize+4);
 Font textFont =
 new Font("Monospaced", Font.BOLD, fontSize-2);
 Panel inputPanel = new Panel();
 inputPanel.setLayout(new BorderLayout());
 Panel labelPanel = new Panel();
 labelPanel.setLayout(new GridLayout(4,1));
 hostField = new LabeledTextField("Host:", labelFont,
 30, textFont);
 portField = new LabeledTextField("Port:", labelFont,
 "80", 5, textFont);
 // Use HTTP 1.0 for compatibility with the most servers.
 // If you switch this to 1.1, you *must* supply a
 // Host: request header.
 requestLineField =
 new LabeledTextField("Request Line:", labelFont,
 "GET / HTTP/1.0", 50, textFont);
 labelPanel.add(hostField);
 labelPanel.add(portField);
 labelPanel.add(requestLineField);
 Label requestHeadersLabel =
 new Label("Request Headers:");
 requestHeadersLabel.setFont(labelFont);
 labelPanel.add(requestHeadersLabel);
 inputPanel.add(labelPanel, BorderLayout.NORTH);
 requestHeadersArea = new TextArea(5, 80);
 requestHeadersArea.setFont(textFont);
 inputPanel.add(requestHeadersArea, BorderLayout.CENTER);
 Panel buttonPanel = new Panel();
 submitButton = new Button("Submit Request");
 submitButton.addActionListener(this);
 submitButton.setFont(labelFont);
 buttonPanel.add(submitButton);

Listing 2.12 WebClient.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

54 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 inputPanel.add(buttonPanel, BorderLayout.SOUTH);
 add(inputPanel, BorderLayout.NORTH);
 Panel resultPanel = new Panel();
 resultPanel.setLayout(new BorderLayout());
 Label resultLabel =
 new Label("Results", Label.CENTER);
 resultLabel.setFont(headingFont);
 resultPanel.add(resultLabel, BorderLayout.NORTH);
 resultArea = new TextArea();
 resultArea.setFont(textFont);
 resultPanel.add(resultArea, BorderLayout.CENTER);
 Panel interruptPanel = new Panel();
 interruptButton = new Button("Interrupt Download");
 interruptButton.addActionListener(this);
 interruptButton.setFont(labelFont);
 interruptPanel.add(interruptButton);
 resultPanel.add(interruptPanel, BorderLayout.SOUTH);
 add(resultPanel, BorderLayout.CENTER);
 setSize(600, 700);
 setVisible(true);
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == submitButton) {
 Thread downloader = new Thread(this);
 downloader.start();
 } else if (event.getSource() == interruptButton) {
 isInterrupted = true;
 }
 }

 public void run() {
 isInterrupted = false;
 if (hasLegalArgs())
 new HttpClient(host, port, requestLine,

 requestHeaders, resultArea, this);
 }

 public boolean isInterrupted() {
 return(isInterrupted);
 }

 private boolean hasLegalArgs() {
 host = hostField.getTextField().getText();
 if (host.length() == 0) {
 report("Missing hostname");
 return(false);
 }

Listing 2.12 WebClient.java (continued)
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.10 WebClient: Talking to Web Servers Interactively 55

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

HttpClient

The HttpClient class does the real network communication. It simply sends
the designated request line and request headers to the Web server, then
reads the lines that come back one at a time, placing them into a TextArea
until either the server closes the connection or the HttpClient is inter-
rupted by means of the isInterrupted flag.

 String portString =
 portField.getTextField().getText();
 if (portString.length() == 0) {
 report("Missing port number");
 return(false);
 }
 try {
 port = Integer.parseInt(portString);
 } catch(NumberFormatException nfe) {
 report("Illegal port number: " + portString);
 return(false);
 }
 requestLine =
 requestLineField.getTextField().getText();
 if (requestLine.length() == 0) {
 report("Missing request line");
 return(false);
 }
 getRequestHeaders();
 return(true);
 }

 private void report(String s) {
 resultArea.setText(s);
 }

 private void getRequestHeaders() {
 for(int i=0; i<requestHeaders.length; i++)
 requestHeaders[i] = null;
 int headerNum = 0;
 String header =
 requestHeadersArea.getText();
 StringTokenizer tok =
 new StringTokenizer(header, "\r\n");
 while (tok.hasMoreTokens())
 requestHeaders[headerNum++] = tok.nextToken();
 }
}

Listing 2.12 WebClient.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

56 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 2.13 HttpClient.java

import java.awt.*;
import java.net.*;
import java.io.*;

/**
 * The underlying network client used by WebClient.
 */

public class HttpClient extends NetworkClient {
 private String requestLine;
 private String[] requestHeaders;
 private TextArea outputArea;
 private Interruptible app;

 public HttpClient(String host, int port,
 String requestLine, String[] requestHeaders,
 TextArea outputArea, Interruptible app) {
 super(host, port);
 this.requestLine = requestLine;
 this.requestHeaders = requestHeaders;
 this.outputArea = outputArea;
 this.app = app;
 if (checkHost(host))
 connect();
 }

 protected void handleConnection(Socket uriSocket)
 throws IOException {
 try {
 PrintWriter out = SocketUtil.getWriter(uriSocket);
 BufferedReader in = SocketUtil.getReader(uriSocket);
 outputArea.setText("");
 out.println(requestLine);
 for(int i=0; i<requestHeaders.length; i++) {
 if (requestHeaders[i] == null)
 break;
 else
 out.println(requestHeaders[i]);
 }
 out.println();
 String line;
 while ((line = in.readLine()) != null &&
 !app.isInterrupted())
 outputArea.append(line + "\n");
 if (app.isInterrupted())
 outputArea.append("---- Download Interrupted ----");
 } catch(Exception e) {
 outputArea.setText("Error: " + e);
 }
 }
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.10 WebClient: Talking to Web Servers Interactively 57

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

NetworkClient

The NetworkClient class is a generic starting point for network clients and
is extended by HttpClient.

 private boolean checkHost(String host) {
 try {
 InetAddress.getByName(host);
 return(true);
 } catch(UnknownHostException uhe) {
 outputArea.setText("Bogus host: " + host);
 return(false);
 }
 }
}

Listing 2.14 NetworkClient.java

import java.net.*;
import java.io.*;

/** A starting point for network clients. You’ll need to
 * override handleConnection, but in many cases
 * connect can remain unchanged. It uses
 * SocketUtil to simplify the creation of the
 * PrintWriter and BufferedReader.
 *
 * @see SocketUtil
 */

public class NetworkClient {
 protected String host;
 protected int port;

 /** Register host and port. The connection won’t
 * actually be established until you call
 * connect.
 *
 * @see #connect
 */

 public NetworkClient(String host, int port) {
 this.host = host;
 this.port = port;
 }

Listing 2.13 HttpClient.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

58 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 /** Establishes the connection, then passes the socket
 * to handleConnection.
 *
 * @see #handleConnection
 */

 public void connect() {
 try {
 Socket client = new Socket(host, port);
 handleConnection(client);
 } catch(UnknownHostException uhe) {
 System.out.println("Unknown host: " + host);
 uhe.printStackTrace();
 } catch(IOException ioe) {
 System.out.println("IOException: " + ioe);
 ioe.printStackTrace();
 }
 }

 /** This is the method you will override when
 * making a network client for your task.
 * The default version sends a single line
 * ("Generic Network Client") to the server,
 * reads one line of response, prints it, then exits.
 */

 protected void handleConnection(Socket client)
 throws IOException {
 PrintWriter out =
 SocketUtil.getWriter(client);
 BufferedReader in =
 SocketUtil.getReader(client);
 out.println("Generic Network Client");
 System.out.println
 ("Generic Network Client:\n" +
 "Made connection to " + host +
 " and got ’" + in.readLine() + "’ in response");
 client.close();
 }

 /** The hostname of the server we’re contacting. */

 public String getHost() {
 return(host);
 }

 /** The port connection will be made on. */

 public int getPort() {
 return(port);
 }
}

Listing 2.14 NetworkClient.java (continued)
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.10 WebClient: Talking to Web Servers Interactively 59

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

SocketUtil

SocketUtil is a simple utility class that simplifies creating some of the
streams used in network programming. It is used by NetworkClient and
HttpClient.

Listing 2.15 SocketUtil.java

import java.net.*;
import java.io.*;

/** A shorthand way to create BufferedReaders and
 * PrintWriters associated with a Socket.
 */

public class SocketUtil {
 /** Make a BufferedReader to get incoming data. */

 public static BufferedReader getReader(Socket s)
 throws IOException {
 return(new BufferedReader(

 new InputStreamReader(s.getInputStream())));
 }

 /** Make a PrintWriter to send outgoing data.
 * This PrintWriter will automatically flush stream
 * when println is called.
 */

 public static PrintWriter getWriter(Socket s)
 throws IOException {
 // 2nd argument of true means autoflush
 return(new PrintWriter(s.getOutputStream(), true));
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

60 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
CloseableFrame

CloseableFrame is an extension of the standard Frame class, with the addi-
tion that user requests to quit the frame are honored. This is the top-level
window on which WebClient is built.

Listing 2.16 CloseableFrame.java

import java.awt.*;
import java.awt.event.*;

/** A Frame that you can actually quit. Used as
 * the starting point for most Java 1.1 graphical
 * applications.
 */

public class CloseableFrame extends Frame {
 public CloseableFrame(String title) {
 super(title);
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 }

 /** Since we are doing something permanent, we need
 * to call super.processWindowEvent first.
 */

 public void processWindowEvent(WindowEvent event) {
 super.processWindowEvent(event); // Handle listeners
 if (event.getID() == WindowEvent.WINDOW_CLOSING)
 System.exit(0);
 }
}

this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.10 WebClient: Talking to Web Servers Interactively 61

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

LabeledTextField

The LabeledTextField class is a simple combination of a TextField and a
Label and is used in WebClient.

Listing 2.17 LabeledTextField.java

import java.awt.*;

/** A TextField with an associated Label.
 */

public class LabeledTextField extends Panel {
 private Label label;
 private TextField textField;

 public LabeledTextField(String labelString,
 Font labelFont,
 int textFieldSize,
 Font textFont) {
 setLayout(new FlowLayout(FlowLayout.LEFT));
 label = new Label(labelString, Label.RIGHT);
 if (labelFont != null)
 label.setFont(labelFont);
 add(label);
 textField = new TextField(textFieldSize);
 if (textFont != null)
 textField.setFont(textFont);
 add(textField);
 }

 public LabeledTextField(String labelString,
 String textFieldString) {
 this(labelString, null, textFieldString,
 textFieldString.length(), null);
 }

 public LabeledTextField(String labelString,
 int textFieldSize) {
 this(labelString, null, textFieldSize, null);
 }

 public LabeledTextField(String labelString,
 Font labelFont,
 String textFieldString,
 int textFieldSize,
 Font textFont) {
 this(labelString, labelFont,
 textFieldSize, textFont);
 textField.setText(textFieldString);
 }
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

62 Chapter 2 First Servlets

Home page for
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 /** The Label at the left side of the LabeledTextField.
 * To manipulate the Label, do:
 * <PRE>
 * LabeledTextField ltf = new LabeledTextField(...);
 * ltf.getLabel().someLabelMethod(...);
 * </PRE>
 *
 * @see #getTextField
 */

 public Label getLabel() {
 return(label);
 }

 /** The TextField at the right side of the
 * LabeledTextField.
 *
 * @see #getLabel
 */

 public TextField getTextField() {
 return(textField);
 }
}

Listing 2.17 LabeledTextField.java (continued)
this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

2.10 WebClient: Talking to Web Servers Interactively 63

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Interruptible

Interruptible is a simple interface used to identify classes that have an
isInterrupted method. It is used by HttpClient to poll WebClient to see
if the user has interrupted it.

Listing 2.18 Interruptible.java

/**
 * An interface for classes that can be polled to see
 * if they’ve been interrupted. Used by HttpClient
 * and WebClient to allow the user to interrupt a network
 * download.
 */

public interface Interruptible {
 public boolean isInterrupted();
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Handling the
Client Request:

Form Data
Topics in This Chapter

• Using getParameter to read single values from
prespecified parameters in the form data

• Using getParameterValues to read multiple values from
prespecified parameters in the form data

• Using getParameterNames to discover what parameters
are available

• Handling both GET and POST requests with a single servlet

• A servlet that makes a table of the input parameters

• An on-line resumé posting service

• Filtering HTML-specific characters
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ne of the main motivations for building Web pages dynamically is so
that the result can be based upon user input. This chapter shows you
how to access that input.

3.1 The Role of Form Data

If you’ve ever used a search engine, visited an on-line bookstore,
tracked stocks on the Web, or asked a Web-based site for quotes on
plane tickets, you’ve probably seen funny-looking URLs like
http://host/path?user=Marty+Hall&origin=bwi&dest=lax. The
part after the question mark (i.e., user=Marty+Hall&origin=
bwi&dest=lax) is known as form data (or query data) and is the most com-
mon way to get information from a Web page to a server-side program.
Form data can be attached to the end of the URL after a question mark (as
above), for GET requests, or sent to the server on a separate line, for POST
requests. If you’re not familiar with HTML forms, Chapter 16 (Using
HTML Forms) gives details on how to build forms that collect and transmit
data of this sort.

Extracting the needed information from this form data is traditionally one
of the most tedious parts of CGI programming. First of all, you have to read

O

65

66 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
the data one way for GET requests (in traditional CGI, this is usually through
the QUERY_STRING environment variable) and a different way for POST
requests (by reading the standard input in traditional CGI). Second, you have
to chop the pairs at the ampersands, then separate the parameter names (left
of the equal signs) from the parameter values (right of the equal signs).
Third, you have to URL-decode the values. Alphanumeric characters are sent
unchanged, but spaces are converted to plus signs and other characters are
converted to %XX where XX is the ASCII (or ISO Latin-1) value of the char-
acter, in hex. Then, the server-side program has to reverse the process. For
example, if someone enters a value of “~hall, ~gates, and ~mcnealy”
into a textfield with the name users in an HTML form, the data is sent as
“users=%7Ehall%2C+%7Egates%2C+and+%7Emcnealy”, and the
server-side program has to reconstitute the original string. Finally, the fourth
reason that parsing form data is tedious is that values can be omitted (e.g.,
“param1=val1¶m2=¶m3=val3”) or a parameter can have more
than one value (e.g., “param1=val1¶m2=val2¶m1=val3”), so
your parsing code needs special cases for these situations.

3.2 Reading Form Data from
Servlets

One of the nice features of servlets is that all of this form parsing is handled
automatically. You simply call the getParameter method of the Http-
ServletRequest, supplying the case-sensitive parameter name as an argu-
ment. You use getParameter exactly the same way when the data is sent by
GET as you do when it is sent by POST. The servlet knows which request
method was used and automatically does the right thing behind the scenes.
The return value is a String corresponding to the URL-decoded value of
the first occurrence of that parameter name. An empty String is returned if
the parameter exists but has no value, and null is returned if there was no
such parameter. If the parameter could potentially have more than one value,
you should call getParameterValues (which returns an array of strings)
instead of getParameter (which returns a single string). The return value of
getParameterValues is null for nonexistent parameter names and is a
one-element array when the parameter has only a single value.

Parameter names are case sensitive so, for example, request.get-
Parameter("Param1") and request.getParameter("param1") are
not interchangeable.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.3 Example: Reading Three Explicit Parameters 67

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Core Warning

The values supplied to getParameter and getParameterValues
are case sensitive.

Finally, although most real servlets look for a specific set of parameter
names, for debugging purposes it is sometimes useful to get a full list. Use
getParameterNames to get this list in the form of an Enumeration, each
entry of which can be cast to a String and used in a getParameter or get-
ParameterValues call. Just note that the HttpServletRequest API
does not specify the order in which the names appear within that Enumer-
ation.

Core Warning

Don’t count on getParameterNames returning the names in any
particular order.

3.3 Example: Reading Three
Explicit Parameters

Listing 3.1 presents a simple servlet called ThreeParams that reads form
data parameters named param1, param2, and param3 and places their val-
ues in a bulleted list. Listing 3.2 shows an HTML form that collects user
input and sends it to this servlet. By use of an ACTION of /servlet/core-
servlets.ThreeParams, the form can be installed anywhere on the system
running the servlet; there need not be any particular association between the
directory containing the form and the servlet installation directory. Recall
that the specific locations for installing HTML files vary from server to
server. With the JSWDK 1.0.1 and Tomcat 3.0, HTML pages are placed
somewhere in install_dir/webpages and are accessed via
http://host/path/file.html. For example, if the form shown in Listing
3.2 is placed in install_dir/webpages/forms/ThreeParams-

Form.html and the server is accessed from the same host that it is running
on, the form would be accessed by a URL of http://local-
host/forms/ThreeParamsForm.html.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

68 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figures 3–1 and 3–2 show the result of the HTML front end and the serv-
let, respectively.

Although you are required to specify response settings (see Chapters 6 and
7) before beginning to generate the content, there is no requirement that you
read the request parameters at any particular time.

If you’re accustomed to the traditional CGI approach where you read
POST data through the standard input, you should note that you can do the
same thing with servlets by calling getReader or getInputStream on the
HttpServletRequest and then using that stream to obtain the raw input.
This is a bad idea for regular parameters since the input is neither parsed
(separated into entries specific to each parameter) nor URL-decoded
(translated so that plus signs become spaces and %XX gets replaced by the

Listing 3.1 ThreeParams.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ThreeParams extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading Three Request Parameters";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "\n" +
 " param1: "
 + request.getParameter("param1") + "\n" +
 " param2: "
 + request.getParameter("param2") + "\n" +
 " param3: "
 + request.getParameter("param3") + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.3 Example: Reading Three Explicit Parameters 69

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ASCII or ISO Latin-1 character corresponding to the hex value XX). How-
ever, reading the raw input might be of use for uploaded files or POST data
being sent by custom clients rather than by HTML forms. Note, however,
that if you read the POST data in this manner, it might no longer be found
by getParameter.

Listing 3.2 ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Collecting Three Parameters</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/coreservlets.ThreeParams">
 First Parameter: <INPUT TYPE="TEXT" NAME="param1">

 Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

 Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

 <CENTER>
 <INPUT TYPE="SUBMIT">
 </CENTER>
</FORM>

</BODY>
</HTML>

Figure 3–1 HTML front end resulting from ThreeParamsForm.html.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

70 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
3.4 Example: Reading All
Parameters

The previous example extracted parameter values from the form data based
upon prespecified parameter names. It also assumed that each parameter
had exactly one value. Here’s an example that looks up all the parameter
names that are sent and puts their values in a table. It highlights parameters
that have missing values as well as ones that have multiple values.

First, the servlet looks up all the parameter names by the getParameter-
Names method of HttpServletRequest. This method returns an Enumera-
tion that contains the parameter names in an unspecified order. Next, the
servlet loops down the Enumeration in the standard manner, using has-
MoreElements to determine when to stop and using nextElement to get
each entry. Since nextElement returns an Object, the servlet casts the result
to a String and passes that to getParameterValues, yielding an array of
strings. If that array is one entry long and contains only an empty string, then
the parameter had no values and the servlet generates an italicized “No Value”
entry. If the array is more than one entry long, then the parameter had multiple
values and the values are displayed in a bulleted list. Otherwise, the one main
value is placed into the table unmodified. The source code for the servlet is
shown in Listing 3.3, while Listing 3.4 shows the HTML code for a front
end that can be used to try the servlet out. Figures 3–3 and 3–4 show the
result of the HTML front end and the servlet, respectively.

Figure 3–2 Output of ThreeParams servlet.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.4 Example: Reading All Parameters 71

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Notice that the servlet uses a doPost method that simply calls doGet.
That’s because I want it to be able to handle both GET and POST requests.
This approach is a good standard practice if you want HTML interfaces to
have some flexibility in how they send data to the servlet. See the discussion
of the service method in Section 2.6 (The Servlet Life Cycle) for a discus-
sion of why having doPost call doGet (or vice versa) is preferable to overrid-
ing service directly. The HTML form from Listing 3.4 uses POST, as
should all forms that have password fields (if you don’t know why, see
Chapter 16). However, the ShowParameters servlet is not specific to that
particular front end, so the source code archive site at www.coreserv-
lets.com includes a similar HTML form that uses GET for you to experi-
ment with.

Listing 3.3 ShowParameters.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class ShowParameters extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading All Request Parameters";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "<TABLE BORDER=1 ALIGN=CENTER>\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>Parameter Name<TH>Parameter Value(s)");
 Enumeration paramNames = request.getParameterNames();
 while(paramNames.hasMoreElements()) {
 String paramName = (String)paramNames.nextElement();
 out.print("<TR><TD>" + paramName + "\n<TD>");
 String[] paramValues =
 request.getParameterValues(paramName);
 if (paramValues.length == 1) {
 String paramValue = paramValues[0];
 if (paramValue.length() == 0)
 out.println("<I>No Value</I>");
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

72 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 else
 out.println(paramValue);
 } else {
 out.println("");
 for(int i=0; i<paramValues.length; i++) {
 out.println("" + paramValues[i]);
 }
 out.println("");
 }
 }
 out.println("</TABLE>\n</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 3.4 ShowParametersPostForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>A Sample FORM using POST</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">A Sample FORM using POST</H1>

<FORM ACTION="/servlet/coreservlets.ShowParameters"
 METHOD="POST">
 Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

 Quantity: <INPUT TYPE="TEXT" NAME="quantity">

 Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="$">

 <HR>
 First Name: <INPUT TYPE="TEXT" NAME="firstName">

 Last Name: <INPUT TYPE="TEXT" NAME="lastName">

 Middle Initial: <INPUT TYPE="TEXT" NAME="initial">

 Shipping Address:
 <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

 Credit Card:

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Master Card">Master Card

Listing 3.3 ShowParameters.java (continued)
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.4 Example: Reading All Parameters 73

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Discover">Discover

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Java SmartCard">Java SmartCard

 Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 Repeat Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 <CENTER>
 <INPUT TYPE="SUBMIT" VALUE="Submit Order">
 </CENTER>
</FORM>

</BODY>
</HTML>

Listing 3.4 ShowParametersPostForm.html (continued)

Figure 3–3 HTML front end that collects data for ShowParameters servlet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

74 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
3.5 A Resumé Posting Service

On-line job services have become increasingly popular of late. A reputable
site provides a useful service to job seekers by giving their skills wide expo-
sure and provides a useful service to employers by giving them access to a
large pool of prospective employees. This section presents a servlet that han-
dles part of such a site: the submission of on-line resumés.

Listing 3.5 and Figure 3–5 show the HTML form that acts as the front end
to the resumé-processing servlet. If you are not familiar with HTML forms,
they are covered in detail in Chapter 16. The important thing to understand
here is that the form uses POST to submit the data and that it gathers values
for the following parameter names:

Figure 3–4 Output of ShowParameters servlet.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 75

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• headingFont

Headings will be displayed in this font. A value of “default”
results in a sans-serif font such as Arial or Helvetica.

• headingSize

The person’s name will be displayed in this point size.
Subheadings will be displayed in a slightly smaller size.

• bodyFont

The main text (languages and skills) will be displayed in this font.
• bodySize

The main text will be displayed in this point size.
• fgColor

Text will be this color.
• bgColor

The page background will be this color.
• name

This parameter specifies the person’s name. It will be centered
at the top of the resumé in the font and point size previously
specified.

• title

This parameter specifies the person’s job title. It will be
centered under the name in a slightly smaller point size.

• email

The job applicant’s email address will be centered under the job
title inside a mailto link.

• languages

The programming languages listed will be placed in a bulleted
list in the on-line resumé.

• skills

Text from the skills text area will be displayed in the body font at the
bottom of the resumé under a heading called “Skills and Experience.”

DILBERT reprinted by permission of United Syndicate, Inc.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

76 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 3.6 shows the servlet that processes the data from the HTML form.
When the “Preview” button is pressed, the servlet first reads the font and color
parameters. Before using any of the parameters, it checks to see if the value is
null (i.e., there is an error in the HTML form and thus the parameter is missing)
or is an empty string (i.e., the user erased the default value but did not enter any-
thing in its place). The servlet uses a default value appropriate to each parameter
in such a case. Parameters that represent numeric values are passed to
Integer.parseInt. To guard against the possibility of improperly formatted
numbers supplied by the user, this Integer.parseInt call is placed inside a
try/catch block that supplies a default value when the parsing fails. Although it
may seem a bit tedious to handle these cases, it generally is not too much work if
you make use of some utility methods such as replaceIfMissing and repla-
ceIfMissingOrDefault in Listing 3.6. Tedious or not, users will sometimes
overlook certain fields or misunderstand the required field format, so it is critical
that your servlet handle malformed parameters gracefully and that you test it with
both properly formatted and improperly formatted data.

Core Approach

Design your servlets to gracefully handle missing or improperly formatted
parameters. Test them with malformed data as well as with data in the
expected format.

Once the servlet has meaningful values for each of the font and color
parameters, it builds a cascading style sheet out of them. If you are unfamiliar
with style sheets, they are a standard way of specifying the font faces, font
sizes, colors, indentation, and other formatting information in an HTML 4.0
Web page. Style sheets are usually placed in a separate file so that several
Web pages at a site can share the same style sheet, but in this case it is
more convenient to embed the style information directly in the page by
using the STYLE element. For more information on style sheets, see
http://www.w3.org/TR/REC-CSS1.

After creating the style sheet, the servlet places the job applicant’s name,
job title, and e-mail address centered under each other at the top of the page.
The heading font is used for these lines, and the e-mail address is placed
inside a mailto: hypertext link so that prospective employers can contact
the applicant directly by clicking on the address. The programming languages
specified in the languages parameter are parsed using StringTokenizer
(assuming spaces and/or commas are used to separate the language names)
and placed in a bulleted list beneath a “Programming Languages” heading.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 77

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Finally, the text from the skills parameter is placed at the bottom of the
page beneath a “Skills and Experience” heading.

Figures 3–6 through 3–8 show a couple of possible results. Listing 3.7
shows the underlying HTML of the first of these results.

Listing 3.5 SubmitResume.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Free Resume Posting</TITLE>
 <LINK REL=STYLESHEET
 HREF="jobs-site-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>hotcomputerjobs.com</H1>
<P CLASS="LARGER">
To use our <I>free</I> resume-posting service, simply fill
out the brief summary of your skills below. Use "Preview"
to check the results, then press "Submit" once it is
ready. Your mini resume will appear on-line within 24 hours.</P>
<HR>
<FORM ACTION="/servlet/coreservlets.SubmitResume"
 METHOD="POST">
<DL>
<DT>First, give some general information about the look of
your resume:
<DD>Heading font:
 <INPUT TYPE="TEXT" NAME="headingFont" VALUE="default">
<DD>Heading text size:
 <INPUT TYPE="TEXT" NAME="headingSize" VALUE=32>
<DD>Body font:
 <INPUT TYPE="TEXT" NAME="bodyFont" VALUE="default">
<DD>Body text size:
 <INPUT TYPE="TEXT" NAME="bodySize" VALUE=18>
<DD>Foreground color:
 <INPUT TYPE="TEXT" NAME="fgColor" VALUE="BLACK">
<DD>Background color:
 <INPUT TYPE="TEXT" NAME="bgColor" VALUE="WHITE">

<DT>Next, give some general information about yourself:
<DD>Name: <INPUT TYPE="TEXT" NAME="name">
<DD>Current or most recent title:
 <INPUT TYPE="TEXT" NAME="title">
<DD>Email address: <INPUT TYPE="TEXT" NAME="email">
<DD>Programming Languages:
 <INPUT TYPE="TEXT" NAME="languages">
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

78 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<DT>Finally, enter a brief summary of your skills and
 experience: (use <P> to separate paragraphs.
 Other HTML markup is also permitted.)
<DD><TEXTAREA NAME="skills"
 ROWS=15 COLS=60 WRAP="SOFT"></TEXTAREA>
</DL>
 <CENTER>
 <INPUT TYPE="SUBMIT" NAME="previewButton" Value="Preview">
 <INPUT TYPE="SUBMIT" NAME="submitButton" Value="Submit">
 </CENTER>
</FORM>
<HR>
<P CLASS="TINY">See our privacy policy
here.</P>
</BODY>
</HTML>

Listing 3.6 SubmitResume.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that handles previewing and storing resumes
 * submitted by job applicants.
*/

public class SubmitResume extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 if (request.getParameter("previewButton") != null) {
 showPreview(request, out);
 } else {
 storeResume(request);
 showConfirmation(request, out);
 }
 }

Listing 3.5 SubmitResume.html (continued)
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 79

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 // Shows a preview of the submitted resume. Takes
 // the font information and builds an HTML
 // style sheet out of it, then takes the real
 // resume information and presents it formatted with
 // that style sheet.

 private void showPreview(HttpServletRequest request,
 PrintWriter out) {
 String headingFont = request.getParameter("headingFont");
 headingFont = replaceIfMissingOrDefault(headingFont, "");
 int headingSize =
 getSize(request.getParameter("headingSize"), 32);
 String bodyFont = request.getParameter("bodyFont");
 bodyFont = replaceIfMissingOrDefault(bodyFont, "");
 int bodySize =
 getSize(request.getParameter("bodySize"), 18);
 String fgColor = request.getParameter("fgColor");
 fgColor = replaceIfMissing(fgColor, "BLACK");
 String bgColor = request.getParameter("bgColor");
 bgColor = replaceIfMissing(bgColor, "WHITE");
 String name = request.getParameter("name");
 name = replaceIfMissing(name, "Lou Zer");
 String title = request.getParameter("title");
 title = replaceIfMissing(title, "Loser");
 String email = request.getParameter("email");
 email =
 replaceIfMissing(email, "contact@hotcomputerjobs.com");
 String languages = request.getParameter("languages");
 languages = replaceIfMissing(languages, "<I>None</I>");
 String languageList = makeList(languages);
 String skills = request.getParameter("skills");
 skills = replaceIfMissing(skills, "Not many, obviously.");
 out.println
 (ServletUtilities.DOCTYPE + "\n" +
 "<HTML>\n" +
 "<HEAD>\n" +
 "<TITLE>Resume for " + name + "</TITLE>\n" +
 makeStyleSheet(headingFont, headingSize,
 bodyFont, bodySize,
 fgColor, bgColor) + "\n" +
 "</HEAD>\n" +
 "<BODY>\n" +
 "<CENTER>\n"+
 "" + name + "
\n" +
 "" + title + "
\n" +
 "" + email +
 "\n" +

Listing 3.6 SubmitResume.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

80 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 "</CENTER>

\n" +
 "Programming Languages" +
 "\n" +
 makeList(languages) + "

\n" +
 "Skills and Experience" +
 "

\n" +
 skills + "\n" +
 "</BODY></HTML>");
 }

 // Builds a cascading style sheet with information
 // on three levels of headings and overall
 // foreground and background cover. Also tells
 // Internet Explorer to change color of mailto link
 // when mouse moves over it.

 private String makeStyleSheet(String headingFont,
 int heading1Size,
 String bodyFont,
 int bodySize,
 String fgColor,
 String bgColor) {
 int heading2Size = heading1Size*7/10;
 int heading3Size = heading1Size*6/10;
 String styleSheet =
 "<STYLE TYPE=\"text/css\">\n" +
 "<!--\n" +
 ".HEADING1 { font-size: " + heading1Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 ".HEADING2 { font-size: " + heading2Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 ".HEADING3 { font-size: " + heading3Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 "BODY { color: " + fgColor + ";\n" +
 " background-color: " + bgColor + ";\n" +
 " font-size: " + bodySize + "px;\n" +
 " font-family: " + bodyFont +
 "Times New Roman, Times, serif;\n" +

Listing 3.6 SubmitResume.java (continued)
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 81

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 "}\n" +
 "A:hover { color: red; }\n" +
 "-->\n" +
 "</STYLE>";
 return(styleSheet);
 }

 // Replaces null strings (no such parameter name) or
 // empty strings (e.g., if textfield was blank) with
 // the replacement. Returns the original string otherwise.

 private String replaceIfMissing(String orig,
 String replacement) {
 if ((orig == null) || (orig.length() == 0)) {
 return(replacement);
 } else {
 return(orig);
 }
 }

 // Replaces null strings, empty strings, or the string
 // "default" with the replacement.
 // Returns the original string otherwise.

 private String replaceIfMissingOrDefault(String orig,
 String replacement) {
 if ((orig == null) ||
 (orig.length() == 0) ||
 (orig.equals("default"))) {
 return(replacement);
 } else {
 return(orig + ", ");
 }
 }

 // Takes a string representing an integer and returns it
 // as an int. Returns a default if the string is null
 // or in an illegal format.

 private int getSize(String sizeString, int defaultSize) {
 try {
 return(Integer.parseInt(sizeString));
 } catch(NumberFormatException nfe) {
 return(defaultSize);
 }
 }

Listing 3.6 SubmitResume.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

82 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 // Given "Java,C++,Lisp", "Java C++ Lisp" or
 // "Java, C++, Lisp", returns
 // "
 // Java
 // C++
 // Lisp
 // "

 private String makeList(String listItems) {
 StringTokenizer tokenizer =
 new StringTokenizer(listItems, ", ");
 String list = "\n";
 while(tokenizer.hasMoreTokens()) {
 list = list + " " + tokenizer.nextToken() + "\n";
 }
 list = list + "";
 return(list);
 }

 // Show a confirmation page when they press the
 // "Submit" button.

 private void showConfirmation(HttpServletRequest request,
 PrintWriter out) {
 String title = "Submission Confirmed.";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY>\n" +
 "<H1>" + title + "</H1>\n" +
 "Your resume should appear on-line within\n" +
 "24 hours. If it doesn’t, try submitting\n" +
 "again with a different email address.\n" +
 "</BODY></HTML>");
 }

 // Why it is bad to give your email address to untrusted sites

 private void storeResume(HttpServletRequest request) {
 String email = request.getParameter("email");
 putInSpamList(email);
 }

 private void putInSpamList(String emailAddress) {
 // Code removed to protect the guilty.
 }
}

Listing 3.6 SubmitResume.java (continued)
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 83

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 3–5 Front end to SubmitResume servlet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

84 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 3.7 HTML source of SubmitResume output shown in
Figure 3–6.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Resume for Al Gore Ithm</TITLE>
<STYLE TYPE="text/css">
<!--
.HEADING1 { font-size: 32px;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

Figure 3–6 SubmitResume servlet after “Preview” button is pressed in Figure 3–5.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.5 A Resumé Posting Service 85

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

.HEADING2 { font-size: 22px;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

.HEADING3 { font-size: 19px;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}
BODY { color: BLACK;
 background-color: WHITE;
 font-size: 18px;
 font-family: Times New Roman, Times, serif;
}
A:hover { color: red; }
-->
</STYLE>
</HEAD>
<BODY>
<CENTER>
Al Gore Ithm

Chief Technology Officer

ithm@aol.com
</CENTER>

Programming Languages

 Java
 C++
 Smalltalk
 Ada

Skills and Experience

Expert in data structures and computational methods.
<P>

Well known for finding efficient solutions to
<I>apparently</I> intractable problems, then rigorously
proving time and memory requirements for best, worst, and
average-case performance.
<P>
Can prove that P is not equal to NP. Doesn’t want to work
for companies that don’t know what this means.
<P>
Not related to the American politician.
</BODY></HTML>

Listing 3.7 HTML source of SubmitResume output shown in
Figure 3–6. (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

86 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 3–7 Another possible result of SubmitResume servlet.

Figure 3–8 SubmitResume servlet when “Submit” button is pressed.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.6 Filtering Strings for HTML-Specific Characters 87

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

3.6 Filtering Strings for
HTML-Specific Characters

Normally, when a servlet wants to generate HTML that will contain charac-
ters like < or >, it simply uses < or >, the standard HTML character
entities. Similarly, if a servlet wants a double quote or an ampersand to
appear inside an HTML attribute value, it uses " or &. Failing to
make these substitutions results in malformed HTML code, since < or > will
often get interpreted as part of an HTML markup tag, a double quote in an
attribute value may be interpreted as the end of the value, and ampersands
are just plain illegal in attribute values. In most cases, it is easy to note the
special characters and use the standard HTML replacements. However,
there are two cases when it is not so easy to make this substitution manually.

The first case where manual conversion is difficult occurs when the string
is derived from a program excerpt or another source where it is already in
some standard format. Going through manually and changing all the special
characters can be tedious in such a case, but forgetting to convert even one
special character can result in your Web page having missing or improperly
formatted sections (see Figure 3–9 later in this section).

The second case where manual conversion fails is when the string is
derived from HTML form data. Here, the conversion absolutely must be
performed at runtime, since of course the query data is not known at compile
time. Failing to do this for an internal Web page can also result in missing or
improperly formatted sections of the servlet’s output if the user ever sends
these special characters. Failing to do this filtering for externally-accessible
Web pages also lets your page become a vehicle for the cross-site scripting
attack. Here, a malicious programmer embeds GET parameters in a URL that
refers to one of your servlets. These GET parameters expand to HTML
<SCRIPT> elements that exploit known browser bugs. However, by embed-
ding the code in a URL that refers to your site and only distributing the URL,
not the malicious Web page itself, the attacker can remain undiscovered
more easily and can also exploit trusted relationships to make users think the
scripts are coming from a trusted source (your servlet). For more details on
this issue, see http://www.cert.org/advisories/ CA-2000-02.html
and http://www.microsoft.com/technet/security/crssite.asp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

88 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Code for Filtering

Replacing <, >, ", and & in strings is a simple matter, and there are a number
of different approaches that would accomplish the task. However, it is impor-
tant to remember that Java strings are immutable (i.e., can’t be modified), so
string concatenation involves copying and then discarding many string seg-
ments. For example, consider the following two lines:

String s1 = "Hello";

String s2 = s1 + " World";

Since s1 cannot be modified, the second line makes a copy of s1 and appends
"World" to the copy, then the copy is discarded. To avoid the expense of gener-
ating these temporary objects (garbage), you should use a mutable data structure,
and StringBuffer is the natural choice. Listing 3.8 shows a static filter
method that uses a StringBuffer to efficiently copy characters from an input
string to a filtered version, replacing the four special characters along the way.

Listing 3.8 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {

// Other methods in ServletUtilities shown elsewhere...

 /** Given a string, this method replaces all occurrences of
 * '<' with '<', all occurrences of '>' with
 * '>', and (to handle cases that occur inside attribute
 * values), all occurrences of double quotes with
 * '"' and all occurrences of '&' with '&'.
 * Without such filtering, an arbitrary string
 * could not safely be inserted in a Web page.
 */

 public static String filter(String input) {
 StringBuffer filtered = new StringBuffer(input.length());
 char c;
 for(int i=0; i<input.length(); i++) {
 c = input.charAt(i);
 if (c == '<') {
 filtered.append("<");
 } else if (c == '>') {
 filtered.append(">");
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.6 Filtering Strings for HTML-Specific Characters 89

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Example

By means of illustration, consider a servlet that attempts to generate a Web
page containing the following code listing:

if (a<b) {
doThis();

} else {
doThat();

}

If the code was inserted into the Web page verbatim, the <b would be
interpreted as the beginning of an HTML tag, and all of the code up to the
next > would likely be interpreted as malformed pieces of that tag. For exam-
ple, Listing 3.9 shows a servlet that outputs this code fragment, and Figure
3–9 shows the poor result. Listing 3.10 presents a servlet that changes noth-
ing except for filtering the string containing the code fragment, and, as Fig-
ure 3–10 illustrates, the result is fine.

 } else if (c == '"') {
 filtered.append(""");
 } else if (c == '&') {
 filtered.append("&");
 } else {
 filtered.append(c);
 }
 }
 return(filtered.toString());
 }
}

Listing 3.9 BadCodeServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that displays a fragment of some Java code,
 * but forgets to filter out the HTML-specific characters
 * (the less-than sign in this case).
 */

public class BadCodeServlet extends HttpServlet {
 private String codeFragment =

Listing 3.8 ServletUtilities.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

90 Chapter 3 Handling the Client Request: Form Data

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 "if (a<b) {\n" +
 " doThis();\n" +
 "} else {\n" +
 " doThat();\n" +
 "}\n";

 public String getCodeFragment() {
 return(codeFragment);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "The Java 'if' Statement";

 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY>\n" +
 "<H1>" + title + "</H1>\n" +
 "<PRE>\n" +
 getCodeFragment() +
 "</PRE>\n" +
 "Note that you <I>must</I> use curly braces\n" +
 "when the 'if' or 'else' clauses contain\n" +
 "more than one expression.\n" +
 "</BODY></HTML>");
 }
}

Listing 3.10 FilteredCodeServlet.java

package coreservlets;

/** Subclass of BadCodeServlet that keeps the same doGet method
 * but filters the code fragment for HTML-specific characters.
 * You should filter strings that are likely to contain
 * special characters (like program excerpts) or strings
 * that are derived from user input.
 */

public class FilteredCodeServlet extends BadCodeServlet {
 public String getCodeFragment() {
 return(ServletUtilities.filter(super.getCodeFragment()));
 }
}

Listing 3.9 BadCodeServlet.java (continued)
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

3.6 Filtering Strings for HTML-Specific Characters 91

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 3–9 Result of BadCodeServlet: much of the code fragment is lost, and the
text following the code fragment is incorrectly displayed in a monospaced font.

Figure 3–10 Result of FilteredCodeServlet: use of the filter method solves
problems with strings containing special characters.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Handling the
Client Request:

HTTP Request
Headers
Topics in This Chapter

• Reading HTTP request headers from servlets

• Building a table of all the request headers

• The purpose of each of the HTTP 1.1 request headers

• Reducing download times by compressing pages

• Restricting access with password-protected servlets
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ne of the keys to creating effective servlets is understanding how to
manipulate the HyperText Transfer Protocol (HTTP). Getting a
thorough grasp of this protocol is not an esoteric, theoretical topic,

but rather a practical issue that can have an immediate impact on the perfor-
mance and usability of your servlets. This chapter discusses the HTTP infor-
mation that is sent from the browser to the server in the form of request
headers. It explains each of the HTTP 1.1 request headers, summarizing how
and why they would be used in a servlet. The chapter also includes three
detailed examples: listing all request headers sent by the browser, reducing
download time by encoding the Web page with gzip when appropriate, and
establishing password-based access control for servlets.

Note that HTTP request headers are distinct from the form data dis-
cussed in the previous chapter. Form data results directly from user input
and is sent as part of the URL for GET requests and on a separate line for
POST requests. Request headers, on the other hand, are indirectly set by the
browser and are sent immediately following the initial GET or POST request
line. For instance, the following example shows an HTTP request that
might result from submitting a book-search request to a servlet at
http://www.somebookstore.com/search. The request includes the head-
ers Accept, Accept-Encoding, Connection, Cookie, Host, Referer, and
User-Agent, all of which might be important to the operation of the serv-
let, but none of which can be derived from the form data or deduced auto-

O

93

94 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
matically: the servlet needs to explicitly read the request headers to make
use of this information.

GET /search?keywords=servlets+jsp HTTP/1.1

Accept: image/gif, image/jpg, */*

Accept-Encoding: gzip

Connection: Keep-Alive

Cookie: userID=id456578

Host: www.somebookstore.com

Referer: http://www.somebookstore.com/findbooks.html

User-Agent: Mozilla/4.7 [en] (Win98; U)

4.1 Reading Request Headers from
Servlets

Reading headers is straightforward; just call the getHeader method of
HttpServletRequest, which returns a String if the specified header was
supplied on this request, null otherwise. Header names are not case sensi-
tive. So, for example, request.getHeader("Connection") and
request.getHeader("connection") are interchangeable.

Although getHeader is the general-purpose way to read incoming head-
ers, there are a couple of headers that are so commonly used that they have
special access methods in HttpServletRequest. I’ll list them here, and
remember that Appendix A (Servlet and JSP Quick Reference) gives a sepa-
rate syntax summary.

• getCookies

The getCookies method returns the contents of the Cookie
header, parsed and stored in an array of Cookie objects. This
method is discussed more in Chapter 8 (Handling Cookies).

• getAuthType and getRemoteUser
The getAuthType and getRemoteUser methods break the
Authorization header into its component pieces. Use of the
Authorization header is illustrated in Section 4.5 (Restricting
Access to Web Pages).

• getContentLength

The getContentLength method returns the value of the
Content-Length header (as an int).
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.1 Reading Request Headers from Servlets 95

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• getContentType

The getContentType method returns the value of the
Content-Type header (as a String).

• getDateHeader and getIntHeader
The getDateHeader and getIntHeader methods read the
specified header and then convert them to Date and int values,
respectively.

• getHeaderNames

Rather than looking up one particular header, you can use the
getHeaderNames method to get an Enumeration of all header
names received on this particular request. This capability is
illustrated in Section 4.2 (Printing All Headers).

• getHeaders

In most cases, each header name appears only once in the
request. Occasionally, however, a header can appear multiple
times, with each occurrence listing a separate value.
Accept-Language is one such example. If a header name is
repeated in the request, version 2.1 servlets cannot access the
later values without reading the raw input stream, since
getHeader returns the value of the first occurrence of the
header only. In version 2.2, however, getHeaders returns an
Enumeration of the values of all occurrences of the header.

Finally, in addition to looking up the request headers, you can get informa-
tion on the main request line itself, also by means of methods in Http-
ServletRequest.

• getMethod

The getMethod method returns the main request method
(normally GET or POST, but things like HEAD, PUT, and DELETE
are possible).

• getRequestURI

The getRequestURI method returns the part of the URL that
comes after the host and port but before the form data. For
example, for a URL of
http://randomhost.com/servlet/search.BookSearch,
getRequestURI would return
/servlet/search.BookSearch.

• getProtocol

Lastly, the getProtocol method returns the third part of the
request line, which is generally HTTP/1.0 or HTTP/1.1. Servlets
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

96 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
should usually check getProtocol before specifying response
headers (Chapter 7) that are specific to HTTP 1.1.

4.2 Printing All Headers

Listing 4.1 shows a servlet that simply creates a table of all the headers it
receives, along with their associated values. It also prints out the three com-
ponents of the main request line (method, URI, and protocol). Figures 4–1
and 4–2 show typical results with Netscape and Internet Explorer.

Listing 4.1 ShowRequestHeaders.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Shows all the request headers sent on this
 * particular request.
*/

public class ShowRequestHeaders extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Servlet Example: Showing Request Headers";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "Request Method: " +
 request.getMethod() + "
\n" +
 "Request URI: " +
 request.getRequestURI() + "
\n" +
 "Request Protocol: " +
 request.getProtocol() + "

\n" +
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.2 Printing All Headers 97

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 "<TABLE BORDER=1 ALIGN=CENTER>\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>Header Name<TH>Header Value");
 Enumeration headerNames = request.getHeaderNames();
 while(headerNames.hasMoreElements()) {
 String headerName = (String)headerNames.nextElement();
 out.println("<TR><TD>" + headerName);
 out.println(" <TD>" + request.getHeader(headerName));
 }
 out.println("</TABLE>\n</BODY></HTML>");
 }

 /** Let the same servlet handle both GET and POST. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 4.1 ShowRequestHeaders.java (continued)

Figure 4–1 Request headers sent by Netscape 4.7 on Windows 98.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

98 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
4.3 HTTP 1.1 Request Headers

Access to the request headers permits servlets to perform a number of opti-
mizations and to provide a number of features not otherwise possible. This
section presents each of the possible HTTP 1.1 request headers along with a
brief summary of how servlets can make use of them. The following sections
give more detailed examples.

Note that HTTP 1.1 supports a superset of the headers permitted in
HTTP 1.0. For additional details on these headers, see the HTTP 1.1 specifi-
cation, given in RFC 2616. There are a number of places the official RFCs
are archived on-line; your best bet is to start at http://www.rfc-edi-
tor.org/ to get a current list of the archive sites.

Accept
This header specifies the MIME types that the browser or other client
can handle. A servlet that can return a resource in more than one format

Figure 4–2 Request headers sent by Internet Explorer 5 on Windows 98.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.3 HTTP 1.1 Request Headers 99

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

can examine the Accept header to decide which format to use. For exam-
ple, images in PNG format have some compression advantages over those
in GIF, but only a few browsers support PNG. If you had images in both
formats, a servlet could call request.getHeader("Accept"), check for
image/png, and if it finds it, use xxx.png filenames in all the IMG ele-
ments it generates. Otherwise it would just use xxx.gif.

See Table 7.1 in Section 7.2 (HTTP 1.1 Response Headers and Their
Meaning) for the names and meanings of the common MIME types.

Accept-Charset

This header indicates the character sets (e.g., ISO-8859-1) the browser
can use.

Accept-Encoding

This header designates the types of encodings that the client knows how
to handle. If it receives this header, the server is free to encode the page
by using the format specified (usually to reduce transmission time),
sending the Content-Encoding response header to indicate that it has
done so. This encoding type is completely distinct from the MIME type
of the actual document (as specified in the Content-Type response
header), since this encoding is reversed before the browser decides what
to do with the content. On the other hand, using an encoding the
browser doesn’t understand results in totally incomprehensible pages.
Consequently, it is critical that you explicitly check the Accept-Encod-
ing header before using any type of content encoding. Values of gzip
or compress are the two standard possibilities.

Compressing pages before returning them is a very valuable service
because the decoding time is likely to be small compared to the savings
in transmission time. See Section 4.4 (Sending Compressed Web
Pages) for an example where compression reduces download times by
a factor of 10.

Accept-Language

This header specifies the client’s preferred languages, in case the servlet
can produce results in more than one language. The value of the header
should be one of the standard language codes such as en, en-us, da,
etc. See RFC 1766 for details.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

100 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Authorization
This header is used by clients to identify themselves when accessing
password-protected Web pages. See Section 4.5 (Restricting Access to
Web Pages) for an example.

Cache-Control
This header can be used by the client to specify a number of options for
how pages should be cached by proxy servers. The request header is
usually ignored by servlets, but the Cache-Control response header
can be valuable to indicate that a page is constantly changing and
shouldn’t be cached. See Chapter 7 (Generating the Server Response:
HTTP Response Headers) for details.

Connection
This header tells whether or not the client can handle persistent HTTP
connections. These let the client or other browser retrieve multiple files
(e.g., an HTML file and several associated images) with a single socket
connection, saving the overhead of negotiating several independent
connections. With an HTTP 1.1 request, persistent connections are the
default, and the client must specify a value of close for this header to
use old-style connections. In HTTP 1.0, a value of keep-alive means
that persistent connections should be used.

Each HTTP request results in a new invocation of a servlet, regardless
of whether the request is a separate connection. That is, the server
invokes the servlet only after the server has already read the HTTP
request. This means that servlets need help from the server to handle
persistent connections. Consequently, the servlet’s job is just to make it
possible for the server to use persistent connections, which is done by
sending a Content-Length response header. Section 7.4 (Using Per-
sistent HTTP Connections) has a detailed example.

Content-Length
This header is only applicable to POST requests and gives the size of the
POST data in bytes. Rather than calling request.getIntHeader("Con-
tent-Length"), you can simply use request.getContentLength().
However, since servlets take care of reading the form data for you (see
Chapter 3, “Handling the Client Request: Form Data”), you are
unlikely to use this header explicitly.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.3 HTTP 1.1 Request Headers 101

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Content-Type

Although this header is usually used in responses from the server, it can
also be part of client requests when the client attaches a document as
the POST data or when making PUT requests. You can access this header
with the shorthand getContentType method of HttpServletRequest.

Cookie

This header is used to return cookies to servers that previously sent
them to the browser. For details, see Chapter 8 (Handling Cookies).
Technically, Cookie is not part of HTTP 1.1. It was originally a
Netscape extension but is now very widely supported, including in both
Netscape and Internet Explorer.

Expect

This rarely used header lets the client tell the server what kinds of
behaviors it expects. The one standard value for this header, 100-con-
tinue, is sent by a browser that will be sending an attached document
and wants to know if the server will accept it. The server should send a
status code of either 100 (Continue) or 417 (Expectation Failed) in
such a case. For more details on HTTP status codes, see Chapter 6
(Generating the Server Response: HTTP Status Codes).

From

This header gives the e-mail address of the person responsible for the
HTTP request. Browsers do not send this header, but Web spiders
(robots) often set it as a courtesy to help identify the source of server
overloading or repeated improper requests.

Host

Browsers are required to specify this header, which indicates the host
and port as given in the original URL. Due to request forwarding and
machines that have multiple hostnames, it is quite possible that the
server could not otherwise determine this information. This header is
not new in HTTP 1.1, but in HTTP 1.0 it was optional, not required.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

102 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
If-Match

This rarely used header applies primarily to PUT requests. The client
can supply a list of entity tags as returned by the ETag response header,
and the operation is performed only if one of them matches.

If-Modified-Since
This header indicates that the client wants the page only if it has been
changed after the specified date. This option is very useful because it
lets browsers cache documents and reload them over the network only
when they’ve changed. However, servlets don’t need to deal directly
with this header. Instead, they should just implement the getLastMod-
ified method to have the system handle modification dates automati-
cally. An illustration is given in Section 2.8 (An Example Using Servlet
Initialization and Page Modification Dates).

If-None-Match

This header is like If-Match, except that the operation should be per-
formed only if no entity tags match.

If-Range
This rarely used header lets a client that has a partial copy of a docu-
ment ask for either the parts it is missing (if unchanged) or an entire
new document (if it has changed since a specified date).

If-Unmodified-Since

This header is like If-Modified-Since in reverse, indicating that the
operation should succeed only if the document is older than the speci-
fied date. Typically, If-Modified-Since is used for GET requests (“give
me the document only if it is newer than my cached version”), whereas
If-Unmodified-Since is used for PUT requests (“update this docu-
ment only if nobody else has changed it since I generated it”).

Pragma

A Pragma header with a value of no-cache indicates that a servlet that
is acting as a proxy should forward the request even if it has a local copy.
The only standard value for this header is no-cache.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.3 HTTP 1.1 Request Headers 103

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Proxy-Authorization
This header lets clients identify themselves to proxies that require it.
Servlets typically ignore this header, using Authorization instead.

Range
This rarely used header lets a client that has a partial copy of a docu-
ment ask for only the parts it is missing.

Referer
This header indicates the URL of the referring Web page. For example,
if you are at Web page 1 and click on a link to Web page 2, the URL of
Web page 1 is included in the Referer header when the browser
requests Web page 2. All major browsers set this header, so it is a useful
way of tracking where requests came from. This capability is helpful for
tracking advertisers who refer people to your site, for changing content
slightly depending on the referring site, or simply for keeping track of
where your traffic comes from. In the last case, most people simply rely
on Web server log files, since the Referer is typically recorded there.
Although it’s useful, don’t rely too heavily on the Referer header since
it can be easily spoofed by a custom client. Finally, note that this header
is Referer, not the expected Referrer, due to a spelling mistake by one
of the original HTTP authors.

Upgrade
The Upgrade header lets the browser or other client specify a commu-
nication protocol it prefers over HTTP 1.1. If the server also supports
that protocol, both the client and the server can switch protocols. This
type of protocol negotiation is almost always performed before the serv-
let is invoked. Thus, servlets rarely care about this header.

User-Agent
This header identifies the browser or other client making the request
and can be used to return different content to different types of
browsers. Be wary of this usage, however; relying on a hard-coded list
of browser versions and associated features can make for unreliable
and hard-to-modify servlet code. Whenever possible, use something
specific in the HTTP headers instead. For example, instead of trying
to remember which browsers support gzip on which platforms, simply
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

104 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
check the Accept-Encoding header. Admittedly, this is not always
possible, but when it is not, you should ask yourself if the browser-spe-
cific feature you are using really adds enough value to be worth the
maintenance cost.

Most Internet Explorer versions list a “Mozilla” (Netscape) version first
in their User-Agent line, with the real browser version listed paren-
thetically. This is done for compatibility with JavaScript, where the
User-Agent header is sometimes used to determine which JavaScript
features are supported. Also note that this header can be easily spoofed,
a fact that calls into question the reliability of sites that use this header
to “show” market penetration of various browser versions. Hmm, mil-
lions of dollars in marketing money riding on statistics that could be
skewed by a custom client written in less than an hour, and I should take
those numbers as accurate ones?

Via
This header is set by gateways and proxies to show the intermediate
sites the request passed through.

Warning
This rarely used catchall header lets clients warn about caching or con-
tent transformation errors.

4.4 Sending Compressed Web
Pages

Several recent browsers know how to handle gzipped content, automatically
uncompressing documents that are marked with the Content-Encoding
header and then treating the result as though it were the original document.
Sending such compressed content can be a real timesaver, since the time
required to compress the document on the server and then uncompress it on
the client is typically dwarfed by the savings in download time, especially
when dialup connections are used.

Browsers that support content encoding include most versions of Netscape
for Unix, most versions of Internet Explorer for Windows, and Netscape 4.7
and later for Windows. Earlier Netscape versions on Windows and Internet
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.4 Sending Compressed Web Pages 105

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Explorer on non-Windows platforms generally do not support content encod-
ing. Fortunately, browsers that support this feature indicate that they do so
by setting the Accept-Encoding request header. Listing 4.2 shows a servlet
that checks this header, sending a compressed Web page to clients that sup-
port gzip encoding and sending a regular Web page to those that don’t. The
result showed a tenfold speedup for the compressed page when a dialup con-
nection was used. In repeated tests with Netscape 4.7 and Internet Explorer
5.0 on a 28.8K modem connection, the compressed page averaged less than 5
seconds to completely download, whereas the uncompressed page consis-
tently took more than 50 seconds.

Core Tip

Gzip compression can dramatically reduce the download time of long text
pages.

Implementing compression is straightforward since gzip format is built in
to the Java programming languages via classes in java.util.zip. The serv-
let first checks the Accept-Encoding header to see if it contains an entry for
gzip. If so, it uses a GZIPOutputStream to generate the page, specifying
gzip as the value of the Content-Encoding header. You must explicitly call
close when using a GZIPOutputStream. If gzip is not supported, the servlet
uses the normal PrintWriter to send the page. To make it easy to create
benchmarks with a single browser, I also added a feature whereby compres-
sion could be suppressed by including ?encoding=none at the end of the
URL.

DILBERT reprinted by permission of United Syndicate, Inc.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

106 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 4.2 EncodedPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.zip.*;

/** Example showing benefits of gzipping pages to browsers
 * that can handle gzip.
*/

public class EncodedPage extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 String encodings = request.getHeader("Accept-Encoding");
 String encodeFlag = request.getParameter("encoding");

 PrintWriter out;
 String title;
 if ((encodings != null) &&
 (encodings.indexOf("gzip") != -1) &&
 !"none".equals(encodeFlag)) {
 title = "Page Encoded with GZip";
 OutputStream out1 = response.getOutputStream();
 out = new PrintWriter(new GZIPOutputStream(out1), false);
 response.setHeader("Content-Encoding", "gzip");
 } else {
 title = "Unencoded Page";
 out = response.getWriter();
 }
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n");
 String line = "Blah, blah, blah, blah, blah. " +
 "Yadda, yadda, yadda, yadda.";
 for(int i=0; i<10000; i++) {
 out.println(line);
 }
 out.println("</BODY></HTML>");
 out.close();
 }
}

or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 107

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

4.5 Restricting Access to Web
Pages

Many Web servers support standard mechanisms for limiting access to desig-
nated Web pages. These mechanisms can apply to static pages as well as
those generated by servlets, so many authors use their server-specific mecha-
nisms for restricting access to servlets. Furthermore, most users at e-com-
merce sites prefer to use regular HTML forms to provide authorization
information since these forms are more familiar, can provide more explana-
tory information, and can ask for additional information beyond just a user-
name and password. Once a servlet that uses form-based access grants initial
access to a user, it would use session tracking to give the user access to other
pages that require the same level of authorization. See Chapter 9 (Session
Tracking) for more information.

Nevertheless, form-based access control requires more effort on the part
of the servlet developer, and HTTP-based authorization is sufficient for many
simple applications. Here’s a summary of the steps involved for “basic” autho-
rization. There is also a slightly better variation called “digest” authorization,
but among the major browsers, only Internet Explorer supports it.

Figure 4–3 Since the Windows version of Internet Explorer 5.0 supports gzip, this
page was sent gzipped over the network and reconstituted by the browser, resulting in a
large saving in download time.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

108 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
1. Check whether there is an Authorization header. If there is
no such header, go to Step 2. If there is, skip over the word
“basic” and reverse the base64 encoding of the remaining part.
This results in a string of the form username:password. Check
the username and password against some stored set. If it
matches, return the page. If not, go to Step 2.

2. Return a 401 (Unauthorized) response code and a header of
the following form:
WWW-Authenticate: BASIC realm="some-name"

This response instructs the browser to pop up a dialog box tell-
ing the user to enter a name and password for some-name, then
to reconnect with that username and password embedded in a
single base64 string inside the Authorization header.

If you care about the details, base64 encoding is explained in RFC 1521
(remember, to retrieve RFCs, start at http://www.rfc-editor.org/ to
get a current list of the RFC archive sites). However, there are probably
only two things you need to know about it. First, it is not intended to pro-
vide security, as the encoding can be easily reversed. So, it does not obviate
the need for SSL to thwart attackers who might be able to snoop on your
network connection (no easy task unless they are on your local subnet).
SSL, or Secure Sockets Layer, is a variation of HTTP where the entire
stream is encrypted. It is supported by many commercial servers and is
generally invoked by using https in the URL instead of http. Servlets can
run on SSL servers just as easily as on standard servers, and the encryption
and decryption is handled transparently before the servlets are invoked.
The second point you should know about base64 encoding is that Sun pro-
vides the sun.misc.BASE64Decoder class, distributed with both JDK 1.1
and 1.2, to decode strings that were encoded with base64. Just be aware
that classes in the sun package hierarchy are not part of the official lan-
guage specification, and thus are not guaranteed to appear in all implemen-
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 109

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

tations. So, if you use this decoder class, make sure that you explicitly
include the class file when you distribute your application.

Listing 4.3 presents a password-protected servlet. It is explicitly registered
with the Web server under the name SecretServlet. The process for regis-
tering servlets varies from server to server, but Section 2.7 (An Example
Using Initialization Parameters) gives details on the process for Tomcat, the
JSWDK and the Java Web Server. The reason the servlet is registered is so
that initialization parameters can be associated with it, since most servers
don’t let you set initialization parameters for servlets that are available merely
by virtue of being in the servlets (or equivalent) directory. The initializa-
tion parameter gives the location of a Java Properties file that stores user
names and passwords. If the security of the page was very important, you’d
want to encrypt the passwords so that access to the Properties file would
not equate to knowledge of the passwords.

In addition to reading the incoming Authorization header, the servlet
specifies a status code of 401 and sets the outgoing WWW-Authenticate
header. Status codes are discussed in detail in Chapter 6 (Generating the
Server Response: HTTP Status Codes), but for now, just note that they con-
vey high-level information to the browser and generally need to be set when-
ever the response is something other than the document requested. The
most common way to set status codes is through the use of the setStatus
method of HttpServletResponse, and you typically supply a constant
instead of an explicit integer in order to make your code clearer and to pre-
vent typographic errors.

WWW-Authenticate and other HTTP response headers are discussed in
Chapter 7 (Generating the Server Response: HTTP Response Headers), but
for now note that they convey auxiliary information to support the response
specified by the status code, and they are commonly set through use of the
setHeader method of HttpServletResponse.

Figures 4–4, 4–5, and 4–6 show the result when a user first tries to access
the page, after the user enters an unknown password, and after the user
enters a known password. Listing 4.4 gives the program that built the simple
password file.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

110 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 4.3 ProtectedPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Properties;
import sun.misc.BASE64Decoder;

/** Example of password-protected pages handled directly
 * by servlets.
*/

public class ProtectedPage extends HttpServlet {
 private Properties passwords;
 private String passwordFile;

 /** Read the password file from the location specified
 * by the passwordFile initialization parameter.
 */

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 try {
 passwordFile = config.getInitParameter("passwordFile");
 passwords = new Properties();
 passwords.load(new FileInputStream(passwordFile));
 } catch(IOException ioe) {}
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String authorization = request.getHeader("Authorization");
 if (authorization == null) {
 askForPassword(response);
 } else {
 String userInfo = authorization.substring(6).trim();
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 111

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 BASE64Decoder decoder = new BASE64Decoder();
 String nameAndPassword =
 new String(decoder.decodeBuffer(userInfo));
 int index = nameAndPassword.indexOf(":");
 String user = nameAndPassword.substring(0, index);
 String password = nameAndPassword.substring(index+1);
 String realPassword = passwords.getProperty(user);
 if ((realPassword != null) &&
 (realPassword.equals(password))) {
 String title = "Welcome to the Protected Page";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "Congratulations. You have accessed a\n" +
 "highly proprietary company document.\n" +
 "Shred or eat all hardcopies before\n" +
 "going to bed tonight.\n" +
 "</BODY></HTML>");
 } else {
 askForPassword(response);
 }
 }
 }

 // If no Authorization header was supplied in the request.

 private void askForPassword(HttpServletResponse response) {
 response.setStatus(response.SC_UNAUTHORIZED); // Ie 401
 response.setHeader("WWW-Authenticate",
 "BASIC realm=\"privileged-few\"");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 4.3 ProtectedPage.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

112 Chapter 4 Handling the Client Request: HTTP Request Headers

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 4–4 Initial result when accessing SecretServlet (the registered name for
the ProtectedPage servlet).

Figure 4–5 Result after entering incorrect name or password.

Figure 4–6 Result after entering known name and password.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 113

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 4.4 PasswordBuilder.java

import java.util.*;
import java.io.*;

/** Application that writes a simple Java properties file
 * containing usernames and associated passwords.
*/

public class PasswordBuilder {
 public static void main(String[] args) throws Exception {
 Properties passwords = new Properties();
 passwords.put("marty", "martypw");
 passwords.put("bj", "bjpw");
 passwords.put("lindsay", "lindsaypw");
 passwords.put("nathan", "nathanpw");
 // This location should *not* be Web-accessible.
 String passwordFile =
 "C:\\JavaWebServer2.0\\data\\passwords.properties";
 FileOutputStream out = new FileOutputStream(passwordFile);
 // Using JDK 1.1 for portability among all servlet
 // engines. In JDK 1.2, use "store" instead of "save"
 // to avoid deprecation warnings.
 passwords.save(out, "Passwords");
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Accessing the
Standard CGI

Variables
Topics in This Chapter

• The idea of “CGI variables”

• The servlet equivalent of each standard CGI variable

• A servlet that shows the values of all CGI variables
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
f you come to servlets with a background in traditional Common Gate-
way Interface (CGI) programming, you are probably used to the idea of
“CGI variables.” These are a somewhat eclectic collection of informa-

tion about the current request. Some are based on the HTTP request line
and headers (e.g., form data), others are derived from the socket itself (e.g.,
the name and IP address of the requesting host), and still others are taken
from server installation parameters (e.g., the mapping of URLs to actual
paths).

Although it probably makes more sense to think of different sources of
data (request data, server information, etc.) as distinct, experienced CGI pro-
grammers may find it useful to see the servlet equivalent of each of the CGI
variables. If you don’t have a background in traditional CGI, first, count your
blessings; servlets are easier to use, more flexible and more efficient than
standard CGI. Second, just skim this chapter, noting the parts not directly
related to the incoming HTTP request. In particular, observe that you can
use getServletContext().getRealPath to map a URI (the part of the
URL that comes after the host and port) to an actual path and that you can
use request.getRemoteHost and request.getRemoteAddress to get the
name and IP address of the client.

I

115

116 Chapter 5 Accessing the Standard CGI Variables

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
5.1 Servlet Equivalent of CGI
Variables

For each standard CGI variable, this section summarizes its purpose and the
means of accessing it from a servlet. As usual, once you are familiar with this
information, you may want to use Appendix A (Servlet and JSP Quick
Reference) as a reminder. Assume request is the HttpServletRequest
supplied to the doGet and doPost methods.

AUTH_TYPE
If an Authorization header was supplied, this variable gives the
scheme specified (basic or digest). Access it with request.getAu-
thType().

CONTENT_LENGTH
For POST requests only, this variable stores the number of bytes of data
sent, as given by the Content-Length request header. Technically,
since the CONTENT_LENGTH CGI variable is a string, the servlet
equivalent is String.valueOf(request.getContentLength()) or
request.getHeader("Content-Length"). You'll probably want to
just call request.getContentLength(), which returns an int.

CONTENT_TYPE
CONTENT_TYPE designates the MIME type of attached data, if specified.
See Table 7.1 in Section 7.2 (HTTP 1.1 Response Headers and Their
Meaning) for the names and meanings of the common MIME types.
Access CONTENT_TYPE with request.getContentType().

 DOCUMENT_ROOT
The DOCUMENT_ROOT variable specifies the real directory corresponding
to the URL http://host/. Access it with
getServletContext().getRealPath("/"). In older servlet specifica-
tions you accessed this variable with request.getRealPath("/"); the
older access method is no longer supported. Also, you can use get-
ServletContext().getRealPath to map an arbitrary URI (i.e., URL
suffix that comes after the hostname and port) to an actual path on the
local machine.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

5.1 Servlet Equivalent of CGI Variables 117

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
HTTP_XXX_YYY
Variables of the form HTTP_HEADER_NAME were how CGI programs
obtained access to arbitrary HTTP request headers. The Cookie header
became HTTP_COOKIE, User-Agent became HTTP_USER_AGENT, Ref-
erer became HTTP_REFERER, and so forth. Servlets should just use
request.getHeader or one of the shortcut methods described in
Chapter 4 (Handling the Client Request: HTTP Request Headers).

PATH_INFO
This variable supplies any path information attached to the URL after the
address of the servlet but before the query data. For example, with
http://host/servlet/coreservlets.SomeServ-

let/foo/bar?baz=quux, the path information is /foo/bar. Since serv-
lets, unlike standard CGI programs, can talk directly to the server, they
don’t need to treat path information specially. Path information could be
sent as part of the regular form data and then translated by getServlet-
Context().getRealPath. Access the value of PATH_INFO by using
request.getPathInfo().

PATH_TRANSLATED
PATH_TRANSLATED gives the path information mapped to a real path on
the server. Again, with servlets there is no need to have a special case for
path information, since a servlet can call getServletContext().get-
RealPath to translate partial URLs into real paths. This translation is
not possible with standard CGI because the CGI program runs entirely
separately from the server. Access this variable by means of
request.getPathTranslated().

QUERY_STRING
For GET requests, this variable gives the attached data as a single string
with values still URL-encoded. You rarely want the raw data in servlets;
instead, use request.getParameter to access individual parameters,
as described in Chapter 3 (Handling the Client Request: Form Data).
However, if you do want the raw data, you can get it via
request.getQueryString().

REMOTE_ADDR
This variable designates the IP address of the client that made the
request, as a String (e.g., "198.137.241.30"). Access it by calling
request.getRemoteAddr().
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

118 Chapter 5 Accessing the Standard CGI Variables

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
REMOTE_HOST

REMOTE_HOST indicates the fully qualified domain name (e.g., white-
house.gov) of the client that made the request. The IP address is
returned if the domain name cannot be determined. You can access this
variable with request.getRemoteHost().

REMOTE_USER

If an Authorization header was supplied and decoded by the server
itself, the REMOTE_USER variable gives the user part, which is useful
for session tracking in protected sites. Access it with request.get-
RemoteUser(). For decoding Authorization information directly in
servlets, see Section 4.5 (Restricting Access to Web Pages).

REQUEST_METHOD

This variable stipulates the HTTP request type, which is usually GET or
POST but is occasionally HEAD, PUT, DELETE, OPTIONS, or TRACE. Servlets
rarely need to look up REQUEST_METHOD explicitly, since each of the
request types is typically handled by a different servlet method (doGet,
doPost, etc.). An exception is HEAD, which is handled automatically by
the service method returning whatever headers and status codes the
doGet method would use. Access this variable by means of
request.getMethod().

SCRIPT_NAME

This variable specifies the path to the servlet, relative to the server’s root
directory. It can be accessed through request.getServletPath().

SERVER_NAME

SERVER_NAME gives the host name of the server machine. It can be
accessed by means of request.getServerName().

SERVER_PORT

This variable stores the port the server is listening on. Technically, the
servlet equivalent is String.valueOf(request.getServerPort()),
which returns a String. You’ll usually just want request.getServer-
Port(), which returns an int.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

5.2 A Servlet That Shows the CGI Variables 119

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
SERVER_PROTOCOL
The SERVER_PROTOCOL variable indicates the protocol name and ver-
sion used in the request line (e.g., HTTP/1.0 or HTTP/1.1). Access it by
calling request.getProtocol().

SERVER_SOFTWARE
This variable gives identifying information about the Web server. Access
it by means of getServletContext().getServerInfo().

5.2 A Servlet That Shows the CGI
Variables

Listing 5.1 presents a servlet that creates a table showing the values of all the
CGI variables other than HTTP_XXX_YYY, which are just the HTTP request
headers described in Chapter 4. Figure 5–1 shows the result for a typical
request.

Listing 5.1 ShowCGIVariables.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Creates a table showing the current value of each
 * of the standard CGI variables.
 */

public class ShowCGIVariables extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String[][] variables =
 { { "AUTH_TYPE", request.getAuthType() },
 { "CONTENT_LENGTH",
 String.valueOf(request.getContentLength()) },
 { "CONTENT_TYPE", request.getContentType() },
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

120 Chapter 5 Accessing the Standard CGI Variables

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 { "DOCUMENT_ROOT",
 getServletContext().getRealPath("/") },
 { "PATH_INFO", request.getPathInfo() },
 { "PATH_TRANSLATED", request.getPathTranslated() },
 { "QUERY_STRING", request.getQueryString() },
 { "REMOTE_ADDR", request.getRemoteAddr() },
 { "REMOTE_HOST", request.getRemoteHost() },
 { "REMOTE_USER", request.getRemoteUser() },
 { "REQUEST_METHOD", request.getMethod() },
 { "SCRIPT_NAME", request.getServletPath() },
 { "SERVER_NAME", request.getServerName() },
 { "SERVER_PORT",
 String.valueOf(request.getServerPort()) },
 { "SERVER_PROTOCOL", request.getProtocol() },
 { "SERVER_SOFTWARE",
 getServletContext().getServerInfo() }
 };
 String title = "Servlet Example: Showing CGI Variables";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "<TABLE BORDER=1 ALIGN=CENTER>\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>CGI Variable Name<TH>Value");
 for(int i=0; i<variables.length; i++) {
 String varName = variables[i][0];
 String varValue = variables[i][1];
 if (varValue == null)
 varValue = "<I>Not specified</I>";
 out.println("<TR><TD>" + varName + "<TD>" + varValue);
 }
 out.println("</TABLE></BODY></HTML>");
 }

 /** POST and GET requests handled identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 5.1 ShowCGIVariables.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

5.2 A Servlet That Shows the CGI Variables 121

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Figure 5–1 The standard CGI variables for a typical request.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Generating the
Server Response:

HTTP Status
Codes
Topics in This Chapter

• The purpose of HTTP status codes

• The way to specify status codes from servlets

• The meaning of each of the HTTP 1.1 status code values

• A servlet that uses status codes to redirect users to other
sites and to report errors
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
hen a Web server responds to a request from a browser or other
Web client, the response typically consists of a status line, some
response headers, a blank line, and the document. Here is a

minimal example:
HTTP/1.1 200 OK
Content-Type: text/plain

Hello World

The status line consists of the HTTP version (HTTP/1.1 in the example
above), a status code (an integer; 200 in the above example), and a very short
message corresponding to the status code (OK in the example). In most cases,
all of the headers are optional except for Content-Type, which specifies the
MIME type of the document that follows. Although most responses contain a
document, some don’t. For example, responses to HEAD requests should
never include a document, and there are a variety of status codes that essen-
tially indicate failure and either don’t include a document or include only a
short error message document.

Servlets can perform a variety of important tasks by manipulating the sta-
tus line and the response headers. For example, they can forward the user to
other sites; indicate that the attached document is an image, Adobe Acrobat
file, or HTML file; tell the user that a password is required to access the doc-
ument; and so forth. This chapter discusses the various status codes and what

W

123

124 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
can be accomplished with them, and the following chapter discusses the
response headers.

6.1 Specifying Status Codes

As just described, the HTTP response status line consists of an HTTP ver-
sion, a status code, and an associated message. Since the message is directly
associated with the status code and the HTTP version is determined by the
server, all a servlet needs to do is to set the status code. The way to do this is
by the setStatus method of HttpServletResponse. If your response
includes a special status code and a document, be sure to call setStatus
before actually returning any of the content via the PrintWriter. That’s
because an HTTP response consists of the status line, one or more headers,
a blank line, and the actual document, in that order. The headers can
appear in any order, and servlets buffer the headers and send them all at
once, so it is legal to set the status code (part of the first line returned) even
after setting headers. But servlets do not necessarily buffer the document
itself, since users might want to see partial results for long pages. In version
2.1 of the servlet specification, the PrintWriter output is not buffered at
all, so the first time you use the PrintWriter, it is too late to go back and
set headers. In version 2.2, servlet engines are permitted to partially buffer
the output, but the size of the buffer is left unspecified. You can use the
getBufferSize method of HttpServletResponse to determine the size,
or use setBufferSize to specify it. In version 2.2 with buffering enabled,
you can set status codes until the buffer fills up and is actually sent to the
client. If you aren’t sure if the buffer has been sent, you can use the isCom-
mitted method to check.

Core Approach

Be sure to set status codes before sending any document content to the
client.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.1 Specifying Status Codes 125

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The setStatus method takes an int (the status code) as an argument,
but instead of using explicit numbers, it is clearer and more reliable to use
the constants defined in HttpServletResponse. The name of each con-
stant is derived from the standard HTTP 1.1 message for each constant, all
uppercase with a prefix of SC (for Status Code) and spaces changed to
underscores. Thus, since the message for 404 is “Not Found,” the equiva-
lent constant in HttpServletResponse is SC_NOT_FOUND. In version 2.1 of
the servlet specification, there are three exceptions. The constant for code
302 is derived from the HTTP 1.0 message (Moved Temporarily), not the
HTTP 1.1 message (Found), and the constants for codes 307 (Temporary
Redirect) and 416 (Requested Range Not Satisfiable) are missing alto-
gether. Version 2.2 added the constant for 416, but the inconsistencies for
307 and 302 remain.

Although the general method of setting status codes is simply to call
response.setStatus(int), there are two common cases where a shortcut
method in HttpServletResponse is provided. Just be aware that both of
these methods throw IOException, whereas setStatus doesn’t.

• public void sendError(int code, String message)

The sendError method sends a status code (usually 404) along
with a short message that is automatically formatted inside an
HTML document and sent to the client.

• public void sendRedirect(String url)

The sendRedirect method generates a 302 response along
with a Location header giving the URL of the new document.
With servlets version 2.1, this must be an absolute URL. In
version 2.2, either an absolute or a relative URL is permitted
and the system automatically translates relative URLs into
absolute ones before putting them in the Location header.

Setting a status code does not necessarily mean that you don’t need to
return a document. For example, although most servers automatically gener-
ate a small “File Not Found” message for 404 responses, a servlet might want
to customize this response. Remember that if you do send output, you have
to call setStatus or sendError first.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

126 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
6.2 HTTP 1.1 Status Codes and
Their Purpose

The following sections describe each of the status codes available for use in
servlets talking to HTTP 1.1 clients, along with the standard message associ-
ated with each code. A good understanding of these codes can dramatically
increase the capabilities of your servlets, so you should at least skim the
descriptions to see what options are at your disposal. You can come back to
get details when you are ready to make use of some of the capabilities. Note
that Appendix A (Servlet and JSP Quick Reference) presents a brief summary
of these codes in tabular format.

The complete HTTP 1.1 specification is given in RFC 2616, which you can
access on-line by going to http://www.rfc-editor.org/ and following the
links to the latest RFC archive sites. Codes that are new in HTTP 1.1 are
noted, since many browsers support only HTTP 1.0. You should only send
the new codes to clients that support HTTP 1.1, as verified by checking
request.getRequestProtocol.

The rest of this section describes the specific status codes available in
HTTP 1.1. These codes fall into five general categories:

• 100-199
Codes in the 100s are informational, indicating that the client
should respond with some other action.

• 200-299
Values in the 200s signify that the request was successful.

• 300-399
Values in the 300s are used for files that have moved and usually
include a Location header indicating the new address.

• 400-499
Values in the 400s indicate an error by the client.

• 500-599
Codes in the 500s signify an error by the server.

The constants in HttpServletResponse that represent the various codes
are derived from the standard messages associated with the codes. In serv-
lets, you usually refer to status codes only by means of these constants. For
example, you would use response.setSta-

tus(response.SC_NO_CONTENT) rather than response.setStatus(204),
since the latter is unclear to readers and is prone to typographical errors.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 127

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

However, you should note that servers are allowed to vary the messages
slightly, and clients pay attention only to the numeric value. So, for example,
you might see a server return a status line of HTTP/1.1 200 Document Fol-
lows instead of HTTP/1.1 200 OK.

100 (Continue)

If the server receives an Expect request header with a value of
100-continue, it means that the client is asking if it can send an
attached document in a follow-up request. In such a case, the server
should either respond with status 100 (SC_CONTINUE) to tell the client
to go ahead or use 417 (Expectation Failed) to tell the browser it
won’t accept the document. This status code is new in HTTP 1.1.

101 (Switching Protocols)

A 101 (SC_SWITCHING_PROTOCOLS) status indicates that the server will
comply with the Upgrade header and change to a different protocol.
This status code is new in HTTP 1.1.

200 (OK)

A value of 200 (SC_OK) means that everything is fine. The document fol-
lows for GET and POST requests. This status is the default for servlets; if
you don’t use setStatus, you’ll get 200.

201 (Created)

A status code of 201 (SC_CREATED) signifies that the server created a
new document in response to the request; the Location header should
give its URL.

202 (Accepted)

A value of 202 (SC_ACCEPTED) tells the client that the request is being
acted upon, but processing is not yet complete.

203 (Non-Authoritative Information)

A 203 (SC_NON_AUTHORITATIVE_INFORMATION) status signifies that the
document is being returned normally, but some of the response headers
might be incorrect since a document copy is being used. This status
code is new in HTTP 1.1.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

128 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
204 (No Content)
A status code of 204 (SC_NO_CONTENT) stipulates that the browser
should continue to display the previous document because no new doc-
ument is available. This behavior is useful if the user periodically
reloads a page by pressing the “Reload” button, and you can determine
that the previous page is already up-to-date. For example, a servlet
might do something like this:

int pageVersion =

Integer.parseInt(request.getParameter("pageVersion"));

if (pageVersion >= currentVersion) {

response.setStatus(response.SC_NO_CONTENT);

} else {

// Create regular page

}

However, this approach does not work for pages that are automatically
reloaded via the Refresh response header or the equivalent <META
HTTP-EQUIV="Refresh" ...> HTML entry, since returning a 204 sta-
tus code stops future reloading. JavaScript-based automatic reloading
could still work in such a case, though. See the discussion of Refresh in
Section 7.2 (HTTP 1.1 Response Headers and Their Meaning) for
details.

205 (Reset Content)
A value of 205 (SC_RESET_CONTENT) means that there is no new docu-
ment, but the browser should reset the document view. This status
code is used to force browsers to clear form fields. It is new in HTTP
1.1.

206 (Partial Content)
A status code of 206 (SC_PARTIAL_CONTENT) is sent when the server
fulfills a partial request that includes a Range header. This value is new
in HTTP 1.1.

300 (Multiple Choices)
A value of 300 (SC_MULTIPLE_CHOICES) signifies that the requested
document can be found several places, which will be listed in the
returned document. If the server has a preferred choice, it should be
listed in the Location response header.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 129

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

301 (Moved Permanently)
The 301 (SC_MOVED_PERMANENTLY) status indicates that the requested
document is elsewhere; the new URL for the document is given in the
Location response header. Browsers should automatically follow the
link to the new URL.

302 (Found)
This value is similar to 301, except that the URL given by the Location
header should be interpreted as a temporary replacement, not a perma-
nent one. Note: in HTTP 1.0, the message was Moved Temporarily
instead of Found, and the constant in HttpServletResponse is
SC_MOVED_TEMPORARILY, not the expected SC_FOUND.

Core Note

The constant representing 302 is SC_MOVED_TEMPORARILY, not
SC_FOUND.

Status code 302 is very useful because browsers automatically follow
the reference to the new URL given in the Location response header.
It is so useful, in fact, that there is a special method for it, sendRedi-
rect. Using response.sendRedirect(url) has a couple of advan-
tages over using
response.setStatus(response.SC_MOVED_TEMPORARILY) and
response.setHeader("Location", url). First, it is shorter and
easier. Second, with sendRedirect, the servlet automatically builds a
page containing the link to show to older browsers that don’t automat-
ically follow redirects. Finally, with version 2.2 of servlets (the version
in J2EE), sendRedirect can handle relative URLs, automatically
translating them into absolute ones. You must use an absolute URL in
version 2.1, however.
If you redirect the user to another page within your own site, you should
pass the URL through the encodeURL method of HttpServletRe-
sponse. Doing so is a simple precaution in case you ever use session
tracking based on URL-rewriting. URL-rewriting is a way to track users
who have cookies disabled while they are at your site. It is implemented
by adding extra path information to the end of each URL, but the serv-
let session-tracking API takes care of the details automatically. Session
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

130 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
tracking is discussed in Chapter 9, and it is a good idea to use enco-
deURL routinely so that you can add session tracking at a later time with
minimal changes to the code.

Core Approach

If you redirect users to a page within your site, plan ahead for session
tracking by using
response.sendRedirect(response.encodeURL(url)),
rather than just
response.sendRedirect(url).

This status code is sometimes used interchangeably with 301. For exam-
ple, if you erroneously ask for http://host/~user (missing the trailing
slash), some servers will reply with a 301 code while others will use 302.

Technically, browsers are only supposed to automatically follow the
redirection if the original request was GET. For details, see the discus-
sion of the 307 status code.

303 (See Other)

The 303 (SC_SEE_OTHER) status is similar to 301 and 302, except that
if the original request was POST, the new document (given in the
Location header) should be retrieved with GET. This code is new in
HTTP 1.1.

304 (Not Modified)

When a client has a cached document, it can perform a conditional
request by supplying an If-Modified-Since header to indicate that it
only wants the document if it has been changed since the specified date.
A value of 304 (SC_NOT_MODIFIED) means that the cached version is
up-to-date and the client should use it. Otherwise, the server should
return the requested document with the normal (200) status code. Serv-
lets normally should not set this status code directly. Instead, they
should implement the getLastModified method and let the default
service method handle conditional requests based upon this modifica-
tion date. An example of this approach is given in Section 2.8 (An Exam-
ple Using Servlet Initialization and Page Modification Dates).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 131

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

305 (Use Proxy)

A value of 305 (SC_USE_PROXY) signifies that the requested document
should be retrieved via the proxy listed in the Location header. This
status code is new in HTTP 1.1.

307 (Temporary Redirect)

The rules for how a browser should handle a 307 status are identical to
those for 302. The 307 value was added to HTTP 1.1 since many brows-
ers erroneously follow the redirection on a 302 response even if the
original message is a POST. Browsers are supposed to follow the redirec-
tion of a POST request only when they receive a 303 response status.
This new status is intended to be unambiguously clear: follow redi-
rected GET and POST requests in the case of 303 responses; follow redi-
rected GET but not POST requests in the case of 307 responses. Note:
For some reason there is no constant in HttpServletResponse corre-
sponding to this status code. This status code is new in HTTP 1.1.

Core Note

There is no SC_TEMPORARY_REDIRECT constant in
HttpServletResponse, so you have to use 307 explicitly.

400 (Bad Request)

A 400 (SC_BAD_REQUEST) status indicates bad syntax in the client
request.

401 (Unauthorized)

A value of 401 (SC_UNAUTHORIZED) signifies that the client tried to
access a password-protected page without proper identifying informa-
tion in the Authorization header. The response must include a
WWW-Authenticate header. For an example, see Section 4.5, “Restrict-
ing Access to Web Pages.”

403 (Forbidden)

A status code of 403 (SC_FORBIDDEN) means that the server refuses to
supply the resource, regardless of authorization. This status is often the
result of bad file or directory permissions on the server.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

132 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
404 (Not Found)

The infamous 404 (SC_NOT_FOUND) status tells the client that no
resource could be found at that address. This value is the standard “no
such page” response. It is such a common and useful response that
there is a special method for it in the HttpServletResponse class:
sendError("message"). The advantage of sendError over setSta-
tus is that, with sendError, the server automatically generates an error
page showing the error message. Unfortunately, however, the default
behavior of Internet Explorer 5 is to ignore the error page you send
back and displays its own, even though doing so contradicts the HTTP
specification. To turn off this setting, go to the Tools menu, select Inter-
net Options, choose the Advanced tab, and make sure “Show friendly
HTTP error messages” box is not checked. Unfortunately, however, few
users are aware of this setting, so this “feature” prevents most users of
Internet Explorer version 5 from seeing any informative messages you
return. Other major browsers and version 4 of Internet Explorer prop-
erly display server-generated error pages. See Figures 6–3 and 6–4 for
an example.

Core Warning

By default, Internet Explorer version 5 ignores server-generated error pages.

405 (Method Not Allowed)

A 405 (SC_METHOD_NOT_ALLOWED) value indicates that the request
method (GET, POST, HEAD, PUT, DELETE, etc.) was not allowed for this
particular resource. This status code is new in HTTP 1.1.

406 (Not Acceptable)

A value of 406 (SC_NOT_ACCEPTABLE) signifies that the requested
resource has a MIME type incompatible with the types specified
by the client in its Accept header. See Table 7.1 in Section 7.2
(HTTP 1.1 Response Headers and Their Meaning) for the names
and meanings of the common MIME types. The 406 value is new in
HTTP 1.1.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 133

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

407 (Proxy Authentication Required)
The 407 (SC_PROXY_AUTHENTICATION_REQUIRED) value is similar
to 401, but it is used by proxy servers. It indicates that the client must
authenticate itself with the proxy server. The proxy server returns a
Proxy-Authenticate response header to the client, which results
in the browser reconnecting with a Proxy-Authorization request
header. This status code is new in HTTP 1.1.

408 (Request Timeout)
The 408 (SC_REQUEST_TIMEOUT) code means that the client took too
long to finish sending the request. It is new in HTTP 1.1.

409 (Conflict)
Usually associated with PUT requests, the 409 (SC_CONFLICT) status is
used for situations such as an attempt to upload an incorrect version of a
file. This status code is new in HTTP 1.1.

410 (Gone)
A value of 410 (SC_GONE) tells the client that the requested document
is gone and no forwarding address is known. Status 410 differs from
404 in that the document is known to be permanently gone, not just
unavailable for unknown reasons, as with 404. This status code is new
in HTTP 1.1.

411 (Length Required)
A status of 411 (SC_LENGTH_REQUIRED) signifies that the server cannot
process the request (assumedly a POST request with an attached docu-
ment) unless the client sends a Content-Length header indicating the
amount of data being sent to the server. This value is new in HTTP 1.1.

412 (Precondition Failed)
The 412 (SC_PRECONDITION_FAILED) status indicates that some pre-
condition specified in the request headers was false. It is new in HTTP
1.1.

413 (Request Entity Too Large)
A status code of 413 (SC_REQUEST_ENTITY_TOO_LARGE) tells the client
that the requested document is bigger than the server wants to handle
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

134 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
now. If the server thinks it can handle it later, it should include a
Retry-After response header. This value is new in HTTP 1.1.

414 (Request URI Too Long)
The 414 (SC_REQUEST_URI_TOO_LONG) status is used when the URI is
too long. In this context, “URI” means the part of the URL that came
after the host and port in the URL. For example, in
http://www.y2k-disaster.com:8080/we/look/silly/now/, the
URI is /we/look/silly/now/. This status code is new in HTTP 1.1.

415 (Unsupported Media Type)
A value of 415 (SC_UNSUPPORTED_MEDIA_TYPE) means that the request
had an attached document of a type the server doesn’t know how to
handle. This status code is new in HTTP 1.1.

416 (Requested Range Not Satisfiable)
A status code of 416 signifies that the client included an unsatisfiable
Range header in the request. This value is new in HTTP 1.1. Surpris-
ingly, the constant that corresponds to this value was omitted from
HttpServletResponse in version 2.1 of the servlet API.

Core Note

In version 2.1 of the servlet specification, there is no
SC_REQUESTED_RANGE_NOT_SATISFIABLE constant in
HttpServletResponse, so you have to use 416 explicitly. The constant
is available in version 2.2 and later.

417 (Expectation Failed)
If the server receives an Expect request header with a value of
100-continue, it means that the client is asking if it can send an
attached document in a follow-up request. In such a case, the server
should either respond with this status (417) to tell the browser it won’t
accept the document or use 100 (SC_CONTINUE) to tell the client to go
ahead. This status code is new in HTTP 1.1.

500 (Internal Server Error)
500 (SC_INTERNAL_SERVER_ERROR) is the generic “server is confused”
status code. It often results from CGI programs or (heaven forbid!)
servlets that crash or return improperly formatted headers.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 135

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

501 (Not Implemented)
The 501 (SC_NOT_IMPLEMENTED) status notifies the client that the
server doesn’t support the functionality to fulfill the request. It is used,
for example, when the client issues a command like PUT that the server
doesn’t support.

502 (Bad Gateway)
A value of 502 (SC_BAD_GATEWAY) is used by servers that act as proxies
or gateways; it indicates that the initial server got a bad response from
the remote server.

503 (Service Unavailable)
A status code of 503 (SC_SERVICE_UNAVAILABLE) signifies that the
server cannot respond because of maintenance or overloading. For
example, a servlet might return this header if some thread or database
connection pool is currently full. The server can supply a Retry-After
header to tell the client when to try again.

504 (Gateway Timeout)
A value of 504 (SC_GATEWAY_TIMEOUT) is used by servers that act as
proxies or gateways; it indicates that the initial server didn’t get a timely
response from the remote server. This status code is new in HTTP 1.1.

505 (HTTP Version Not Supported)
The 505 (SC_HTTP_VERSION_NOT_SUPPORTED) code means that the
server doesn’t support the version of HTTP named in the request line.
This status code is new in HTTP 1.1.

6.3 A Front End to Various Search
Engines

Listing 6.1 presents an example that makes use of the two most common sta-
tus codes other than 200 (OK): 302 (Found) and 404 (Not Found). The 302
code is set by the shorthand sendRedirect method of HttpServletRe-
sponse, and 404 is specified by sendError.

In this application, an HTML form (see Figure 6–1 and the source code in
Listing 6.3) first displays a page that lets the user choose a search string, the
number of results to show per page, and the search engine to use. When the
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

136 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
form is submitted, the servlet extracts those three parameters, constructs a
URL with the parameters embedded in a way appropriate to the search
engine selected (see the SearchSpec class of Listing 6.2), and redirects the
user to that URL (see Figure 6–2). If the user fails to choose a search engine
or specify search terms, an error page informs the client of this fact (see Fig-
ures 6–3 and 6–4).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 137

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 6.1 SearchEngines.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** Servlet that takes a search string, number of results per
 * page, and a search engine name, sending the query to
 * that search engine. Illustrates manipulating
 * the response status line. It sends a 302 response
 * (via sendRedirect) if it gets a known search engine,
 * and sends a 404 response (via sendError) otherwise.
 */

public class SearchEngines extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String searchString = request.getParameter("searchString");
 if ((searchString == null) ||
 (searchString.length() == 0)) {
 reportProblem(response, "Missing search string.");
 return;

 }
 // The URLEncoder changes spaces to "+" signs and other
 // non-alphanumeric characters to "%XY", where XY is the
 // hex value of the ASCII (or ISO Latin-1) character.
 // Browsers always URL-encode form values, so the
 // getParameter method decodes automatically. But since
 // we’re just passing this on to another server, we need to
 // re-encode it.
 searchString = URLEncoder.encode(searchString);
 String numResults =
 request.getParameter("numResults");
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

138 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 if ((numResults == null) ||
 (numResults.equals("0")) ||
 (numResults.length() == 0)) {
 numResults = "10";
 }
 String searchEngine =
 request.getParameter("searchEngine");
 if (searchEngine == null) {
 reportProblem(response, "Missing search engine name.");
 return;
 }
 SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs();
 for(int i=0; i<commonSpecs.length; i++) {
 SearchSpec searchSpec = commonSpecs[i];
 if (searchSpec.getName().equals(searchEngine)) {
 String url =
 searchSpec.makeURL(searchString, numResults);
 response.sendRedirect(url);
 return;
 }
 }
 reportProblem(response, "Unrecognized search engine.");
 }

 private void reportProblem(HttpServletResponse response,
 String message)
 throws IOException {
 response.sendError(response.SC_NOT_FOUND,
 "<H2>" + message + "</H2>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 6.1 SearchEngines.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 139

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 6.2 SearchSpec.java

package coreservlets;

/** Small class that encapsulates how to construct a
 * search string for a particular search engine.
 */

class SearchSpec {
 private String name, baseURL, numResultsSuffix;

 private static SearchSpec[] commonSpecs =
 { new SearchSpec("google",
 "http://www.google.com/search?q=",
 "&num="),
 new SearchSpec("infoseek",
 "http://infoseek.go.com/Titles?qt=",
 "&nh="),
 new SearchSpec("lycos",
 "http://lycospro.lycos.com/cgi-bin/" +
 "pursuit?query=",
 "&maxhits="),
 new SearchSpec("hotbot",
 "http://www.hotbot.com/?MT=",
 "&DC=")
 };

 public SearchSpec(String name,
 String baseURL,
 String numResultsSuffix) {
 this.name = name;
 this.baseURL = baseURL;
 this.numResultsSuffix = numResultsSuffix;
 }

 public String makeURL(String searchString,
 String numResults) {
 return(baseURL + searchString +
 numResultsSuffix + numResults);
 }

 public String getName() {
 return(name);
 }

 public static SearchSpec[] getCommonSpecs() {
 return(commonSpecs);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

140 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 6–1 Front end to the SearchEngines servlet. See Listing 6.3 for the HTML
source code.

Figure 6–2 Result of the SearchEngines servlet when the form of Figure 6–1 is
submitted.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 141

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 6–3 Result of SearchEngines servlet when no search string was specified.
Internet Explorer 5 displays its own error page, even though the servlet generates one.

Figure 6–4 Result of SearchEngines servlet when no search string was specified.
Netscape correctly displays the servlet-generated error page.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

142 Chapter 6 Generating the Server Response: HTTP Status Codes

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 6.3 SearchEngines.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Searching the Web</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Searching the Web</H1>

<FORM ACTION="/servlet/coreservlets.SearchEngines">
 <CENTER>
 Search String:
 <INPUT TYPE="TEXT" NAME="searchString">

 Results to Show Per Page:
 <INPUT TYPE="TEXT" NAME="numResults"
 VALUE=10 SIZE=3>

 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="google">
 Google |
 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="infoseek">
 Infoseek |
 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="lycos">
 Lycos |
 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="hotbot">
 HotBot

 <INPUT TYPE="SUBMIT" VALUE="Search">
 </CENTER>
</FORM>

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 143

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Generating the
Server Response:

HTTP Response
Headers
Topics in This Chapter

• Setting response headers from servlets

• The purpose of each of the HTTP 1.1 response headers

• Common MIME types

• A servlet that uses the Refresh header to repeatedly
access ongoing computations

• Servlets that exploit persistent (keep-alive) HTTP
connections

• Generating GIF images from servlets
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
response from a Web server normally consists of a status line, one or
more response headers, a blank line, and the document. To get the
most out of your servlets, you need to know how to use the status line

and response headers effectively, not just how to generate the document.
Setting the HTTP response headers often goes hand in hand with setting

the status codes in the status line, as discussed in the previous chapter. For
example, all the “document moved” status codes (300 through 307) have an
accompanying Location header, and a 401 (Unauthorized) code always
includes an accompanying WWW-Authenticate header. However, specifying
headers can also play a useful role even when no unusual status code is set.
Response headers can be used to specify cookies, to supply the page modifi-
cation date (for client-side caching), to instruct the browser to reload the
page after a designated interval, to give the file size so that persistent HTTP
connections can be used, to designate the type of document being generated,
and to perform many other tasks.

7.1 Setting Response Headers
from Servlets

The most general way to specify headers is to use the setHeader method of
HttpServletResponse. This method takes two strings: the header name and

A

143

144 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
the header value. As with setting status codes, you must specify headers
before returning the actual document. With servlets version 2.1, this means
that you must set the headers before the first use of the PrintWriter or raw
OutputStream that transmits the document content. With servlets version
2.2 (the version in J2EE), the PrintWriter may use a buffer, so you can set
headers until the first time the buffer is flushed. See Section 6.1 (Specifying
Status Codes) for details.

Core Approach

Be sure to set response headers before sending any document content to
the client.

In addition to the general-purpose setHeader method, HttpServlet-
Response also has two specialized methods to set headers that contain dates
and integers:

• setDateHeader(String header, long milliseconds)

This method saves you the trouble of translating a Java date in
milliseconds since 1970 (as returned by
System.currentTimeMillis, Date.getTime, or
Calendar.getTimeInMillis) into a GMT time string.

• setIntHeader(String header, int headerValue)

This method spares you the minor inconvenience of converting
an int to a String before inserting it into a header.

HTTP allows multiple occurrences of the same header name, and you
sometimes want to add a new header rather than replace any existing header
with the same name. For example, it is quite common to have multiple
Accept and Set-Cookie headers that specify different supported MIME
types and different cookies, respectively. With servlets version 2.1, set-
Header, setDateHeader and setIntHeader always add new headers, so
there is no way to “unset” headers that were set earlier (e.g., by an inherited
method). With servlets version 2.2, setHeader, setDateHeader, and
setIntHeader replace any existing headers of the same name, whereas
addHeader, addDateHeader, and addIntHeader add a header regardless of
whether a header of that name already exists. If it matters to you whether a
specific header has already been set, use containsHeader to check.

Finally, HttpServletResponse also supplies a number of convenience
methods for specifying common headers. These methods are summarized as
follows.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 145

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• setContentType

This method sets the Content-Type header and is used by the
majority of servlets. See Section 7.5 (Using Servlets to Generate
GIF Images) for an example of its use.

• setContentLength

This method sets the Content-Length header, which is useful
if the browser supports persistent (keep-alive) HTTP
connections. See Section 7.4 for an example.

• addCookie

This method inserts a cookie into the Set-Cookie header.
There is no corresponding setCookie method, since it is
normal to have multiple Set-Cookie lines. See Chapter 8 for a
discussion of cookies.

• sendRedirect

As discussed in the previous chapter, the sendRedirect
method sets the Location header as well as setting the status
code to 302. See Section 6.3 (A Front End to Various Search
Engines) for an example.

7.2 HTTP 1.1 Response Headers
and Their Meaning

Following is a summary of the HTTP 1.1 response headers. A good under-
standing of these headers can increase the effectiveness of your servlets, so
you should at least skim the descriptions to see what options are at your dis-
posal. You can come back to get details when you are ready to make use of
the capabilities. Note that Appendix A (Servlet and JSP Quick Reference)
presents a brief summary of these headers for use as a reminder.

These headers are a superset of those permitted in HTTP 1.0. For addi-
tional details on these headers, see the HTTP 1.1 specification, given in RFC
2616. There are a number of places the official RFCs are archived on-line;
your best bet is to start at http://www.rfc-editor.org/ to get a current
list of the archive sites. Header names are not case sensitive, but are tradi-
tionally written with the first letter of each word capitalized.

Be cautious in writing servlets whose behavior depends on response head-
ers that are only available in HTTP 1.1, especially if your servlet needs to run
on the WWW “at large,” rather than on an intranet—many older browsers
support only HTTP 1.0. It is best to explicitly check the HTTP version with
request.getRequestProtocol before using new headers.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

146 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Accept-Ranges
This header, which is new in HTTP 1.1, tells the client whether or not
you accept Range request headers. You typically specify a value of
bytes to indicate that you accept Range requests, and a value of none
to indicate that you do not.

Age
This header is used by proxies to indicate how long ago the document
was generated by the original server. It is new in HTTP 1.1 and is rarely
used by servlets.

Allow
The Allow header specifies the request methods (GET, POST, etc.) that
the server supports. It is required for 405 (Method Not Allowed)
responses. The default service method of servlets automatically gener-
ates this header for OPTIONS requests.

Cache-Control
This useful header tells the browser or other client the circumstances in
which the response document can safely be cached. It has the following
possible values:

• public: Document is cacheable, even if normal rules (e.g., for
password-protected pages) indicate that it shouldn’t be.

• private: Document is for a single user and can only be stored
in private (nonshared) caches.

• no-cache: Document should never be cached (i.e., used to
satisfy a later request). The server can also specify
“no-cache="header1,header2,...,headerN"” to indicate
the headers that should be omitted if a cached response is later
used. Browsers normally do not cache documents that were
retrieved by requests that include form data. However, if a
servlet generates different content for different requests even
when the requests contain no form data, it is critical to tell the
browser not to cache the response. Since older browsers use the
Pragma header for this purpose, the typical servlet approach is
to set both headers, as in the following example.
response.setHeader("Cache-Control", "no-cache");

response.setHeader("Pragma", "no-cache");
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 147

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• no-store: Document should never be cached and should not
even be stored in a temporary location on disk. This header is
intended to prevent inadvertent copies of sensitive information.

• must-revalidate: Client must revalidate document with
original server (not just intermediate proxies) each time it is used.

• proxy-revalidate: This is the same as must-revalidate,
except that it applies only to shared caches.

• max-age=xxx: Document should be considered stale after xxx
seconds. This is a convenient alternative to the Expires header,
but only works with HTTP 1.1 clients. If both max-age and
Expires are present in the response, the max-age value takes
precedence.

• s-max-age=xxx: Shared caches should consider the document
stale after xxx seconds.

The Cache-Control header is new in HTTP 1.1.

Connection
A value of close for this response header instructs the browser not to
use persistent HTTP connections. Technically, persistent connections
are the default when the client supports HTTP 1.1 and does not specify
a “Connection: close” request header (or when an HTTP 1.0 client
specifies “Connection: keep-alive”). However, since persistent con-
nections require a Content-Length response header, there is no reason
for a servlet to explicitly use the Connection header. Just omit the Con-
tent-Length header if you aren’t using persistent connections. See
Section 7.4 (Using Persistent HTTP Connections) for an example of the
use of persistent HTTP connections from servlets.

Content-Encoding
This header indicates the way in which the page was encoded during
transmission. The browser should reverse the encoding before deciding
what to do with the document. Compressing the document with gzip
can result in huge savings in transmission time; for an example, see Sec-
tion 4.4 (Sending Compressed Web Pages).

Content-Language
The Content-Language header signifies the language in which the
document is written. The value of the header should be one of the stan-
dard language codes such as en, en-us, da, etc. See RFC 1766 for
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

148 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
details (you can access RFCs on-line at one of the archive sites listed at
http://www.rfc-editor.org/).

Content-Length
This header indicates the number of bytes in the response. This infor-
mation is needed only if the browser is using a persistent (keep-alive)
HTTP connection. See the Connection header for determining when
the browser supports persistent connections. If you want your servlet to
take advantage of persistent connections when the browser supports it,
your servlet should write the document into a ByteArrayOutput-
Stream, look up its size when done, put that into the Content-Length
field with response.setContentLength, then send the content via
byteArrayStream.writeTo(response.getOutputStream()). For
an example of this approach, see Section 7.4.

Content-Location
This header supplies an alternative address for the requested docu-
ment. Content-Location is informational; responses that include this
header also include the requested document, unlike the case with the
Location header. This header is new to HTTP 1.1.

Content-MD5
The Content-MD5 response header provides an MD5 digest for the
subsequent document. This digest provides a message integrity check
for clients that want to confirm they received the complete, unaltered
document. See RFC 1864 for details on MD5. This header is new in
HTTP 1.1.

Content-Range
This new HTTP 1.1 header is sent with partial-document responses and
specifies how much of the total document was sent. For example, a value
of “bytes 500-999/2345” means that the current response includes
bytes 500 through 999 of a document that contains 2345 bytes in total.

Content-Type
The Content-Type header gives the MIME (Multipurpose Internet
Mail Extension) type of the response document. Setting this header is
so common that there is a special method in HttpServletResponse for
it: setContentType. MIME types are of the form maintype/subtype
for officially registered types, and of the form maintype/x-subtype for
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 149

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

unregistered types. The default MIME type for servlets is text/plain,
but servlets usually explicitly specify text/html. They can, however,
specify other types instead. For example, Section 7.5 (Using Servlets to
Generate GIF Images) presents a servlet that builds a GIF image based
upon input provided by specifying the image/gif content type, and
Section 11.2 (The contentType Attribute) shows how servlets and JSP
pages can generate Excel spreadsheets by specifying a content type of
application/vnd.ms-excel.

Table 7.1 lists some the most common MIME types used by servlets.

For more detail, many of the common MIME types are listed in RFC
1521 and RFC 1522 (again, see http://www.rfc-editor.org/ for a
list of RFC archive sites). However, new MIME types are registered all
the time, so a dynamic list is a better place to look. The officially regis-
tered types are listed at
http://www.isi.edu/in-notes/iana/assign-

ments/media-types/media-types. For common unregistered types,
http://www.ltsw.se/knbase/internet/mime.htp is a good source.

Table 7.1 Common MIME Types

Type Meaning

application/msword Microsoft Word document

application/octet-stream Unrecognized or binary data

application/pdf Acrobat (.pdf) file

application/postscript PostScript file

application/vnd.lotus-notes Lotus Notes file

application/vnd.ms-excel Excel spreadsheet

application/vnd.ms-powerpoint Powerpoint presentation

application/x-gzip Gzip archive

application/x-java-archive JAR file

application/x-java-serial-
ized-object

Serialized Java object

application/x-java-vm Java bytecode (.class) file
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

150 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Date
This header specifies the current date in GMT format. If you want to
set the date from a servlet, use the setDateHeader method to specify
it. That method saves you the trouble of formatting the date string prop-
erly, as would be necessary with response.setHeader("Date",
"..."). However, most servers set this header automatically, so servlets
don’t usually need to.

ETag
This new HTTP 1.1 header gives names to returned documents so that
they can be referred to by the client later (as with the If-Match request
header).

Expires
This header stipulates the time at which the content should be consid-
ered out-of-date and thus no longer be cached. A servlet might use this

application/zip Zip archive

audio/basic Sound file in .au or .snd format

audio/x-aiff AIFF sound file

audio/x-wav Microsoft Windows sound file

audio/midi MIDI sound file

text/css HTML cascading style sheet

text/html HTML document

text/plain Plain text

image/gif GIF image

image/jpeg JPEG image

image/png PNG image

image/tiff TIFF image

image/x-xbitmap X Window bitmap image

video/mpeg MPEG video clip

video/quicktime QuickTime video clip

Table 7.1 Common MIME Types (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 151

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

for a document that changes relatively frequently, to prevent the
browser from displaying a stale cached value. For example, the follow-
ing would instruct the browser not to cache the document for longer
than 10 minutes

long currentTime = System.currentTimeMillis();

long tenMinutes = 10*60*1000; // In milliseconds

response.setDateHeader("Expires",

currentTime + tenMinutes);

Also see the max-age value of the Cache-Control header.

Last-Modified

This very useful header indicates when the document was last changed.
The client can then cache the document and supply a date by an If-Mod-
ified-Since request header in later requests. This request is treated as
a conditional GET, with the document only being returned if the
Last-Modified date is later than the one specified for If-Modi-
fied-Since. Otherwise, a 304 (Not Modified) status line is returned,
and the client uses the cached document. If you set this header explicitly,
use the setDateHeader method to save yourself the bother of formatting
GMT date strings. However, in most cases you simply implement the
getLastModified method and let the standard service method handle
If-Modified-Since requests. For an example, see Section 2.8 (An
Example Using Servlet Initialization and Page Modification Dates).

Location

This header, which should be included with all responses that have a sta-
tus code in the 300s, notifies the browser of the document address. The
browser automatically reconnects to this location and retrieves the new
document. This header is usually set indirectly, along with a 302 status
code, by the sendRedirect method of HttpServletResponse. An
example is given in Section 6.3 (A Front End to Various Search Engines).

Pragma

Supplying this header with a value of no-cache instructs HTTP 1.0 cli-
ents not to cache the document. However, support for this header was
inconsistent with HTTP 1.0 browsers. In HTTP 1.1, “Cache-Control:
no-cache” is a more reliable replacement.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

152 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Refresh
This header indicates how soon (in seconds) the browser should ask for
an updated page. For example, to tell the browser to ask for a new copy
in 30 seconds, you would specify a value of 30 with

response.setIntHeader("Refresh", 30)

Note that Refresh does not stipulate continual updates; it just speci-
fies when the next update should be. So, you have to continue to sup-
ply Refresh in all subsequent responses, and sending a 204 (No
Content) status code stops the browser from reloading further. For an
example, see Section 7.3 (Persistent Servlet State and Auto-Reloading
Pages).

Instead of having the browser just reload the current page, you can
specify the page to load. You do this by supplying a semicolon and a
URL after the refresh time. For example, to tell the browser to go to
http://host/path after 5 seconds, you would do the following.

response.setHeader("Refresh", "5; URL=http://host/path")

This setting is useful for “splash screens,” where an introductory image
or message is displayed briefly before the real page is loaded.

Note that this header is commonly set by
<META HTTP-EQUIV="Refresh"

CONTENT="5; URL=http://host/path">

in the HEAD section of the HTML page, rather than as an explicit header
from the server. That usage came about because automatic reloading or
forwarding is something often desired by authors of static HTML pages.
For servlets, however, setting the header directly is easier and clearer.

This header is not officially part of HTTP 1.1 but is an extension sup-
ported by both Netscape and Internet Explorer.

Retry-After
This header can be used in conjunction with a 503 (Service Unavail-
able) response to tell the client how soon it can repeat its request.

Server
This header identifies the Web server. Servlets don’t usually set this; the
Web server itself does.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.2 HTTP 1.1 Response Headers and Their Meaning 153

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Set-Cookie
The Set-Cookie header specifies a cookie associated with the page.
Each cookie requires a separate Set-Cookie header. Servlets should not
use response.setHeader("Set-Cookie", ...), but instead should
use the special-purpose addCookie method of HttpServletResponse.
For details, see Chapter 8 (Handling Cookies). Technically, Set-Cookie
is not part of HTTP 1.1. It was originally a Netscape extension but is now
very widely supported, including in both Netscape and Internet Explorer.

Trailer
This new and rarely used HTTP 1.1 header identifies the header fields
that are present in the trailer of a message that is sent with “chunked”
transfer-coding. See Section 3.6 of the HTTP 1.1 specification (RFC
2616) for details. Recall that http://www.rfc-editor.org/ maintains
an up-to-date list of RFC archive sites.

Transfer-Encoding
Supplying this header with a value of chunked indicates “chunked”
transfer-coding. See Section 3.6 of the HTTP 1.1 specification (RFC
2616) for details.

Upgrade
This header is used when the client first uses the Upgrade request
header to ask the server to switch to one of several possible new proto-
cols. If the server agrees, it sends a 101 (Switching Protocols) status
code and includes an Upgrade response header with the specific proto-
col it is switching to. This protocol negotiation is usually carried on by
the server itself, not by a servlet.

Vary
This rarely used new HTTP 1.1 header tells the client which headers
can be used to determine if the response document can be cached.

Via
This header is used by gateways and proxies to list the intermediate sites
the request passed through. It is new in HTTP 1.1.

Warning
This new and rarely used catchall header lets you warn clients about
caching or content transformation errors.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

154 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
WWW-Authenticate
This header is always included with a 401 (Unauthorized) status code.
It tells the browser what authorization type and realm the client should
supply in its Authorization header. Frequently, servlets let pass-
word-protected Web pages be handled by the Web server’s specialized
mechanisms (e.g., .htaccess) rather than handling them directly. For
an example of servlets dealing directly with this header, see Section 4.5
(Restricting Access to Web Pages).

7.3 Persistent Servlet State and
Auto-Reloading Pages

Here is an example that lets you ask for a list of some large, randomly chosen
prime numbers. This computation may take some time for very large num-
bers (e.g., 150 digits), so the servlet immediately returns initial results but
then keeps calculating, using a low-priority thread so that it won’t degrade
Web server performance. If the calculations are not complete, the servlet
instructs the browser to ask for a new page in a few seconds by sending it a
Refresh header.

In addition to illustrating the value of HTTP response headers, this exam-
ple shows two other valuable servlet capabilities. First, it shows that the same
servlet can handle multiple simultaneous connections, each with its own
thread. So, while one thread is finishing a calculation for one client, another
client can connect and still see partial results.

Second, this example shows how easy it is for servlets to maintain state
between requests, something that is cumbersome to implement in tradi-
tional CGI and many CGI alternatives. Only a single instance of the servlet
is created, and each request simply results in a new thread calling the serv-
let’s service method (which calls doGet or doPost). So, shared data simply
has to be placed in a regular instance variable (field) of the servlet. Thus,
the servlet can access the appropriate ongoing calculation when the
browser reloads the page and can keep a list of the N most recently
requested results, returning them immediately if a new request specifies
the same parameters as a recent one. Of course, the normal rules that
require authors to synchronize multithreaded access to shared data still
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 155

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

apply to servlets. Servlets can also store persistent data in the Servlet-
Context object that is available through the getServletContext method.
ServletContext has setAttribute and getAttribute methods that let
you store arbitrary data associated with specified keys. The difference
between storing data in instance variables and storing it in the Servlet-
Context is that the ServletContext is shared by all servlets in the servlet
engine (or in the Web application, if your server supports such a capability).

Listing 7.1 shows the main servlet class. First, it receives a request that
specifies two parameters: numPrimes and numDigits. These values are nor-
mally collected from the user and sent to the servlet by means of a simple
HTML form. Listing 7.2 shows the source code and Figure 7–1 shows the
result. Next, these parameters are converted to integers by means of a simple
utility that uses Integer.parseInt (see Listing 7.5). These values are then
matched by the findPrimeList method to a Vector of recent or ongoing
calculations to see if there is a previous computation corresponding to the
same two values. If so, that previous value (of type PrimeList) is used; oth-
erwise, a new PrimeList is created and stored in the ongoing-calculations
Vector, potentially displacing the oldest previous list. Next, that PrimeList
is checked to determine if it has finished finding all of its primes. If not, the
client is sent a Refresh header to tell it to come back in five seconds for
updated results. Either way, a bulleted list of the current values is returned to
the client.

Listings 7.3 (PrimeList.java) and 7.4 (Primes.java) present auxiliary
code used by the servlet. PrimeList.java handles the background thread
for the creation of a list of primes for a specific set of values. Primes.java
contains the low-level algorithms for choosing a random number of a speci-
fied length and then finding a prime at or above that value. It uses built-in
methods in the BigInteger class; the algorithm for determining if the num-
ber is prime is a probabilistic one and thus has a chance of being mistaken.
However, the probability of being wrong can be specified, and I use an error
value of 100. Assuming that the algorithm used in most Java implementations
is the Miller-Rabin test, the likelihood of falsely reporting a composite num-
ber as prime is provably less than 2100. This is almost certainly smaller than
the likelihood of a hardware error or random radiation causing an incorrect
response in a deterministic algorithm, and thus the algorithm can be consid-
ered deterministic.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

156 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.1 PrimeNumbers.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that processes a request to generate n
 * prime numbers, each with at least m digits.
 * It performs the calculations in a low-priority background
 * thread, returning only the results it has found so far.
 * If these results are not complete, it sends a Refresh
 * header instructing the browser to ask for new results a
 * little while later. It also maintains a list of a
 * small number of previously calculated prime lists
 * to return immediately to anyone who supplies the
 * same n and m as a recent completed computation.
 */

public class PrimeNumbers extends HttpServlet {
 private Vector primeListVector = new Vector();
 private int maxPrimeLists = 30;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 int numPrimes =
 ServletUtilities.getIntParameter(request,
 "numPrimes", 50);
 int numDigits =
 ServletUtilities.getIntParameter(request,
 "numDigits", 120);
 PrimeList primeList =
 findPrimeList(primeListVector, numPrimes, numDigits);

 if (primeList == null) {
 primeList = new PrimeList(numPrimes, numDigits, true);
 // Multiple servlet request threads share the instance
 // variables (fields) of PrimeNumbers. So
 // synchronize all access to servlet fields.
 synchronized(primeListVector) {
 if (primeListVector.size() >= maxPrimeLists)
 primeListVector.removeElementAt(0);
 primeListVector.addElement(primeList);
 }
 }
 Vector currentPrimes = primeList.getPrimes();
 int numCurrentPrimes = currentPrimes.size();
 int numPrimesRemaining = (numPrimes - numCurrentPrimes);
 boolean isLastResult = (numPrimesRemaining == 0);
 if (!isLastResult) {
 response.setHeader("Refresh", "5");
 }
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 157

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Some " + numDigits + "-Digit Prime Numbers";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H2 ALIGN=CENTER>" + title + "</H2>\n" +
 "<H3>Primes found with " + numDigits +
 " or more digits: " + numCurrentPrimes +
 ".</H3>");
 if (isLastResult)
 out.println("Done searching.");
 else
 out.println("Still looking for " + numPrimesRemaining +
 " more<BLINK>...</BLINK>");
 out.println("");
 for(int i=0; i<numCurrentPrimes; i++) {
 out.println(" " + currentPrimes.elementAt(i));
 }
 out.println("");
 out.println("</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }

 // See if there is an existing ongoing or completed
 // calculation with the same number of primes and number
 // of digits per prime. If so, return those results instead
 // of starting a new background thread. Keep this list
 // small so that the Web server doesn’t use too much memory.
 // Synchronize access to the list since there may be
 // multiple simultaneous requests.

 private PrimeList findPrimeList(Vector primeListVector,
 int numPrimes,
 int numDigits) {
 synchronized(primeListVector) {
 for(int i=0; i<primeListVector.size(); i++) {
 PrimeList primes =
 (PrimeList)primeListVector.elementAt(i);
 if ((numPrimes == primes.numPrimes()) &&
 (numDigits == primes.numDigits()))
 return(primes);
 }
 return(null);
 }
 }
}

Listing 7.1 PrimeNumbers.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

158 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.2 PrimeNumbers.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Finding Large Prime Numbers</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H2 ALIGN="CENTER">Finding Large Prime Numbers</H2>

<CENTER>
<FORM ACTION="/servlet/coreservlets.PrimeNumbers">
 Number of primes to calculate:
 <INPUT TYPE="TEXT" NAME="numPrimes" VALUE=25 SIZE=4>

 Number of digits:
 <INPUT TYPE="TEXT" NAME="numDigits" VALUE=150 SIZE=3>

 <INPUT TYPE="SUBMIT" VALUE="Start Calculating">
</FORM>
</CENTER>
</BODY>
</HTML>

Figure 7–1 Result of PrimeNumbers.html, used as a front end to the
PrimeNumbers servlet.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 159

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 7–2 Intermediate result of a request to the PrimeNumbers servlet. This result
can be obtained when the browser reloads automatically or when a different client
independently enters the same parameters as those from an ongoing or recent request.
Either way, the browser will automatically reload the page to get updated results.

Figure 7–3 Final result of a request to the PrimeNumbers servlet. This result can be
obtained when the browser reloads automatically or when a different client independently
enters the same parameters as those from an ongoing or recent request. The browser will
stop updating the page at this point.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

160 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.3 PrimeList.java

package coreservlets;

import java.util.*;
import java.math.BigInteger;

/** Creates a Vector of large prime numbers, usually in
 * a low-priority background thread. Provides a few small
 * thread-safe access methods.
*/

public class PrimeList implements Runnable {
 private Vector primesFound;
 private int numPrimes, numDigits;

 /** Finds numPrimes prime numbers, each of which are
 * numDigits long or longer. You can set it to only
 * return when done, or have it return immediately,
 * and you can later poll it to see how far it
 * has gotten.
 */
 public PrimeList(int numPrimes, int numDigits,
 boolean runInBackground) {
 // Using Vector instead of ArrayList
 // to support JDK 1.1 servlet engines
 primesFound = new Vector(numPrimes);
 this.numPrimes = numPrimes;
 this.numDigits = numDigits;
 if (runInBackground) {
 Thread t = new Thread(this);
 // Use low priority so you don’t slow down server.
 t.setPriority(Thread.MIN_PRIORITY);
 t.start();
 } else {
 run();
 }
 }

 public void run() {
 BigInteger start = Primes.random(numDigits);
 for(int i=0; i<numPrimes; i++) {
 start = Primes.nextPrime(start);
 synchronized(this) {
 primesFound.addElement(start);
 }
 }
 }

 public synchronized boolean isDone() {
 return(primesFound.size() == numPrimes);
 }
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.3 Persistent Servlet State and Auto-Reloading Pages 161

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 public synchronized Vector getPrimes() {
 if (isDone())
 return(primesFound);
 else
 return((Vector)primesFound.clone());
 }

 public int numDigits() {
 return(numDigits);
 }

 public int numPrimes() {
 return(numPrimes);
 }

 public synchronized int numCalculatedPrimes() {
 return(primesFound.size());
 }
}

Listing 7.4 Primes.java

package coreservlets;

import java.math.BigInteger;

/** A few utilities to generate a large random BigInteger,
 * and find the next prime number above a given BigInteger.
*/

public class Primes {
 // Note that BigInteger.ZERO was new in JDK 1.2, and 1.1
 // code is being used to support the most servlet engines.
 private static final BigInteger ZERO = new BigInteger("0");
 private static final BigInteger ONE = new BigInteger("1");
 private static final BigInteger TWO = new BigInteger("2");

 // Likelihood of false prime is less than 1/2^ERR_VAL
 // Assumedly BigInteger uses the Miller-Rabin test or
 // equivalent, and thus is NOT fooled by Carmichael numbers.
 // See section 33.8 of Cormen et al’s Introduction to
 // Algorithms for details.
 private static final int ERR_VAL = 100;

 public static BigInteger nextPrime(BigInteger start) {
 if (isEven(start))
 start = start.add(ONE);
 else

Listing 7.3 PrimeList.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

162 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 start = start.add(TWO);
 if (start.isProbablePrime(ERR_VAL))
 return(start);
 else
 return(nextPrime(start));
 }

 private static boolean isEven(BigInteger n) {
 return(n.mod(TWO).equals(ZERO));
 }

 private static StringBuffer[] digits =
 { new StringBuffer("0"), new StringBuffer("1"),
 new StringBuffer("2"), new StringBuffer("3"),
 new StringBuffer("4"), new StringBuffer("5"),
 new StringBuffer("6"), new StringBuffer("7"),
 new StringBuffer("8"), new StringBuffer("9") };

 private static StringBuffer randomDigit() {
 int index = (int)Math.floor(Math.random() * 10);
 return(digits[index]);
 }

 public static BigInteger random(int numDigits) {
 StringBuffer s = new StringBuffer("");
 for(int i=0; i<numDigits; i++) {
 s.append(randomDigit());
 }
 return(new BigInteger(s.toString()));
 }

 /** Simple command-line program to test. Enter number
 * of digits, and it picks a random number of that
 * length and then prints the first 50 prime numbers
 * above that.
 */

 public static void main(String[] args) {
 int numDigits;
 if (args.length > 0)
 numDigits = Integer.parseInt(args[0]);
 else
 numDigits = 150;
 BigInteger start = random(numDigits);
 for(int i=0; i<50; i++) {
 start = nextPrime(start);
 System.out.println("Prime " + i + " = " + start);
 }
 }
}

Listing 7.4 Primes.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.4 Using Persistent HTTP Connections 163

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

7.4 Using Persistent HTTP
Connections

One of the problems with HTTP 1.0 was that it required a separate socket
connection for each request. When a Web page that includes lots of small
images or many applet classes is retrieved, the overhead of establishing all the
connections could be significant compared to the actual download time of the
documents. Many browsers and servers supported the “keep-alive” extension
to address this problem. With this extension, the server tells the browser how
many bytes are contained in the response, then leaves the connection open
for a certain period of time after returning the document. The client detects

Listing 7.5 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
 // ... Other utilities shown earlier

 /** Read a parameter with the specified name, convert it
 * to an int, and return it. Return the designated default
 * value if the parameter doesn’t exist or if it is an
 * illegal integer format.
 */

 public static int getIntParameter(HttpServletRequest request,
 String paramName,
 int defaultValue) {
 String paramString = request.getParameter(paramName);
 int paramValue;
 try {
 paramValue = Integer.parseInt(paramString);
 } catch(NumberFormatException nfe) { // null or bad format
 paramValue = defaultValue;
 }
 return(paramValue);
 }

 // ...
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

164 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
that the document has finished loading by monitoring the number of bytes
received, and reconnects on the same socket for further transactions. Persis-
tent connections of this type became standard in HTTP 1.1, and compliant
servers are supposed to use persistent connections unless the client explicitly
instructs them not to (either by a “Connection: close” request header or
indirectly by sending a request that specifies HTTP/1.0 instead of HTTP/1.1
and does not also stipulate “Connection: keep-alive”).

Servlets can take advantage of persistent connections if the servlets are
embedded in servers that support them. The server should handle most of
the process, but it has no way to determine how large the returned document
is. So the servlet needs to set the Content-Length response header by
means of response.setContentLength. A servlet can determine the size of
the returned document by buffering the output by means of a ByteArray-
OutputStream, retrieving the number of bytes with the byte stream’s size
method, then sending the buffered output to the client by passing the serv-
let’s output stream to the byte stream’s writeTo method.

Using persistent connections is likely to pay off only for servlets that load a
large number of small objects, where those objects are also servlet-generated
and would thus not otherwise take advantage of the server’s support for per-
sistent connections. Even so, the advantage gained varies greatly from Web
server to Web server and even from Web browser to Web browser. For exam-
ple, the default configuration for Sun’s Java Web Server is to permit only five
connections on a single HTTP socket: a value that is too low for many appli-
cations. Those who use this server can raise the limit by going to the adminis-
tration console, selecting “Web Service” then “Service Tuning,” then entering
a value in the “Connection Persistence” window.

Listing 7.6 shows a servlet that generates a page with 100 IMG tags (see
Figure 7–4 for the result). Each of the IMG tags refers to another servlet
(ImageRetriever, shown in Listing 7.7) that reads a GIF file from the server
system and returns it to the client. Both the original servlet and the Image-
Retriever servlet use persistent connections unless instructed not to do so
by means of a parameter in the form data named usePersistence with a
value of no. With Netscape 4.7 and a 28.8K dialup connection to talk to the
Solaris version of Java Web Server 2.0 (with the connection limit raised above
100), the use of persistent connections reduced the average download time
between 15 and 20 percent.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.4 Using Persistent HTTP Connections 165

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 7.6 PersistentConnection.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Illustrates the value of persistent HTTP connections for
 * pages that include many images, applet classes, or
 * other auxiliary content that would otherwise require
 * a separate connection to retrieve.
 */

public class PersistentConnection extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 ByteArrayOutputStream byteStream =
 new ByteArrayOutputStream(7000);
 PrintWriter out = new PrintWriter(byteStream, true);
 String persistenceFlag =
 request.getParameter("usePersistence");
 boolean usePersistence =
 ((persistenceFlag == null) ||
 (!persistenceFlag.equals("no")));
 String title;
 if (usePersistence) {
 title = "Using Persistent Connection";
 } else {
 title = "Not Using Persistent Connection";
 }
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>");
 int numImages = 100;
 for(int i=0; i<numImages; i++) {
 out.println(makeImage(i, usePersistence));
 }
 out.println("</BODY></HTML>");
 if (usePersistence) {
 response.setContentLength(byteStream.size());
 }
 byteStream.writeTo(response.getOutputStream());
 }

 private String makeImage(int n, boolean usePersistence) {
 String file =
 "/servlet/coreservlets.ImageRetriever?gifLocation=" +
 "/bullets/bullet" + n + ".gif";
 if (!usePersistence)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

166 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 file = file + "&usePersistence=no";
 return("<IMG SRC=\"" + file + "\"\n" +
 " WIDTH=6 HEIGHT=6 ALT=\"\">");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 7.7 ImageRetriever.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** A servlet that reads a GIF file off the local system
 * and sends it to the client with the appropriate MIME type.
 * Includes the Content-Length header to support the
 * use of persistent HTTP connections unless explicitly
 * instructed not to through "usePersistence=no".
 * Used by the PersistentConnection servlet.
*/

public class ImageRetriever extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String gifLocation = request.getParameter("gifLocation");
 if ((gifLocation == null) ||
 (gifLocation.length() == 0)) {
 reportError(response, "Image File Not Specified");
 return;
 }
 String file = getServletContext().getRealPath(gifLocation);
 try {
 BufferedInputStream in =
 new BufferedInputStream(new FileInputStream(file));
 ByteArrayOutputStream byteStream =
 new ByteArrayOutputStream(512);
 int imageByte;

Listing 7.6 PersistentConnection.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.4 Using Persistent HTTP Connections 167

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 while((imageByte = in.read()) != -1) {
 byteStream.write(imageByte);
 }
 in.close();
 String persistenceFlag =
 request.getParameter("usePersistence");
 boolean usePersistence =
 ((persistenceFlag == null) ||
 (!persistenceFlag.equals("no")));
 response.setContentType("image/gif");
 if (usePersistence) {
 response.setContentLength(byteStream.size());
 }
 byteStream.writeTo(response.getOutputStream());
 } catch(IOException ioe) {
 reportError(response, "Error: " + ioe);
 }
 }

 public void reportError(HttpServletResponse response,
 String message)
 throws IOException {
 response.sendError(response.SC_NOT_FOUND,
 message);
 }
}

Listing 7.7 ImageRetriever.java (continued)

Figure 7–4 Result of the PersistentConnection servlet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

168 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
7.5 Using Servlets to Generate GIF
Images

Although servlets often generate HTML output, they certainly don’t always
do so. For example, Section 11.2 (The contentType Attribute) shows a JSP
page (which gets translated into a servlet) that builds Excel spreadsheets and
returns them to the client. Here, I’ll show you how to generate GIF images.

First, let me summarize the two main steps servlets have to perform in
order to build multimedia content. First, they have to set the Content-Type
response header by using the setContentType method of HttpServlet-
Response. Second, they have to send the output in the appropriate format.
This format varies among document types, of course, but in most cases you
use send binary data, not strings as with HTML documents. Consequently,
servlets will usually get the raw output stream by using the getOutput-
Stream method, rather than getting a PrintWriter by using getWriter.
Putting these two points together, servlets that generate non-HTML content
usually have a section of their doGet or doPost method that looks like this:

response.setContentType("type/subtype");

OutputStream out = response.getOutputStream();

Those are the two general steps required to build non-HTML content.
Next, let’s look at the specific steps required to generate GIF images.

1. Create an Image.
You create an Image object by using the createImage method
of the Component class. Since server-side programs should not
actually open any windows on the screen, they need to explicitly
tell the system to create a native window system object, a pro-
cess that normally occurs automatically when a window pops
up. The addNotify method accomplishes this task. Putting this
all together, here is the normal process:

Frame f = new Frame();

f.addNotify();

int width = ...;

int height = ...;

Image img = f.createImage(width, height);
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 169

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

2. Draw into the Image.
You accomplish this task by calling the Image’s getGraphics
method and then using the resultant Graphics object in the
usual manner. For example, with JDK 1.1, you would use vari-
ous drawXxx and fillXxx methods of Graphics to draw
images, strings, and shapes onto the Image. With the Java 2
platform, you would cast the Graphics object to Graphics2D,
then make use of Java2D’s much richer set of drawing opera-
tions, coordinate transformations, font settings, and fill patterns
to perform the drawing. Here is a simple example:

Graphics g = img.getGraphics();
g.fillRect(...);
g.drawString(...);

3. Set the Content-Type response header.
As already discussed, you use the setContentType method of
HttpServletResponse for this task. The MIME type for GIF
images is image/gif.

response.setContentType("image/gif");

4. Get an output stream.
As discussed previously, if you are sending binary data, you
should call the getOutputStream method of HttpServlet-
Response rather than the getWriter method.

OutputStream out = response.getOutputStream();

5. Send the Image in GIF format to the output stream.
Accomplishing this task yourself requires quite a bit of work.
Fortunately, there are several existing classes that perform this
operation. One of the most popular ones is Jef Poskanzer’s
GifEncoder class, available free from
http://www.acme.com/java/. Here is how you would use this
class to send an Image in GIF format:

try {
new GifEncoder(img, out).encode();

} catch(IOException ioe) {
// Error message

}

Listings 7.8 and 7.9 show a servlet that reads message, fontName, and
fontSize parameters and uses them to create a GIF image showing the mes-
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

170 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
sage in the designated face and size, with a gray, oblique shadowed version of
the message shown behind the main string. This operation makes use of sev-
eral facilities available only in the Java 2 platform. First, it makes use of any
font that is installed on the server system, rather than limiting itself to the
standard names (Serif, SansSerif, Monospaced, Dialog, and DialogIn-
put) available to JDK 1.1 programs.

Second, it uses the translate, scale, and shear transformations to cre-
ate the shadowed version of the main message. Consequently, the servlet will
run only in servlet engines running on the Java 2 platform. You would expect
this to be the case with engines supporting the servlet 2.2 specification, since
that is the servlet version stipulated in J2EE.

Even if you are using a server that supports only version 2.1, you should
still use the Java 2 platform if you can, since it tends to be significantly more
efficient for server-side tasks. However, many servlet 2.1 engines come pre-
configured to use JDK 1.1, and changing the Java version is not always sim-
ple. So, for example, Tomcat and the JSWDK automatically make use of
whichever version of Java is first in your PATH, but the Java Web Server uses a
bundled version of JDK 1.1.

Listing 7.10 shows an HTML form used as a front end to the servlet. Fig-
ures 7–5 through 7–8 show some possible results. Just to simplify experimen-
tation, Listing 7.11 presents an interactive application that lets you specify
the message, font name, and font size on the command line, popping up a
JFrame that shows the same image as the servlet would return. Figure 7–9
shows one typical result.

Listing 7.8 ShadowedText.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.awt.*;

/** Servlet that generates GIF images representing
 * a designated message with an oblique shadowed
 * version behind it.
 * <P>
 * Only runs on servers that support Java 2, since
 * it relies on Java2D to build the images.
 */
public class ShadowedText extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String message = request.getParameter("message");
 if ((message == null) || (message.length() == 0)) {
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 171

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 message = "Missing ’message’ parameter";
 }
 String fontName = request.getParameter("fontName");
 if (fontName == null) {
 fontName = "Serif";
 }
 String fontSizeString = request.getParameter("fontSize");
 int fontSize;
 try {

 fontSize = Integer.parseInt(fontSizeString);
 } catch(NumberFormatException nfe) {
 fontSize = 90;
 }
 response.setContentType("image/gif");
 OutputStream out = response.getOutputStream();
 Image messageImage =
 MessageImage.makeMessageImage(message,
 fontName,
 fontSize);
 MessageImage.sendAsGIF(messageImage, out);
 }

 /** Allow form to send data via either GET or POST. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 7.9 MessageImage.java

package coreservlets;

import java.awt.*;
import java.awt.geom.*;
import java.io.*;
import Acme.JPM.Encoders.GifEncoder;

/** Utilities for building images showing shadowed messages.
 * Includes a routine that uses Jef Poskanzer’s GifEncoder
 * to return the result as a GIF.
 * <P>
 * Does not run in JDK 1.1, since it relies on Java2D
 * to build the images.
 * <P>
 */

Listing 7.8 ShadowedText.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

172 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
public class MessageImage {

 /** Creates an Image of a string with an oblique
 * shadow behind it. Used by the ShadowedText servlet
 * and the ShadowedTextFrame desktop application.
 */
 public static Image makeMessageImage(String message,
 String fontName,
 int fontSize) {
 Frame f = new Frame();
 // Connect to native screen resource for image creation.
 f.addNotify();
 // Make sure Java knows about local font names.
 GraphicsEnvironment env =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 env.getAvailableFontFamilyNames();
 Font font = new Font(fontName, Font.PLAIN, fontSize);
 FontMetrics metrics = f.getFontMetrics(font);
 int messageWidth = metrics.stringWidth(message);
 int baselineX = messageWidth/10;
 int width = messageWidth+2*(baselineX + fontSize);
 int height = fontSize*7/2;
 int baselineY = height*8/10;
 Image messageImage = f.createImage(width, height);
 Graphics2D g2d =
 (Graphics2D)messageImage.getGraphics();
 g2d.setFont(font);
 g2d.translate(baselineX, baselineY);
 g2d.setPaint(Color.lightGray);
 AffineTransform origTransform = g2d.getTransform();
 g2d.shear(-0.95, 0);
 g2d.scale(1, 3);
 g2d.drawString(message, 0, 0);
 g2d.setTransform(origTransform);
 g2d.setPaint(Color.black);
 g2d.drawString(message, 0, 0);
 return(messageImage);
 }

 /** Uses GifEncoder to send the Image down output stream
 * in GIF89A format. See http://www.acme.com/java/ for
 * the GifEncoder class.
 */

 public static void sendAsGIF(Image image, OutputStream out) {
 try {
 new GifEncoder(image, out).encode();
 } catch(IOException ioe) {
 System.err.println("Error outputting GIF: " + ioe);
 }

 }
}

Listing 7.9 MessageImage.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 173

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 7.10 ShadowedText.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>GIF Generation Service</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">GIF Generation Service</H1>
Welcome to the <I>free</I> trial edition of our GIF
generation service. Enter a message, a font name,
and a font size below, then submit the form. You will
be returned a GIF image showing the message in the
designated font, with an oblique "shadow" of the message
behind it. Once you get an image you are satisfied with, right
click on it (or click while holding down the SHIFT key) to save
it to your local disk.
<P>
The server is currently on Windows, so the font name must
be either a standard Java font name (e.g., Serif, SansSerif,
or Monospaced) or a Windows font name (e.g., Arial Black).
Unrecognized font names will revert to Serif.

<FORM ACTION="/servlet/coreservlets.ShadowedText">
 <CENTER>
 Message:
 <INPUT TYPE="TEXT" NAME="message">

 Font name:
 <INPUT TYPE="TEXT" NAME="fontName" VALUE="Serif">

 Font size:
 <INPUT TYPE="TEXT" NAME="fontSize" VALUE="90">

 <Input TYPE="SUBMIT" VALUE="Build Image">
 </CENTER>
</FORM>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

174 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 7–5 Front end to ShadowedText servlet.

Figure 7–6 Using the GIF-generation servlet to build the logo for a children’s books
Web site. (Result of submitting the form shown in Figure 7–5).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 175

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 7–7 Using the GIF-generation servlet to build the title image for a site
describing a local theater company.

Figure 7–8 Using the GIF-generation servlet to build an image for a page advertising
a local carnival.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

176 Chapter 7 Generating the Server Response: HTTP Response Headers

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 7.11 ShadowedTextFrame.java

package coreservlets;

import java.awt.*;
import javax.swing.*;
import java.awt.geom.*;

/** Interactive interface to MessageImage class.
 * Enter message, font name, and font size on the command
 * line. Requires Java2.
 */

public class ShadowedTextFrame extends JPanel {
 private Image messageImage;

 public static void main(String[] args) {
 String message = "Shadowed Text";
 if (args.length > 0) {
 message = args[0];
 }
 String fontName = "Serif";
 if (args.length > 1) {
 fontName = args[1];
 }
 int fontSize = 90;
 if (args.length > 2) {
 try {
 fontSize = Integer.parseInt(args[2]);
 } catch(NumberFormatException nfe) {}
 }
 JFrame frame = new JFrame("Shadowed Text");
 frame.addWindowListener(new ExitListener());
 JPanel panel =
 new ShadowedTextFrame(message, fontName, fontSize);
 frame.setContentPane(panel);
 frame.pack();
 frame.setVisible(true);
 }

 public ShadowedTextFrame(String message,
 String fontName,
 int fontSize) {
 messageImage = MessageImage.makeMessageImage(message,
 fontName,
 fontSize);
 int width = messageImage.getWidth(this);
 int height = messageImage.getHeight(this);
 setPreferredSize(new Dimension(width, height));
 }
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

7.5 Using Servlets to Generate GIF Images 177

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(messageImage, 0, 0, this);
 }
}

Listing 7.12 ExitListener.java

package coreservlets;

import java.awt.*;

import java.awt.event.*;

/** A listener that you attach to the top-level Frame or JFrame

 * of your application, so quitting the frame exits the app.

 */

public class ExitListener extends WindowAdapter {

 public void windowClosing(WindowEvent event) {

 System.exit(0);

 }

}

Listing 7.11 ShadowedTextFrame.java (continued)

Figure 7–9 ShadowedTextFrame application when invoked with “java
coreservlets.ShadowedTextFrame "Tom’s Tools" Haettenschweiler
100”.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Handling
Cookies
Topics in This Chapter

• Purposes for cookies

• Problems with cookies

• The Cookie API

• A simple servlet that sets cookies

• A cookie-reporting servlet

• Some utilities that simplify cookie handling

• A customized search engine front end based upon cookies
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ookies are small bits of textual information that a Web server sends to
a browser and that the browser returns unchanged when later visiting
the same Web site or domain. By letting the server read information

it sent the client previously, the site can provide visitors with a number of
conveniences such as presenting the site the way the visitor previously cus-
tomized it or letting identifiable visitors in without their having to enter a
password. Most browsers avoid caching documents associated with cookies,
so the site can return different content each time.

This chapter discusses how to explicitly set and read cookies from within
servlets, and the next chapter shows you how to use the servlet session track-
ing API (which can use cookies behind the scenes) to keep track of users as
they move around to different pages within your site.

8.1 Benefits of Cookies

This section summarizes four typical ways in which cookies can add value to
your site.

C

179

180 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Identifying a User During an E-commerce
Session

Many on-line stores use a “shopping cart” metaphor in which the user selects
an item, adds it to his shopping cart, then continues shopping. Since the
HTTP connection is usually closed after each page is sent, when the user
selects a new item to add to the cart, how does the store know that it is the
same user that put the previous item in the cart? Persistent (keep-alive)
HTTP connections (see Section 7.4) do not solve this problem, since persis-
tent connections generally apply only to requests made very close together in
time, as when a browser asks for the images associated with a Web page.
Besides, many servers and browsers lack support for persistent connections.
Cookies, however, can solve this problem. In fact, this capability is so useful
that servlets have an API specifically for session tracking, and servlet authors
don’t need to manipulate cookies directly to take advantage of it. Session
tracking is discussed in Chapter 9.

Avoiding Username and Password

Many large sites require you to register in order to use their services, but it is
inconvenient to remember and enter the username and password each time
you visit. Cookies are a good alternative for low-security sites. When a user
registers, a cookie containing a unique user ID is sent to him. When the cli-
ent reconnects at a later date, the user ID is returned, the server looks it up,
determines it belongs to a registered user, and permits access without an
explicit username and password. The site may also remember the user’s
address, credit card number, and so forth, thus simplifying later transactions.

Customizing a Site

Many “portal” sites let you customize the look of the main page. They might
let you pick which weather report you want to see, what stock and sports
results you care about, how search results should be displayed, and so forth.
Since it would be inconvenient for you to have to set up your page each time
you visit their site, they use cookies to remember what you wanted. For sim-
ple settings, this customization could be accomplished by storing the page
settings directly in the cookies. Section 8.6 gives an example of this. For more
complex customization, however, the site just sends the client a unique iden-
tifier and keeps a server-side database that associates identifiers with page
settings.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.2 Some Problems with Cookies 181

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Focusing Advertising

Most advertiser-funded Web sites charge their advertisers much more for
displaying “directed” ads than “random” ads. Advertisers are generally willing
to pay much more to have their ads shown to people that are known to have
some interest in the general product category. For example, if you go to a
search engine and do a search on “Java Servlets,” the search site can charge
an advertiser much more for showing you an ad for a servlet development
environment than for an ad for an on-line travel agent specializing in Indone-
sia. On the other hand, if the search had been for “Java Hotels,” the situation
would be reversed. Without cookies, the sites have to show a random ad
when you first arrive and haven’t yet performed a search, as well as when you
search on something that doesn’t match any ad categories. Cookies let them
remember “Oh, that’s the person who was searching for such and such previ-
ously” and display an appropriate (read “high priced”) ad instead of a random
(read “cheap”) one.

8.2 Some Problems with Cookies

Providing convenience to the user and added value to the site owner is the
purpose behind cookies. And despite much misinformation, cookies are not a
serious security threat. Cookies are never interpreted or executed in any way
and thus cannot be used to insert viruses or attack your system. Furthermore,
since browsers generally only accept 20 cookies per site and 300 cookies total
and since each cookie can be limited to 4 kilobytes, cookies cannot be used to
fill up someone’s disk or launch other denial of service attacks.

However, even though cookies don’t present a serious security threat, they
can present a significant threat to privacy. First, some people don’t like the
fact that search engines can remember that they’re the user who usually does
searches on certain topics. For example, they might search for job openings
or sensitive health data and don’t want some banner ad tipping off their
coworkers next time they do a search. Even worse, two sites can share data on
a user by each loading small images off the same third-party site, where that
third party uses cookies and shares the data with both original sites.
(Netscape, however, provides a nice feature that lets you refuse cookies from
sites other than that to which you connected, but without disabling cookies
altogether.) This trick of associating cookies with images can even be
exploited via e-mail if you use an HTML-enabled e-mail reader that “sup-
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

182 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ports” cookies and is associated with a browser. Thus, people could send you
e-mail that loads images, attach cookies to those images, then identify you
(e-mail address and all) if you subsequently visit their Web site. Boo.

A second privacy problem occurs when sites rely on cookies for overly
sensitive data. For example, some of the big on-line bookstores use cookies
to remember users and let you order without reentering much of your per-
sonal information. This is not a particular problem since they don’t actually
display the full credit card number and only let you send books to an
address that was specified when you did enter the credit card in full or use
the username and password. As a result, someone using your computer (or
stealing your cookie file) could do no more harm than sending a big book
order to your address, where the order could be refused. However, other
companies might not be so careful, and an attacker who got access to some-
one’s computer or cookie file could get on-line access to valuable personal
information. Even worse, incompetent sites might embed credit card or
other sensitive information directly in the cookies themselves, rather than
using innocuous identifiers that are only linked to real users on the server.
This is dangerous, since most users don’t view leaving their computer unat-
tended in their office as being tantamount to leaving their credit card sit-
ting on their desk.

The point of all this is twofold. First, due to real and perceived privacy
problems, some users turn off cookies. So, even when you use cookies to give
added value to a site, your site shouldn’t depend on them. Second, as the
author of servlets that use cookies, you should be careful not to use cookies
for particularly sensitive information, since this would open users up to risks
if somebody accessed their computer or cookie files.

FOXTROT © 1998 Bill Amend. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All
rights reserved
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.3 The Servlet Cookie API 183

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

8.3 The Servlet Cookie API

To send cookies to the client, a servlet should create one or more cookies with
designated names and values with new Cookie(name, value), set any
optional attributes with cookie.setXxx (readable later by cookie.getXxx),
and insert the cookies into the response headers with
response.addCookie(cookie). To read incoming cookies, a servlet should
call request.getCookies, which returns an array of Cookie objects corre-
sponding to the cookies the browser has associated with your site (this is null if
there are no cookies in the request). In most cases, the servlet loops down this
array until it finds the one whose name (getName) matches the name it had in
mind, then calls getValue on that Cookie to see the value associated with that
name. Each of these topics is discussed in more detail in the following sections.

Creating Cookies

You create a cookie by calling the Cookie constructor, which takes two
strings: the cookie name and the cookie value. Neither the name nor the
value should contain white space or any of the following characters:

 [] () = , " / ? @ : ;

Cookie Attributes

Before adding the cookie to the outgoing headers, you can set various charac-
teristics of the cookie by using one of the following setXxx methods, where
Xxx is the name of the attribute you want to specify. Each setXxx method
has a corresponding getXxx method to retrieve the attribute value. Except
for name and value, the cookie attributes apply only to outgoing cookies from
the server to the client; they aren’t set on cookies that come from the browser
to the server. See Appendix A (Servlet and JSP Quick Reference) for a sum-
marized version of this information.

public String getComment()
public void setComment(String comment)
These methods look up or specify a comment associated with the
cookie. With version 0 cookies (see the upcoming subsection on
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

184 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
getVersion and setVersion), the comment is used purely for
informational purposes on the server; it is not sent to the client.

public String getDomain()
public void setDomain(String domainPattern)
These methods get or set the domain to which the cookie applies.
Normally, the browser only returns cookies to the exact same host-
name that sent them. You can use setDomain method to instruct the
browser to return them to other hosts within the same domain. To
prevent servers setting cookies that apply to hosts outside their
domain, the domain specified is required to start with a dot (e.g.,
.prenhall.com), and must contain two dots for noncountry domains
like .com, .edu and .gov; and three dots for country domains like
.co.uk and .edu.es. For instance, cookies sent from a servlet at
bali.vacations.com would not normally get sent by the browser to
pages at mexico.vacations.com. If the site wanted this to happen,
the servlets could specify cookie.setDomain(".vacations.com").

public int getMaxAge()
public void setMaxAge(int lifetime)
These methods tell how much time (in seconds) should elapse before
the cookie expires. A negative value, which is the default, indicates that
the cookie will last only for the current session (i.e., until the user quits
the browser) and will not be stored on disk. See the LongLivedCookie
class (Listing 8.4), which defines a subclass of Cookie with a maximum
age automatically set one year in the future. Specifying a value of 0
instructs the browser to delete the cookie.

public String getName()
public void setName(String cookieName)
This pair of methods gets or sets the name of the cookie. The name and
the value are the two pieces you virtually always care about. However,
since the name is supplied to the Cookie constructor, you rarely need to
call setName. On the other hand, getName is used on almost every
cookie received on the server. Since the getCookies method of Http-
ServletRequest returns an array of Cookie objects, it is common to
loop down this array, calling getName until you have a particular name,
then check the value with getValue. For an encapsulation of this pro-
cess, see the getCookieValue method shown in Listing 8.3.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.3 The Servlet Cookie API 185

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

public String getPath()
public void setPath(String path)
These methods get or set the path to which the cookie applies. If you don’t
specify a path, the browser returns the cookie only to URLs in or below
the directory containing the page that sent the cookie. For example, if
the server sent the cookie from http://ecommerce.site.com/toys/
specials.html, the browser would send the cookie back when connect-
ing to http://ecommerce.site.com/toys/bikes/beginners.html,
but not to http://ecommerce.site.com/cds/classical.html. The
setPath method can be used to specify something more general. For
example, someCookie.setPath("/") specifies that all pages on the
server should receive the cookie. The path specified must include the
current page; that is, you may specify a more general path than the
default, but not a more specific one. So, for example, a servlet at
http://host/store/cust-service/request could specify a path of
/store/ (since /store/ includes /store/cust-service/) but not a
path of /store/cust-service/returns/ (since this directory does not
include /store/cust-service/).

public boolean getSecure()
public void setSecure(boolean secureFlag)
This pair of methods gets or sets the boolean value indicating whether
the cookie should only be sent over encrypted (i.e., SSL) connections.
The default is false; the cookie should apply to all connections.

public String getValue()
public void setValue(String cookieValue)
The getValue method looks up the value associated with the cookie;
the setValue method specifies it. Again, the name and the value are
the two parts of a cookie that you almost always care about, although in
a few cases, a name is used as a boolean flag and its value is ignored (i.e.,
the existence of a cookie with the designated name is all that matters).

public int getVersion()
public void setVersion(int version)
These methods get/set the cookie protocol version the cookie complies
with. Version 0, the default, follows the original Netscape specification
(http://www.netscape.com/newsref/std/cookie_spec.html).
Version 1, not yet widely supported, adheres to RFC 2109 (retrieve
RFCs from the archive sites listed at http://www.rfc-editor.org/).
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

186 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Placing Cookies in the Response Headers

The cookie is inserted into a Set-Cookie HTTP response header by means
of the addCookie method of HttpServletResponse. The method is called
addCookie, not setCookie, because any previously specified Set-Cookie
headers are left alone and a new header is set. Here's an example:

Cookie userCookie = new Cookie("user", "uid1234");

userCookie.setMaxAge(60*60*24*365); // 1 year

response.addCookie(userCookie);

Reading Cookies from the Client

To send cookies to the client, you create a Cookie, then use addCookie to
send a Set-Cookie HTTP response header. To read the cookies that come
back from the client, you call getCookies on the HttpServletRequest. This
call returns an array of Cookie objects corresponding to the values that came in
on the Cookie HTTP request header. If there are no cookies in the request,
getCookies returns null. Once you have this array, you typically loop down it,
calling getName on each Cookie until you find one matching the name you
have in mind. You then call getValue on the matching Cookie and finish with
some processing specific to the resultant value. This is such a common process
that Section 8.5 presents two utilities that simplify retrieving a cookie or cookie
value that matches a designated cookie name.

8.4 Examples of Setting and
Reading Cookies

Listing 8.1 and Figure 8–1 show the SetCookies servlet, a servlet that sets
six cookies. Three have the default expiration date, meaning that they should
apply only until the user next restarts the browser. The other three use set-
MaxAge to stipulate that they should apply for the next hour, regardless of
whether the user restarts the browser or reboots the computer to initiate a
new browsing session.

Listing 8.2 shows a servlet that creates a table of all the cookies sent to
it in the request. Figure 8–2 shows this servlet immediately after the
SetCookies servlet is visited. Figure 8–3 shows it after SetCookies is vis-
ited then the browser is closed and restarted.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.4 Examples of Setting and Reading Cookies 187

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 8.1 SetCookies.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Sets six cookies: three that apply only to the current
 * session (regardless of how long that session lasts)
 * and three that persist for an hour (regardless of
 * whether the browser is restarted).
 */

public class SetCookies extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 for(int i=0; i<3; i++) {
 // Default maxAge is -1, indicating cookie
 // applies only to current browsing session.
 Cookie cookie = new Cookie("Session-Cookie " + i,
 "Cookie-Value-S" + i);
 response.addCookie(cookie);
 cookie = new Cookie("Persistent-Cookie " + i,
 "Cookie-Value-P" + i);
 // Cookie is valid for an hour, regardless of whether
 // user quits browser, reboots computer, or whatever.
 cookie.setMaxAge(3600);
 response.addCookie(cookie);
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Setting Cookies";
 out.println
 (ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "There are six cookies associated with this page.\n" +
 "To see them, visit the\n" +
 "\n" +
 "<CODE>ShowCookies</CODE> servlet.\n" +
 "<P>\n" +
 "Three of the cookies are associated only with the\n" +
 "current session, while three are persistent.\n" +
 "Quit the browser, restart, and return to the\n" +
 "<CODE>ShowCookies</CODE> servlet to verify that\n" +
 "the three long-lived ones persist across sessions.\n" +
 "</BODY></HTML>");
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

188 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 8.2 ShowCookies.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Creates a table of the cookies associated with
 * the current page.
 */

public class ShowCookies extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Active Cookies";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

Figure 8–1 Result of SetCookies servlet.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.4 Examples of Setting and Reading Cookies 189

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 " <TH>Cookie Name\n" +
 " <TH>Cookie Value");
 Cookie[] cookies = request.getCookies();
 Cookie cookie;
 for(int i=0; i<cookies.length; i++) {
 cookie = cookies[i];
 out.println("<TR>\n" +
 " <TD>" + cookie.getName() + "\n" +
 " <TD>" + cookie.getValue());
 }
 out.println("</TABLE></BODY></HTML>");
 }
}

Listing 8.2 ShowCookies.java (continued)

Figure 8–2 Result of visiting the ShowCookies servlet within an hour of visiting
SetCookies in the same browser session.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

190 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
8.5 Basic Cookie Utilities

This section presents some simple but useful utilities for dealing with cookies.

Finding Cookies with Specified Names

Listing 8.3 shows a section of ServletUtilities.java that simplifies the
retrieval of a cookie or cookie value, given a cookie name. The getCookie-
Value method loops through the array of available Cookie objects, returning
the value of any Cookie whose name matches the input. If there is no match,
the designated default value is returned. So, for example, my typical
approach for dealing with cookies is as follows:

Cookie[] cookies = request.getCookies();

String color =

ServletUtilities.getCookieValue(cookies, "color", "black");

String font =

ServletUtilities.getCookieValue(cookies, "font", "Arial");

The getCookie method also loops through the array comparing names,
but returns the actual Cookie object instead of just the value. That method is
for cases when you want to do something with the Cookie other than just
read its value.

Figure 8–3 Result of visiting the ShowCookies servlet within an hour of visiting
SetCookies in a different browser session.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.6 A Customized Search Engine Interface 191

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Creating Long-Lived Cookies

Listing 8.4 shows a small class that you can use instead of Cookie if you want
your cookie to automatically persist when the client quits the browser. See
Listing 8.5 for a servlet that uses this class.

8.6 A Customized Search Engine
Interface

Listing 8.5 shows the CustomizedSearchEngines servlet, a variation of the
SearchEngines example previously shown in Section 6.3. Like the Search-
Engines servlet (see Figure 8–5), the CustomizedSearchEngines servlet

Listing 8.3 ServletUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
// Other methods in this class shown in earlier chapters.

 public static String getCookieValue(Cookie[] cookies,
 String cookieName,
 String defaultValue) {
 for(int i=0; i<cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookieName.equals(cookie.getName()))
 return(cookie.getValue());
 }
 return(defaultValue);
 }

 public static Cookie getCookie(Cookie[] cookies,
 String cookieName) {
 for(int i=0; i<cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookieName.equals(cookie.getName()))
 return(cookie);
 }
 return(null);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

192 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
reads the user choices from the HTML front end and forwards them to the
appropriate search engine. In addition, the CustomizedSearchEngines
servlet returns to the client cookies that store the search values. Then, when
the user comes back to the front-end servlet at a later time (even after quit-
ting the browser and restarting), the front-end page is initialized with the val-
ues from the previous search.

To accomplish this customization, the front end is dynamically generated
instead of coming from a static HTML file (see Listing 8.6 for the source
code and Figure 8–4 for the result). The front-end servlet reads the cookie
values and uses them for the initial values of the HTML form fields. Note
that it would not have been possible for the front end to return the cookies
directly to the client. That’s because the search selections aren’t known until
the user interactively fills in the form and submits it, which cannot occur until
after the servlet that generated the front end has finished executing.

This example uses the LongLivedCookie class, shown in the previous sec-
tion, for creating a Cookie that automatically has a long-term expiration date,
instructing the browser to use it beyond the current session.

Listing 8.4 LongLivedCookie.java

package coreservlets;

import javax.servlet.http.*;

/** Cookie that persists 1 year. Default Cookie doesn't
 * persist past current session.
 */

public class LongLivedCookie extends Cookie {
 public static final int SECONDS_PER_YEAR = 60*60*24*365;

 public LongLivedCookie(String name, String value) {
 super(name, value);
 setMaxAge(SECONDS_PER_YEAR);
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.6 A Customized Search Engine Interface 193

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 8.5 CustomizedSearchEngines.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** A variation of the SearchEngine servlet that uses
 * cookies to remember users choices. These values
 * are then used by the SearchEngineFrontEnd servlet
 * to initialize the form-based front end.
 */

public class CustomizedSearchEngines extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String searchString = request.getParameter("searchString");
 if ((searchString == null) ||
 (searchString.length() == 0)) {
 reportProblem(response, "Missing search string.");
 return;
 }
 Cookie searchStringCookie =
 new LongLivedCookie("searchString", searchString);
 response.addCookie(searchStringCookie);
 // The URLEncoder changes spaces to "+" signs and other
 // non-alphanumeric characters to "%XY", where XY is the
 // hex value of the ASCII (or ISO Latin-1) character.
 // Browsers always URL-encode form values, so the
 // getParameter method decodes automatically. But since
 // we’re just passing this on to another server, we need to
 // re-encode it.
 searchString = URLEncoder.encode(searchString);
 String numResults = request.getParameter("numResults");
 if ((numResults == null) ||
 (numResults.equals("0")) ||
 (numResults.length() == 0)) {
 numResults = "10";
 }
 Cookie numResultsCookie =
 new LongLivedCookie("numResults", numResults);
 response.addCookie(numResultsCookie);
 String searchEngine = request.getParameter("searchEngine");
 if (searchEngine == null) {
 reportProblem(response, "Missing search engine name.");
 return;
 }
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

194 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 Cookie searchEngineCookie =
 new LongLivedCookie("searchEngine", searchEngine);
 response.addCookie(searchEngineCookie);
 SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs();
 for(int i=0; i<commonSpecs.length; i++) {
 SearchSpec searchSpec = commonSpecs[i];
 if (searchSpec.getName().equals(searchEngine)) {
 String url =
 searchSpec.makeURL(searchString, numResults);
 response.sendRedirect(url);
 return;
 }
 }
 reportProblem(response, "Unrecognized search engine.");
 }

 private void reportProblem(HttpServletResponse response,
 String message)
 throws IOException {
 response.sendError(response.SC_NOT_FOUND,
 "<H2>" + message + "</H2>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 8.6 SearchEnginesFrontEnd.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** Dynamically generated variation of the
 * SearchEngines.html front end that uses cookies
 * to remember a user's preferences.
 */

Listing 8.5 CustomizedSearchEngines.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.6 A Customized Search Engine Interface 195

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

public class SearchEnginesFrontEnd extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 Cookie[] cookies = request.getCookies();
 String searchString =
 ServletUtilities.getCookieValue(cookies,
 "searchString",
 "Java Programming");
 String numResults =
 ServletUtilities.getCookieValue(cookies,
 "numResults",
 "10");
 String searchEngine =
 ServletUtilities.getCookieValue(cookies,
 "searchEngine",
 "google");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Searching the Web";
 out.println
 (ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">Searching the Web</H1>\n" +
 "\n" +
 "<FORM ACTION=\"/servlet/" +
 "coreservlets.CustomizedSearchEngines\">\n" +
 "<CENTER>\n" +
 "Search String:\n" +
 "<INPUT TYPE=\"TEXT\" NAME=\"searchString\"\n" +
 " VALUE=\"" + searchString + "\">
\n" +
 "Results to Show Per Page:\n" +
 "<INPUT TYPE=\"TEXT\" NAME=\"numResults\"\n" +
 " VALUE=" + numResults + " SIZE=3>
\n" +
 "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
 " VALUE=\"google\"" +
 checked("google", searchEngine) + ">\n" +
 "Google |\n" +
 "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
 " VALUE=\"infoseek\"" +
 checked("infoseek", searchEngine) + ">\n" +
 "Infoseek |\n" +
 "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
 " VALUE=\"lycos\"" +
 checked("lycos", searchEngine) + ">\n" +
 "Lycos |\n" +
 "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
 " VALUE=\"hotbot\"" +

Listing 8.6 SearchEnginesFrontEnd.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

196 Chapter 8 Handling Cookies

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 checked("hotbot", searchEngine) + ">\n" +
 "HotBot\n" +
 "
\n" +
 "<INPUT TYPE=\"SUBMIT\" VALUE=\"Search\">\n" +
 "</CENTER>\n" +
 "</FORM>\n" +
 "\n" +
 "</BODY>\n" +
 "</HTML>\n");
 }

 private String checked(String name1, String name2) {
 if (name1.equals(name2))
 return(" CHECKED");
 else
 return("");
 }
}

Listing 8.6 SearchEnginesFrontEnd.java (continued)

Figure 8–4 Result of SearchEnginesFrontEnd servlet. Whatever options you
specify will be the initial choices next time you visit the same servlet.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

8.6 A Customized Search Engine Interface 197

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 8–5 Result of CustomizedSearchEngines servlet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Session
Tracking
Topics in This Chapter

• The purpose of session tracking

• The servlet session tracking API

• A servlet that uses sessions to show per-client access
counts

• A reusable shopping cart class

• An on-line store that uses session tracking, shopping
carts, and pages automatically built from catalog entries
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
his chapter shows you how to use the servlet session tracking API to
keep track of visitors as they move around at your site.

9.1 The Need for Session Tracking

HTTP is a “stateless” protocol: each time a client retrieves a Web page, it
opens a separate connection to the Web server, and the server does not auto-
matically maintain contextual information about a client. Even with servers
that support persistent (keep-alive) HTTP connections and keep a socket
open for multiple client requests that occur close together in time (see Sec-
tion 7.4), there is no built-in support for maintaining contextual information.
This lack of context causes a number of difficulties. For example, when cli-
ents at an on-line store add an item to their shopping carts, how does the
server know what’s already in them? Similarly, when clients decide to proceed
to checkout, how can the server determine which previously created shop-
ping carts are theirs?

There are three typical solutions to this problem: cookies, URL-rewriting,
and hidden form fields.

T

199

200 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Cookies

You can use HTTP cookies to store information about a shopping session, and
each subsequent connection can look up the current session and then extract
information about that session from some location on the server machine.
For example, a servlet could do something like the following:

String sessionID = makeUniqueString();
Hashtable sessionInfo = new Hashtable();
Hashtable globalTable = findTableStoringSessions();
globalTable.put(sessionID, sessionInfo);
Cookie sessionCookie = new Cookie("JSESSIONID", sessionID);
sessionCookie.setPath("/");
response.addCookie(sessionCookie);

Then, in later requests the server could use the globalTable hash table to
associate a session ID from the JSESSIONID cookie with the sessionInfo
hash table of data associated with that particular session. This is an excellent
solution and is the most widely used approach for session handling. Still, it
would be nice to have a higher-level API that handles some of these details.
Even though servlets have a high-level and easy-to-use interface to cookies
(see Chapter 8), a number of relatively tedious details still need to be han-
dled in this case:

• Extracting the cookie that stores the session identifier from the
other cookies (there may be many cookies, after all)

• Setting an appropriate expiration time for the cookie (sessions
that are inactive for 24 hours probably should be reset)

• Associating the hash tables with each request
• Generating the unique session identifiers

Besides, due to real and perceived privacy concerns over cookies (see Sec-
tion 8.2), some users disable them. So, it would be nice to have alternative
implementation approaches in addition to a higher-level protocol.

URL-Rewriting

With this approach, the client appends some extra data on the end of each
URL that identifies the session, and the server associates that identifier
with data it has stored about that session. For example, with
http://host/path/file.html;jsessionid=1234, the session information
is attached as jsessionid=1234. This is also an excellent solution, and even
has the advantage that it works when browsers don’t support cookies or when
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.2 The Session Tracking API 201

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
the user has disabled them. However, it has most of the same problems as
cookies, namely, that the server-side program has a lot of straightforward but
tedious processing to do. In addition, you have to be very careful that every
URL that references your site and is returned to the user (even by indirect
means like Location fields in server redirects) has the extra information
appended. And, if the user leaves the session and comes back via a bookmark
or link, the session information can be lost.

Hidden Form Fields

HTML forms can have an entry that looks like the following:
<INPUT TYPE="HIDDEN" NAME="session" VALUE="...">

This entry means that, when the form is submitted, the specified name and
value are included in the GET or POST data. For details, see Section 16.9
(Hidden Fields). This hidden field can be used to store information about the
session but it has the major disadvantage that it only works if every page is
dynamically generated.

Session Tracking in Servlets

Servlets provide an outstanding technical solution: the HttpSession API.
This high-level interface is built on top of cookies or URL-rewriting. In fact,
most servers use cookies if the browser supports them, but automatically
revert to URL-rewriting when cookies are unsupported or explicitly disabled.
But, the servlet author doesn’t need to bother with many of the details,
doesn’t have to explicitly manipulate cookies or information appended to the
URL, and is automatically given a convenient place to store arbitrary objects
that are associated with each session.

9.2 The Session Tracking API

Using sessions in servlets is straightforward and involves looking up the ses-
sion object associated with the current request, creating a new session object
when necessary, looking up information associated with a session, storing
information in a session, and discarding completed or abandoned sessions.
Finally, if you return any URLs to the clients that reference your site and
URL-rewriting is being used, you need to attach the session information to
the URLs.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

202 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Looking Up the HttpSession Object Associated
with the Current Request

You look up the HttpSession object by calling the getSession method of
HttpServletRequest. Behind the scenes, the system extracts a user ID
from a cookie or attached URL data, then uses that as a key into a table of
previously created HttpSession objects. But this is all done transparently to
the programmer: you just call getSession. If getSession returns null, this
means that the user is not already participating in a session, so you can create
a new session. Creating a new session in this case is so commonly done that
there is an option to automatically create a new session if one doesn’t already
exist. Just pass true to getSession. Thus, your first step usually looks like
this:

HttpSession session = request.getSession(true);

If you care whether the session existed previously or is newly created, you
can use isNew to check.

Looking Up Information Associated with a
Session

HttpSession objects live on the server; they’re just automatically associated
with the client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data structure that lets
you store any number of keys and associated values. In version 2.1 and earlier
of the servlet API, you use session.getValue("attribute") to look up a
previously stored value. The return type is Object, so you have to do a type-
cast to whatever more specific type of data was associated with that attribute
name in the session. The return value is null if there is no such attribute, so
you need to check for null before calling methods on objects associated with
sessions.

In version 2.2 of the servlet API, getValue is deprecated in favor of get-
Attribute because of the better naming match with setAttribute (in ver-
sion 2.1 the match for getValue is putValue, not setValue). Nevertheless,
since not all commercial servlet engines yet support version 2.2, I’ll use
getValue in my examples.

Here’s a representative example, assuming ShoppingCart is some class
you’ve defined to store information on items being purchased (for an imple-
mentation, see Section 9.4 (An On-Line Store Using a Shopping Cart and
Session Tracking)).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.2 The Session Tracking API 203

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
HttpSession session = request.getSession(true);
ShoppingCart cart =
(ShoppingCart)session.getValue("shoppingCart");

if (cart == null) { // No cart already in session
cart = new ShoppingCart();
session.putValue("shoppingCart", cart);

}
doSomethingWith(cart);

In most cases, you have a specific attribute name in mind and want to find
the value (if any) already associated with that name. However, you can also
discover all the attribute names in a given session by calling getValueNames,
which returns an array of strings. This method is your only option for finding
attribute names in version 2.1, but in servlet engines supporting version 2.2
of the servlet specification, you can use getAttributeNames. That method is
more consistent in that it returns an Enumeration, just like the getHeader-
Names and getParameterNames methods of HttpServletRequest.

Although the data that was explicitly associated with a session is the part
you care most about, there are some other pieces of information that are
sometimes useful as well. Here is a summary of the methods available in the
HttpSession class.

public Object getValue(String name)
public Object getAttribute(String name)
These methods extract a previously stored value from a session object.
They return null if there is no value associated with the given name. Use
getValue in version 2.1 of the servlet API. Version 2.2 supports both
methods, but getAttribute is preferred and getValue is deprecated.

public void putValue(String name, Object value)
public void setAttribute(String name, Object value)
These methods associate a value with a name. Use putValue with
version 2.1 servlets and either setAttribute (preferred) or putValue
(deprecated) with version 2.2 servlets. If the object supplied to
putValue or setAttribute implements the HttpSessionBinding-
Listener interface, the object’s valueBound method is called after it is
stored in the session. Similarly, if the previous value implements
HttpSessionBindingListener, its valueUnbound method is called.

public void removeValue(String name)
public void removeAttribute(String name)
These methods remove any values associated with the designated name.
If the value being removed implements HttpSessionBindingLis-
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

204 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
tener, its valueUnbound method is called. With version 2.1 servlets,
use removeValue. In version 2.2, removeAttribute is preferred, but
removeValue is still supported (albeit deprecated) for backward com-
patibility.

public String[] getValueNames()
public Enumeration getAttributeNames()
These methods return the names of all attributes in the session. Use
getValueNames in version 2.1 of the servlet specification. In version
2.2, getValueNames is supported but deprecated; use getAttribute-
Names instead.

public String getId()
This method returns the unique identifier generated for each session. It
is sometimes used as the key name when only a single value is associated
with a session, or when information about sessions is being logged.

public boolean isNew()
This method returns true if the client (browser) has never seen the ses-
sion, usually because it was just created rather than being referenced by
an incoming client request. It returns false for preexisting sessions.

public long getCreationTime()
This method returns the time in milliseconds since midnight, January 1,
1970 (GMT) at which the session was first built. To get a value useful for
printing out, pass the value to the Date constructor or the setTimeIn-
Millis method of GregorianCalendar.

public long getLastAccessedTime()
This method returns the time in milliseconds since midnight, January 1,
1970 (GMT) at which the session was last sent from the client.

public int getMaxInactiveInterval()
public void setMaxInactiveInterval(int seconds)
These methods get or set the amount of time, in seconds, that a session
should go without access before being automatically invalidated. A neg-
ative value indicates that the session should never time out. Note that
the time out is maintained on the server and is not the same as the
cookie expiration date, which is sent to the client.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.2 The Session Tracking API 205

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
public void invalidate()
This method invalidates the session and unbinds all objects associated
with it.

Associating Information with a Session

As discussed in the previous section, you read information associated with a
session by using getValue (in version 2.1 of the servlet specification) or
getAttribute (in version 2.2). To specify information in version 2.1 serv-
lets, you use putValue, supplying a key and a value. Use setAttribute in
version 2.2. This is a more consistent name because it uses the get/set nota-
tion of JavaBeans. To let your values perform side effects when they are
stored in a session, simply have the object you are associating with the session
implement the HttpSessionBindingListener interface. Now, every time
putValue or setAttribute is called on one of those objects, its valueBound
method is called immediately afterward.

Be aware that putValue and setAttribute replace any previous values;
if you want to remove a value without supplying a replacement, use remove-
Value in version 2.1 and removeAttribute in version 2.2. These methods
trigger the valueUnbound method of any values that implement Http-
SessionBindingListener. Sometimes you just want to replace previous
values; see the referringPage entry in the example below for an example.
Other times, you want to retrieve a previous value and augment it; for an
example, see the previousItems entry below. This example assumes a
ShoppingCart class with an addItem method to store items being ordered,
and a Catalog class with a static getItem method that returns an item, given
an item identifier. For an implementation, see Section 9.4 (An On-Line Store
Using a Shopping Cart and Session Tracking).

HttpSession session = request.getSession(true);

session.putValue("referringPage", request.getHeader("Referer"));

ShoppingCart cart =

(ShoppingCart)session.getValue("previousItems");

if (cart == null) { // No cart already in session

cart = new ShoppingCart();

session.putValue("previousItems", cart);

}

String itemID = request.getParameter("itemID");

if (itemID != null) {

cart.addItem(Catalog.getItem(itemID));

}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

206 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Terminating Sessions

Sessions will automatically become inactive when the amount of time
between client accesses exceeds the interval specified by getMax-

InactiveInterval. When this happens, any objects bound to the Http-
Session object automatically get unbound. When this happens, your
attached objects will automatically be notified if they implement the
HttpSessionBindingListener interface.

Rather than waiting for sessions to time out, you can explicitly deactivate a
session through the use of the session’s invalidate method.

Encoding URLs Sent to the Client

If you are using URL-rewriting for session tracking and you send a URL that
references your site to the client, you need to explicitly add on the session
data. Since the servlet will automatically switch to URL-rewriting when cook-
ies aren’t supported by the client, you should routinely encode all URLs that
reference your site. There are two possible places you might use URLs that
refer to your own site. The first is when the URLs are embedded in the Web
page that the servlet generates. These URLs should be passed through the
encodeURL method of HttpServletResponse. The method will determine
if URL-rewriting is currently in use and append the session information only
if necessary. The URL is returned unchanged otherwise.

Here’s an example:

String originalURL = someRelativeOrAbsoluteURL;

String encodedURL = response.encodeURL(originalURL);

out.println("...");

The second place you might use a URL that refers to your own site is in a
sendRedirect call (i.e., placed into the Location response header). In this
second situation, there are different rules for determining if session informa-
tion needs to be attached, so you cannot use encodeURL. Fortunately, Http-
ServletResponse supplies an encodeRedirectURL method to handle that
case. Here’s an example:

String originalURL = someURL; // Relative URL OK in version 2.2

String encodedURL = response.encodeRedirectURL(originalURL);

response.sendRedirect(encodedURL);

Since you often don’t know if your servlet will later become part of a series
of pages that use session tracking, it is good practice for servlets to plan ahead
and encode URLs that reference their site.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.3 A Servlet Showing Per-Client Access Counts 207

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Core Approach

Plan ahead: pass URLs that refer to your own site through
response.encodeURL or response.encodeRedirectURL,
regardless of whether your servlet is using session tracking.

9.3 A Servlet Showing Per-Client
Access Counts

Listing 9.1 presents a simple servlet that shows basic information about the
client’s session. When the client connects, the servlet uses request.getSes-
sion(true) to either retrieve the existing session or, if there was no session,
to create a new one. The servlet then looks for an attribute of type Integer
called accessCount. If it cannot find such an attribute, it uses 0 as the num-
ber of previous accesses. This value is then incremented and associated with
the session by putValue. Finally, the servlet prints a small HTML table
showing information about the session. Figures 9–1 and 9–2 show the servlet
on the initial visit and after the page was reloaded several times.

Listing 9.1 ShowSession.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;
import java.util.*;

/** Simple example of session tracking. See the shopping
 * cart example for a more detailed one.
 */

public class ShowSession extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Session Tracking Example";
 HttpSession session = request.getSession(true);
 String heading;
 // Use getAttribute instead of getValue in version 2.2.
 Integer accessCount =
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

208 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 (Integer)session.getValue("accessCount");
 if (accessCount == null) {
 accessCount = new Integer(0);
 heading = "Welcome, Newcomer";
 } else {
 heading = "Welcome Back";
 accessCount = new Integer(accessCount.intValue() + 1);
 }
 // Use setAttribute instead of putValue in version 2.2.
 session.putValue("accessCount", accessCount);

 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + heading + "</H1>\n" +
 "<H2>Information on Your Session:</H2>\n" +
 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 " <TH>Info Type<TH>Value\n" +
 "<TR>\n" +
 " <TD>ID\n" +
 " <TD>" + session.getId() + "\n" +
 "<TR>\n" +
 " <TD>Creation Time\n" +
 " <TD>" +
 new Date(session.getCreationTime()) + "\n" +
 "<TR>\n" +
 " <TD>Time of Last Access\n" +
 " <TD>" +
 new Date(session.getLastAccessedTime()) + "\n" +
 "<TR>\n" +
 " <TD>Number of Previous Accesses\n" +
 " <TD>" + accessCount + "\n" +
 "</TABLE>\n" +
 "</BODY></HTML>");

 }

 /** Handle GET and POST requests identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 9.1 ShowSession.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 209

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
9.4 An On-Line Store Using a Shopping
Cart and Session Tracking

This section gives an extended example of how you might build an on-line
store that uses session tracking. The first subsection shows how to build pages
that display items for sale. The code for each display page simply lists the

Figure 9–1 First visit to ShowSession servlet.

Figure 9–2 Eleventh visit to ShowSession servlet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

210 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
page title and the identifiers of the items listed on the page. The actual page
is then built automatically by methods in the parent class, based upon item
descriptions stored in the catalog. The second subsection shows the page that
handles the orders. It uses session tracking to associate a shopping cart with
each user and permits the user to modify orders for any previously selected
item. The third subsection presents the implementation of the shopping cart,
the data structures representing individual items and orders, and the catalog.

Building the Front End

Listing 9.2 presents an abstract base class used as a starting point for servlets
that want to display items for sale. It takes the identifiers for the items for
sale, looks them up in the catalog, and uses the descriptions and prices found
there to present an order page to the user. Listing 9.3 (with the result shown
in Figure 9–3) and Listing 9.4 (with the result shown in Figure 9–4) show
how easy it is to build actual pages with this parent class.

Listing 9.2 CatalogPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Base class for pages showing catalog entries.
 * Servlets that extend this class must specify
 * the catalog entries that they are selling and the page
 * title <I>before</I> the servlet is ever accessed. This

DILBERT reprinted by permission of United Syndicate, Inc.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 211

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
 * is done by putting calls to setItems and setTitle
 * in init.
 */

public abstract class CatalogPage extends HttpServlet {
 private Item[] items;
 private String[] itemIDs;
 private String title;

 /** Given an array of item IDs, look them up in the
 * Catalog and put their corresponding Item entry
 * into the items array. The Item contains a short
 * description, a long description, and a price,
 * using the item ID as the unique key.
 * <P>
 * Servlets that extend CatalogPage must call
 * this method (usually from init) before the servlet
 * is accessed.
 */

 protected void setItems(String[] itemIDs) {
 this.itemIDs = itemIDs;
 items = new Item[itemIDs.length];
 for(int i=0; i<items.length; i++) {
 items[i] = Catalog.getItem(itemIDs[i]);
 }
 }

 /** Sets the page title, which is displayed in
 * an H1 heading in resultant page.
 * <P>
 * Servlets that extend CatalogPage must call
 * this method (usually from init) before the servlet
 * is accessed.
 */

 protected void setTitle(String title) {
 this.title = title;
 }

 /** First display title, then, for each catalog item,
 * put its short description in a level-two (H2) heading
 * with the price in parentheses and long description
 * below. Below each entry, put an order button
 * that submits info to the OrderPage servlet for
 * the associated catalog entry.
 * <P>

Listing 9.2 CatalogPage.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

212 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 * To see the HTML that results from this method, do
 * "View Source" on KidsBooksPage or TechBooksPage, two
 * concrete classes that extend this abstract class.
 */

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 if (items == null) {
 response.sendError(response.SC_NOT_FOUND,
 "Missing Items.");
 return;
 }
 PrintWriter out = response.getWriter();
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>");
 Item item;
 for(int i=0; i<items.length; i++) {
 out.println("<HR>");
 item = items[i];
 // Show error message if subclass lists item ID
 // that’s not in the catalog.
 if (item == null) {
 out.println("" +
 "Unknown item ID " + itemIDs[i] +
 "");
 } else {
 out.println();
 String formURL =
 "/servlet/coreservlets.OrderPage";
 // Pass URLs that reference own site through encodeURL.
 formURL = response.encodeURL(formURL);
 out.println
 ("<FORM ACTION=\"" + formURL + "\">\n" +
 "<INPUT TYPE=\"HIDDEN\" NAME=\"itemID\" " +
 " VALUE=\"" + item.getItemID() + "\">\n" +
 "<H2>" + item.getShortDescription() +
 " ($" + item.getCost() + ")</H2>\n" +
 item.getLongDescription() + "\n" +
 "<P>\n<CENTER>\n" +
 "<INPUT TYPE=\"SUBMIT\" " +
 "VALUE=\"Add to Shopping Cart\">\n" +
 "</CENTER>\n<P>\n</FORM>");
}
 }
 out.println("<HR>\n</BODY></HTML>");
 }

Listing 9.2 CatalogPage.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 213

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
 /** POST and GET requests handled identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 9.3 KidsBooksPage.java

package coreservlets;

/** A specialization of the CatalogPage servlet that
 * displays a page selling three famous kids-book series.
 * Orders are sent to the OrderPage servlet.
*/

public class KidsBooksPage extends CatalogPage {
 public void init() {
 String[] ids = { "lewis001", "alexander001", "rowling001" };
 setItems(ids);
 setTitle("All-Time Best Children’s Fantasy Books");
 }
}

Listing 9.4 TechBooksPage.java

package coreservlets;

/** A specialization of the CatalogPage servlet that
 * displays a page selling two famous computer books.
 * Orders are sent to the OrderPage servlet.
*/

public class TechBooksPage extends CatalogPage {
 public void init() {
 String[] ids = { "hall001", "hall002" };
 setItems(ids);
 setTitle("All-Time Best Computer Books");
 }
}

Listing 9.2 CatalogPage.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

214 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 9–3 Result of the KidsBooksPage servlet.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 215

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Handling the Orders

Listing 9.5 shows the servlet that handles the orders coming from the various
catalog pages shown in the previous subsection. It uses session tracking to
associate a shopping cart with each user. Since each user has a separate ses-
sion, it is unlikely that multiple threads will be accessing the same shopping
cart simultaneously. However, if you were paranoid, you could conceive of a
few circumstances where concurrent access could occur, such as when a sin-
gle user has multiple browser windows open and sends updates from more
than one very close together in time. So, just to be safe, the code synchro-
nizes access based upon the session object. This prevents other threads that

Figure 9–4 Result of the TechBooksPage servlet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

216 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
use the same session from accessing the data concurrently, while still allowing
simultaneous requests from different users to proceed. Figures 9–5 and 9–6
show some typical results.

Listing 9.5 OrderPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.text.NumberFormat;

/** Shows all items currently in ShoppingCart. Clients
 * have their own session that keeps track of which
 * ShoppingCart is theirs. If this is their first visit
 * to the order page, a new shopping cart is created.
 * Usually, people come to this page by way of a page
 * showing catalog entries, so this page adds an additional
 * item to the shopping cart. But users can also
 * bookmark this page, access it from their history list,
 * or be sent back to it by clicking on the "Update Order"
 * button after changing the number of items ordered.
 */

public class OrderPage extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 HttpSession session = request.getSession(true);
 ShoppingCart cart;
 synchronized(session) {
 cart = (ShoppingCart)session.getValue("shoppingCart");
 // New visitors get a fresh shopping cart.
 // Previous visitors keep using their existing cart.
 if (cart == null) {
 cart = new ShoppingCart();
 session.putValue("shoppingCart", cart);
 }
 String itemID = request.getParameter("itemID");
 if (itemID != null) {
 String numItemsString =
 request.getParameter("numItems");
 if (numItemsString == null) {
 // If request specified an ID but no number,
 // then customers came here via an "Add Item to Cart"
 // button on a catalog page.
 cart.addItem(itemID);
 } else {
 // If request specified an ID and number, then
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 217

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
 // customers came here via an "Update Order" button
 // after changing the number of items in order.
 // Note that specifying a number of 0 results
 // in item being deleted from cart.
 int numItems;
 try {
 numItems = Integer.parseInt(numItemsString);
 } catch(NumberFormatException nfe) {
 numItems = 1;
 }
 cart.setNumOrdered(itemID, numItems);
 }
 }
 }
 // Whether or not the customer changed the order, show
 // order status.
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Status of Your Order";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>");
 synchronized(session) {
 Vector itemsOrdered = cart.getItemsOrdered();
 if (itemsOrdered.size() == 0) {
 out.println("<H2><I>No items in your cart...</I></H2>");
 } else {
 // If there is at least one item in cart, show table
 // of items ordered.
 out.println
 ("<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 " <TH>Item ID<TH>Description\n" +
 " <TH>Unit Cost<TH>Number<TH>Total Cost");
 ItemOrder order;

 // Rounds to two decimal places, inserts dollar
 // sign (or other currency symbol), etc., as
 // appropriate in current Locale.
 NumberFormat formatter =
 NumberFormat.getCurrencyInstance();

 String formURL =
 "/servlet/coreservlets.OrderPage";
 // Pass URLs that reference own site through encodeURL.
 formURL = response.encodeURL(formURL);

 // For each entry in shopping cart, make
 // table row showing ID, description, per-item
 // cost, number ordered, and total cost.

Listing 9.5 OrderPage.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

218 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 // Put number ordered in textfield that user
 // can change, with "Update Order" button next
 // to it, which resubmits to this same page
 // but specifying a different number of items.
 for(int i=0; i<itemsOrdered.size(); i++) {
 order = (ItemOrder)itemsOrdered.elementAt(i);
 out.println
 ("<TR>\n" +
 " <TD>" + order.getItemID() + "\n" +
 " <TD>" + order.getShortDescription() + "\n" +
 " <TD>" +
 formatter.format(order.getUnitCost()) + "\n" +
 " <TD>" +
 "<FORM ACTION=\"" + formURL + "\">\n" +
 "<INPUT TYPE=\"HIDDEN\" NAME=\"itemID\"\n" +
 " VALUE=\"" + order.getItemID() + "\">\n" +
 "<INPUT TYPE=\"TEXT\" NAME=\"numItems\"\n" +
 " SIZE=3 VALUE=\"" +
 order.getNumItems() + "\">\n" +
 "<SMALL>\n" +
 "<INPUT TYPE=\"SUBMIT\"\n "+
 " VALUE=\"Update Order\">\n" +
 "</SMALL>\n" +
 "</FORM>\n" +
 " <TD>" +
 formatter.format(order.getTotalCost()));
 }
 String checkoutURL =
 response.encodeURL("/Checkout.html");
 // "Proceed to Checkout" button below table
 out.println
 ("</TABLE>\n" +
 "<FORM ACTION=\"" + checkoutURL + "\">\n" +
 "<BIG><CENTER>\n" +
 "<INPUT TYPE=\"SUBMIT\"\n" +
 " VALUE=\"Proceed to Checkout\">\n" +
 "</CENTER></BIG></FORM>");
 }
 out.println("</BODY></HTML>");
 }
 }

 /** POST and GET requests handled identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 9.5 OrderPage.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 219

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Figure 9–5 Result of OrderPage servlet after user clicks on “Add to Shopping Cart”
in KidsBooksPage.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

220 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Behind the Scenes: Implementing the Shopping
Cart and Catalog Items

Listing 9.6 gives the shopping cart implementation. It simply maintains a
Vector of orders, with methods to add and update these orders. Listing 9.7
shows the code for the individual catalog item, Listing 9.8 presents the class
representing the order status of a particular item, and Listing 9.9 gives the
catalog implementation.

Figure 9–6 Result of OrderPage servlet after several additions and changes to the
order.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 221

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Listing 9.6 ShoppingCart.java

package coreservlets;

import java.util.*;

/** A shopping cart data structure used to track orders.
 * The OrderPage servlet associates one of these carts
 * with each user session.
 */

public class ShoppingCart {
 private Vector itemsOrdered;

 /** Builds an empty shopping cart. */

 public ShoppingCart() {
 itemsOrdered = new Vector();
 }

 /** Returns Vector of ItemOrder entries giving
 * Item and number ordered.
 */

 public Vector getItemsOrdered() {
 return(itemsOrdered);
 }

 /** Looks through cart to see if it already contains
 * an order entry corresponding to item ID. If it does,
 * increments the number ordered. If not, looks up
 * Item in catalog and adds an order entry for it.
 */

 public synchronized void addItem(String itemID) {
 ItemOrder order;
 for(int i=0; i<itemsOrdered.size(); i++) {
 order = (ItemOrder)itemsOrdered.elementAt(i);
 if (order.getItemID().equals(itemID)) {
 order.incrementNumItems();
 return;
 }
 }
 ItemOrder newOrder = new ItemOrder(Catalog.getItem(itemID));
 itemsOrdered.addElement(newOrder);
 }

 /** Looks through cart to find order entry corresponding
 * to item ID listed. If the designated number
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

222 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 * is positive, sets it. If designated number is 0
 * (or, negative due to a user input error), deletes
 * item from cart.
 */

 public synchronized void setNumOrdered(String itemID,
 int numOrdered) {
 ItemOrder order;
 for(int i=0; i<itemsOrdered.size(); i++) {
 order = (ItemOrder)itemsOrdered.elementAt(i);
 if (order.getItemID().equals(itemID)) {
 if (numOrdered <= 0) {
 itemsOrdered.removeElementAt(i);
 } else {
 order.setNumItems(numOrdered);
 }
 return;
 }
 }
 ItemOrder newOrder =
 new ItemOrder(Catalog.getItem(itemID));
 itemsOrdered.addElement(newOrder);
 }
}

Listing 9.7 Item.java

package coreservlets;

/** Describes a catalog item for on-line store. The itemID
 * uniquely identifies the item, the short description
 * gives brief info like the book title and author,
 * the long description describes the item in a couple
 * of sentences, and the cost gives the current per-item price.
 * Both the short and long descriptions can contain HTML
 * markup.
 */

public class Item {
 private String itemID;
 private String shortDescription;
 private String longDescription;
 private double cost;

Listing 9.6 ShoppingCart.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 223

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
 public Item(String itemID, String shortDescription,
 String longDescription, double cost) {
 setItemID(itemID);
 setShortDescription(shortDescription);
 setLongDescription(longDescription);
 setCost(cost);
 }

 public String getItemID() {
 return(itemID);
 }

 protected void setItemID(String itemID) {
 this.itemID = itemID;
 }

 public String getShortDescription() {
 return(shortDescription);
 }

 protected void setShortDescription(String shortDescription) {
 this.shortDescription = shortDescription;
 }

 public String getLongDescription() {
 return(longDescription);
 }

 protected void setLongDescription(String longDescription) {
 this.longDescription = longDescription;
 }

 public double getCost() {
 return(cost);
 }

 protected void setCost(double cost) {
 this.cost = cost;
 }
}

Listing 9.7 Item.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

224 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 9.8 ItemOrder.java

package coreservlets;

/** Associates a catalog Item with a specific order by
 * keeping track of the number ordered and the total price.
 * Also provides some convenience methods to get at the
 * Item data without first extracting the Item separately.
 */

public class ItemOrder {
 private Item item;
 private int numItems;

 public ItemOrder(Item item) {
 setItem(item);
 setNumItems(1);
 }

 public Item getItem() {
 return(item);
 }

 protected void setItem(Item item) {
 this.item = item;
 }

 public String getItemID() {
 return(getItem().getItemID());
 }

 public String getShortDescription() {
 return(getItem().getShortDescription());
 }

 public String getLongDescription() {
 return(getItem().getLongDescription());
 }

 public double getUnitCost() {
 return(getItem().getCost());
 }

 public int getNumItems() {
 return(numItems);
 }

 public void setNumItems(int n) {
 this.numItems = n;
 }
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 225

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
 public void incrementNumItems() {
 setNumItems(getNumItems() + 1);
 }

 public void cancelOrder() {
 setNumItems(0);
 }

 public double getTotalCost() {
 return(getNumItems() * getUnitCost());
 }
}

Listing 9.9 Catalog.java

package coreservlets;

/** A catalog listing the items available in inventory. */

public class Catalog {
 // This would come from a database in real life
 private static Item[] items =
 { new Item("hall001",
 "<I>Core Servlets and JavaServer Pages</I> " +
 " by Marty Hall",
 "The definitive reference on servlets " +
 "and JSP from Prentice Hall and \n" +
 "Sun Microsystems Press. Nominated for " +
 "the Nobel Prize in Literature.",
 39.95),
 new Item("hall002",
 "<I>Core Web Programming, Java2 Edition</I> " +
 "by Marty Hall, Larry Brown, and " +
 "Paul McNamee",
 "One stop shopping for the Web programmer. " +
 "Topics include \n" +
 "Thorough coverage of Java 2; " +
 "including Threads, Networking, Swing, \n" +
 "Java2D, and Collections\n" +
 "A fast introduction to HTML 4.01, " +
 "including frames, style sheets, layers,\n" +
 "and Netscape and Internet Explorer " +
 "extensions.\n" +
 "A fast introduction to HTTP 1.1, " +
 "servlets, and JavaServer Pages.\n" +

Listing 9.8 ItemOrder.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

226 Chapter 9 Session Tracking

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 "A quick overview of JavaScript 1.2\n" +
 "",
 49.95),
 new Item("lewis001",
 "<I>The Chronicles of Narnia</I> by C.S. Lewis",
 "The classic children’s adventure pitting " +
 "Aslan the Great Lion and his followers\n" +
 "against the White Witch and the forces " +
 "of evil. Dragons, magicians, quests, \n" +
 "and talking animals wound around a deep " +
 "spiritual allegory. Series includes\n" +
 "<I>The Magician’s Nephew</I>,\n" +
 "<I>The Lion, the Witch and the " +
 "Wardrobe</I>,\n" +
 "<I>The Horse and His Boy</I>,\n" +
 "<I>Prince Caspian</I>,\n" +
 "<I>The Voyage of the Dawn " +
 "Treader</I>,\n" +
 "<I>The Silver Chair</I>, and \n" +
 "<I>The Last Battle</I>.",
 19.95),
 new Item("alexander001",
 "<I>The Prydain Series</I> by Lloyd Alexander",
 "Humble pig-keeper Taran joins mighty " +
 "Lord Gwydion in his battle against\n" +
 "Arawn the Lord of Annuvin. Joined by " +
 "his loyal friends the beautiful princess\n" +
 "Eilonwy, wannabe bard Fflewddur Fflam," +
 "and furry half-man Gurgi, Taran discovers " +
 "courage, nobility, and other values along\n" +
 "the way. Series includes\n" +
 "<I>The Book of Three</I>,\n" +
 "<I>The Black Cauldron</I>,\n" +
 "<I>The Castle of Llyr</I>,\n" +
 "<I>Taran Wanderer</I>, and\n" +
 "<I>The High King</I>.",
 19.95),
 new Item("rowling001",
 "<I>The Harry Potter Trilogy</I> by " +
 "J.K. Rowling",
 "The first three of the popular stories " +
 "about wizard-in-training Harry Potter\n" +
 "topped both the adult and children’s " +
 "best-seller lists. Series includes\n" +
 "<I>Harry Potter and the " +
 "Sorcerer’s Stone</I>,\n" +
 "<I>Harry Potter and the " +

Listing 9.9 Catalog.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

9.4 An On-Line Store Using a Shopping Cart and Session Tracking 227

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
 "Chamber of Secrets</I>, and\n" +
 "<I>Harry Potter and the " +
 "Prisoner of Azkaban</I>.",
 25.95)
 };

 public static Item getItem(String itemID) {
 Item item;
 if (itemID == null) {
 return(null);
 }
 for(int i=0; i<items.length; i++) {
 item = items[i];
 if (itemID.equals(item.getItemID())) {
 return(item);
 }
 }
 return(null);
 }
}

Listing 9.9 Catalog.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

2

JavaServer Pages

Chapter 10 JSP Scripting Elements, 230
Chapter 11 The JSP page Directive: Structuring

Generated Servlets, 246
Chapter 12 Including Files and Applets in JSP

Documents, 266
Chapter 13 Using JavaBeans with JSP, 286
Chapter 14 Creating Custom JSP Tag Libraries,

308
Chapter 15 Integrating Servlets and JSP, 352

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

JSP Scripting
Elements
Topics in This Chapter

• The purpose of JSP

• How JSP pages are invoked

• Using JSP expressions to insert dynamic results directly
into the output page

• Using JSP scriptlets to insert Java code into the method
that handles requests for the page

• Using JSP declarations to add methods and field
declarations to the servlet that corresponds to the JSP
page

• Predefined variables that can be used within expressions
and scriptlets
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chap

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ter
avaServer Pages (JSP) technology enables you to mix regular, static
HTML with dynamically generated content from servlets. You simply
write the regular HTML in the normal manner, using familiar
Web-page-building tools. You then enclose the code for the dynamic

parts in special tags, most of which start with <% and end with %>. For
example, here is a section of a JSP page that results in “Thanks for ordering
Core Web Programming” for a URL of http://host/OrderConfirma-
tion.jsp?title=Core+Web+Programming:

Thanks for ordering <I><%= request.getParameter("title") %></I>

Separating the static HTML from the dynamic content provides a number
of benefits over servlets alone, and the approach used in JavaServer Pages
offers several advantages over competing technologies such as ASP, PHP, or
ColdFusion. Section 1.4 (The Advantages of JSP) gives some details on these
advantages, but they basically boil down to two facts: that JSP is widely sup-
ported and thus doesn’t lock you into a particular operating system or Web
server and that JSP gives you full access to servlet and Java technology for the
dynamic part, rather than requiring you to use an unfamiliar and weaker spe-
cial-purpose language.

The process of making JavaServer Pages accessible on the Web is much
simpler than that for servlets. Assuming you have a Web server that supports
JSP, you give your file a .jsp extension and simply install it in any place you

J

231

232 Chapter 10 JSP Scripting Elements

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
could put a normal Web page: no compiling, no packages, and no user
CLASSPATH settings. However, although your personal environment doesn’t
need any special settings, the server still has to be set up with access to the
servlet and JSP class files and the Java compiler. For details, see your server’s
documentation or Section 1.5 (Installation and Setup).

Although what you write often looks more like a regular HTML file than a
servlet, behind the scenes, the JSP page is automatically converted to a nor-
mal servlet, with the static HTML simply being printed to the output stream
associated with the servlet’s service method. This translation is normally
done the first time the page is requested. To ensure that the first real user
doesn’t get a momentary delay when the JSP page is translated into a servlet
and compiled, developers can simply request the page themselves after first
installing it. Many Web servers also let you define aliases so that a URL that
appears to reference an HTML file really points to a servlet or JSP page.

Depending on how your server is set up, you can even look at the source
code for servlets generated from your JSP pages. With Tomcat 3.0, you need to
change the isWorkDirPersistent attribute from false to true in
install_dir/server.xml. After that, the code can be found in
install_dir/work/port-number. With the JSWDK 1.0.1, you need to
change the workDirIsPersistent attribute from false to true in
install_dir/webserver.xml. After that, the code can be found in
install_dir/work/%3Aport-number%2F. With the Java Web Server, 2.0 the
default setting is to save source code for automatically generated servlets. They
can be found in install_dir/tmpdir/default/pagecompile/jsp/_JSP.

One warning about the automatic translation process is in order. If you
make an error in the dynamic portion of your JSP page, the system may not
be able to properly translate it into a servlet. If your page has such a fatal
translation-time error, the server will present an HTML error page describ-
ing the problem to the client. Internet Explorer 5, however, typically replaces
server-generated error messages with a canned page that it considers friend-
lier. You will need to turn off this “feature” when debugging JSP pages. To do
so with Internet Explorer 5, go to the Tools menu, select Internet Options,
choose the Advanced tab, and make sure “Show friendly HTTP error mes-
sages” box is not checked.

Core Warning

When debugging JSP pages, be sure to turn off Internet Explorer’s
“friendly” HTTP error messages.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.1 Scripting Elements 233

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Aside from the regular HTML, there are three main types of JSP con-
structs that you embed in a page: scripting elements, directives, and actions.
Scripting elements let you specify Java code that will become part of the
resultant servlet, directives let you control the overall structure of the servlet,
and actions let you specify existing components that should be used and oth-
erwise control the behavior of the JSP engine. To simplify the scripting ele-
ments, you have access to a number of predefined variables, such as request
in the code snippet just shown (see Section 10.5 for more details). Scripting
elements are covered in this chapter, and directives and actions are explained
in the following chapters. You can also refer to Appendix (Servlet and JSP
Quick Reference) for a thumbnail guide summarizing JSP syntax.

This book covers versions 1.0 and 1.1 of the JavaServer Pages specification.
JSP changed dramatically from version 0.92 to version 1.0, and although
these changes are very much for the better, you should note that newer JSP
pages are almost totally incompatible with the early 0.92 JSP engines, and
older JSP pages are equally incompatible with 1.0 JSP engines. The changes
from version 1.0 to 1.1 are much less dramatic: the main additions in version
1.1 are the ability to portably define new tags and the use of the servlet 2.2
specification for the underlying servlets. JSP 1.1 pages that do not use custom
tags or explicitly call 2.2-specific statements are compatible with JSP 1.0
engines, and JSP 1.0 pages are totally upward compatible with JSP 1.1
engines.

10.1 Scripting Elements

JSP scripting elements let you insert code into the servlet that will be gener-
ated from the JSP page. There are three forms:

1. Expressions of the form <%= expression %>, which are evalu-
ated and inserted into the servlet’s output

2. Scriptlets of the form <% code %>, which are inserted into the
servlet’s _jspService method (called by service)

3. Declarations of the form <%! code %>, which are inserted into
the body of the servlet class, outside of any existing methods

Each of these scripting elements is described in more detail in the follow-
ing sections.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

234 Chapter 10 JSP Scripting Elements

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Template Text

In many cases, a large percentage of your JSP page just consists of static
HTML, known as template text. In almost all respects, this HTML looks just
like normal HTML, follows all the same syntax rules, and is simply “passed
through” to the client by the servlet created to handle the page. Not only
does the HTML look normal, it can be created by whatever tools you already
are using for building Web pages. For example, I used Allaire’s HomeSite for
most of the JSP pages in this book.

There are two minor exceptions to the “template text is passed straight
through” rule. First, if you want to have <% in the output, you need to put <\%
in the template text. Second, if you want a comment to appear in the JSP
page but not in the resultant document, use

<%-- JSP Comment --%>

HTML comments of the form
<!-- HTML Comment -->

are passed through to the resultant HTML normally.

10.2 JSP Expressions

A JSP expression is used to insert values directly into the output. It has the
following form:

<%= Java Expression %>

The expression is evaluated, converted to a string, and inserted in the
page. This evaluation is performed at run time (when the page is requested)
and thus has full access to information about the request. For example, the
following shows the date/time that the page was requested:

Current time: <%= new java.util.Date() %>

Predefined Variables

To simplify these expressions, you can use a number of predefined variables.
These implicit objects are discussed in more detail in Section 10.5, but for
the purpose of expressions, the most important ones are:

• request, the HttpServletRequest
• response, the HttpServletResponse
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.2 JSP Expressions 235

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• session, the HttpSession associated with the request (unless
disabled with the session attribute of the page directive — see
Section 11.4)

• out, the PrintWriter (a buffered version called JspWriter)
used to send output to the client

Here is an example:

Your hostname: <%= request.getRemoteHost() %>

XML Syntax for Expressions

XML authors can use the following alternative syntax for JSP expressions:

<jsp:expression>

Java Expression

</jsp:expression>

Note that XML elements, unlike HTML ones, are case sensitive, so be
sure to use jsp:expression in lower case.

Using Expressions as Attribute Values

As we will see later, JSP includes a number of elements that use XML syntax
to specify various parameters. For example, the following example passes
"Marty" to the setFirstName method of the object bound to the author
variable. Don’t worry if you don’t understand the details of this code; it is dis-
cussed in detail in Chapter 13 (Using JavaBeans with JSP). My purpose here
is simply to point out the use of the name, property, and value attributes.

<jsp:setProperty name="author"

property="firstName"

value="Marty" />

Most attributes require the value to be a fixed string enclosed in either sin-
gle or double quotes, as in the example above. A few attributes, however, per-
mit you to use a JSP expression that is computed at request time. The value
attribute of jsp:setProperty is one such example, so the following code is
perfectly legal:

<jsp:setProperty name="user"

property="id"

value=’<%= "UserID" + Math.random() %>’ />

Table 10.1 lists the attributes that permit a request-time value as in this
example.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

236 Chapter 10 JSP Scripting Elements

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Example

Listing 10.1 gives an example JSP page; Figure 10–1 shows the result. Notice
that I included META tags and a style sheet link in the HEAD section of the
HTML page. It is good practice to include these elements, but there are two
reasons why they are often omitted from pages generated by normal servlets.
First, with servlets, it is tedious to generate the required println statements.
With JSP, however, the format is simpler and you can make use of the code
reuse options in your usual HTML building tool. Second, servlets cannot use
the simplest form of relative URLs (ones that refer to files in the same direc-
tory as the current page) since the servlet directories are not mapped to
URLs in the same manner as are URLs for normal Web pages. JSP pages, on
the other hand, are installed in the normal Web page hierarchy on the server,
and relative URLs are resolved properly. Thus, style sheets and JSP pages can
be kept together in the same directory. The source code for the style sheet,
like all code shown or referenced in the book, can be downloaded from
http://www.coreservlets.com/.

Table 10.1 Attributes That Permit JSP Expressions

Element Name Attribute Name(s)

jsp:setProperty
(see Section 13.3, “Setting Bean Properties”)

name
value

jsp:include
(see Chapter 12, “Including Files and Applets in JSP
Documents”)

page

jsp:forward
(see Chapter 15, “Integrating Servlets and JSP”)

page

jsp:param
(see Chapter 12, “Including Files and Applets in JSP
Documents”)

value
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.2 JSP Expressions 237

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 10.1 Expressions.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Expressions</TITLE>
<META NAME="author" CONTENT="Marty Hall">
<META NAME="keywords"
 CONTENT="JSP,expressions,JavaServer,Pages,servlets">
<META NAME="description"
 CONTENT="A quick example of JSP expressions.">
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H2>JSP Expressions</H2>

 Current time: <%= new java.util.Date() %>
 Your hostname: <%= request.getRemoteHost() %>
 Your session ID: <%= session.getId() %>
 The <CODE>testParam</CODE> form parameter:
 <%= request.getParameter("testParam") %>

</BODY>
</HTML>

Figure 10–1 Typical result of Expressions.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

238 Chapter 10 JSP Scripting Elements

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
10.3 JSP Scriptlets

If you want to do something more complex than insert a simple expression,
JSP scriptlets let you insert arbitrary code into the servlet’s _jspService
method (which is called by service). Scriptlets have the following form:

<% Java Code %>

Scriptlets have access to the same automatically defined variables as
expressions (request, response, session, out, etc.; see Section 10.5). So,
for example, if you want output to appear in the resultant page, you would
use the out variable, as in the following example.

<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>

In this particular instance, you could have accomplished the same effect
more easily by using the following JSP expression:

Attached GET data: <%= request.getQueryString() %>

In general, however, scriptlets can perform a number of tasks that cannot
be accomplished with expressions alone. These tasks include setting response
headers and status codes, invoking side effects such as writing to the server
log or updating a database, or executing code that contains loops, condition-
als, or other complex constructs. For instance, the following snippet specifies
that the current page is sent to the client as plain text, not as HTML (which is
the default).

<% response.setContentType("text/plain"); %>

It is important to note that you can set response headers or status codes
at various places within a JSP page, even though this capability appears to
violate the rule that this type of response data needs to be specified before
any document content is sent to the client. Setting headers and status codes
is permitted because servlets that result from JSP pages use a special type
of PrintWriter (of the more specific class JspWriter) that buffers the
document before sending it. This buffering behavior can be changed, how-
ever; see Section 11.6 for a discussion of the autoflush attribute of the
page directive.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.3 JSP Scriptlets 239

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

As an example of executing code that is too complex for a JSP expression,
Listing 10.2 presents a JSP page that uses the bgColor request parameter to
set the background color of the page. Some results are shown in Figures
10–2, 10–3, and 10–4.

Listing 10.2 BGColor.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Color Testing</TITLE>
</HEAD>

<%
String bgColor = request.getParameter("bgColor");
boolean hasExplicitColor;
if (bgColor != null) {
 hasExplicitColor = true;
} else {
 hasExplicitColor = false;
 bgColor = "WHITE";
}
%>
<BODY BGCOLOR="<%= bgColor %>">
<H2 ALIGN="CENTER">Color Testing</H2>

<%
if (hasExplicitColor) {
 out.println("You supplied an explicit background color of " +
 bgColor + ".");
} else {
 out.println("Using default background color of WHITE. " +
 "Supply the bgColor request attribute to try " +
 "a standard color, an RRGGBB value, or to see " +
 "if your browser supports X11 color names.");
}
%>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

240 Chapter 10 JSP Scripting Elements

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 10–2 Default result of BGColor.jsp.

Figure 10–3 Result of BGColor.jsp when accessed with a bgColor parameter
having the RGB value C0C0C0.
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.3 JSP Scriptlets 241

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Using Scriptlets to Make Parts of the JSP File
Conditional

Another use of scriptlets is to conditionally include standard HTML and JSP
constructs. The key to this approach is the fact that code inside a scriptlet
gets inserted into the resultant servlet’s _jspService method (called by
service) exactly as written, and any static HTML (template text) before or
after a scriptlet gets converted to print statements. This means that script-
lets need not contain complete Java statements, and blocks left open can
affect the static HTML or JSP outside of the scriptlets. For example, con-
sider the following JSP fragment containing mixed template text and script-
lets.

<% if (Math.random() < 0.5) { %>
Have a nice day!
<% } else { %>
Have a lousy day!
<% } %>

Figure 10–4 Result of BGColor.jsp when accessed with a bgColor parameter
having the X11 color value papayawhip.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

242 Chapter 10 JSP Scripting Elements

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
When converted to a servlet by the JSP engine, this fragment will result in
something similar to the following.

if (Math.random() < 0.5) {
 out.println("Have a nice day!");
} else {
 out.println("Have a lousy day!");
}

Special Scriptlet Syntax

There are two special constructs you should take note of. First, if you want to
use the characters %> inside a scriptlet, enter %\> instead. Second, the XML
equivalent of <% Code %> is

<jsp:scriptlet>
Code
</jsp:scriptlet>

The two forms are treated identically by JSP engines.

10.4 JSP Declarations

A JSP declaration lets you define methods or fields that get inserted into the
main body of the servlet class (outside of the _jspService method that is
called by service to process the request). A declaration has the following form:

<%! Java Code %>

Since declarations do not generate any output, they are normally used in
conjunction with JSP expressions or scriptlets. For example, here is a JSP
fragment that prints the number of times the current page has been
requested since the server was booted (or the servlet class was changed and
reloaded). Recall that multiple client requests to the same servlet result only
in multiple threads calling the service method of a single servlet instance.
They do not result in the creation of multiple servlet instances except possibly
when the servlet implements SingleThreadModel. For a discussion of Sin-
gleThreadModel, see Section 2.6 (The Servlet Life Cycle) and Section 11.3
(The isThreadSafe Attribute). Thus, instance variables (fields) of a servlet are
shared by multiple requests and accessCount does not have to be declared
static below.

<%! private int accessCount = 0; %>
Accesses to page since server reboot:
<%= ++accessCount %>
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.4 JSP Declarations 243

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 10.3 shows the full JSP page; Figure 10–5 shows a representative
result.

Listing 10.3 AccessCounts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Declarations</TITLE>
<META NAME="author" CONTENT="Marty Hall">
<META NAME="keywords"
 CONTENT="JSP,declarations,JavaServer,Pages,servlets">
<META NAME="description"
 CONTENT="A quick example of JSP declarations.">
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>JSP Declarations</H1>

<%! private int accessCount = 0; %>
<H2>Accesses to page since server reboot:
<%= ++accessCount %></H2>

</BODY>
</HTML>

Figure 10–5 Visiting AccessCounts.jsp after it has been requested 15 times by
the same or different clients.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

244 Chapter 10 JSP Scripting Elements

Home page f
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Special Declaration Syntax

As with scriptlets, if you want to use the characters %>, enter %\> instead.
Finally, note that the XML equivalent of <%! Code %> is

<jsp:declaration>

Code

</jsp:declaration>

10.5 Predefined Variables

To simplify code in JSP expressions and scriptlets, you are supplied with eight
automatically defined variables, sometimes called implicit objects. Since JSP
declarations (see Section 10.4) result in code that appears outside of the
_jspService method, these variables are not accessible in declarations. The
available variables are request, response, out, session, application,
config, pageContext, and page. Details for each are given below.

request
This variable is the HttpServletRequest associated with the request;
it gives you access to the request parameters, the request type (e.g., GET
or POST), and the incoming HTTP headers (e.g., cookies). Strictly
speaking, if the protocol in the request is something other than HTTP,
request is allowed to be a subclass of ServletRequest other than
HttpServletRequest. However, few, if any, JSP servers currently sup-
port non-HTTP servlets.

response
This variable is the HttpServletResponse associated with the
response to the client. Note that since the output stream (see out) is
normally buffered, it is legal to set HTTP status codes and response
headers in JSP pages, even though the setting of headers or status codes
is not permitted in servlets once any output has been sent to the client.

out
This is the PrintWriter used to send output to the client. However, to
make the response object useful, this is a buffered version of Print-
Writer called JspWriter. You can adjust the buffer size through use of
the buffer attribute of the page directive (see Section 11.5). Also note
or this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

10.5 Predefined Variables 245

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

that out is used almost exclusively in scriptlets, since JSP expressions
are automatically placed in the output stream and thus rarely need to
refer to out explicitly.

session
This variable is the HttpSession object associated with the request.
Recall that sessions are created automatically, so this variable is bound
even if there is no incoming session reference. The one exception is if
you use the session attribute of the page directive (see Section 11.4)
to turn sessions off. In that case, attempts to reference the session
variable cause errors at the time the JSP page is translated into a servlet.

application
This variable is the ServletContext as obtained via getServletCon-
fig().getContext(). Servlets and JSP pages can store persistent data
in the ServletContext object rather than in instance variables. Serv-
letContext has setAttribute and getAttribute methods that let
you store arbitrary data associated with specified keys. The difference
between storing data in instance variables and storing it in the Servlet-
Context is that the ServletContext is shared by all servlets in the serv-
let engine (or in the Web application, if your server supports such a
capability). For more information on the use of the ServletContext,
see Section 13.4 (Sharing Beans) and Chapter 15 (Integrating Servlets
and JSP).

config
This variable is the ServletConfig object for this page.

pageContext
JSP introduced a new class called PageContext to give a single point of
access to many of the page attributes and to provide a convenient place
to store shared data. The pageContext variable stores the value of the
PageContext object associated with the current page. See Section 13.4
(Sharing Beans) for a discussion of its use.

page
This variable is simply a synonym for this and is not very useful in the
Java programming language. It was created as a place holder for the
time when the scripting language could be something other than Java.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

The JSP page
Directive:

Structuring
Generated

Servlets
Topics in This Chapter

• The purpose of the page directive

• Designating which classes are imported

• Using custom classes

• Specifying the MIME type of the page

• Generating Excel documents

• Controlling threading behavior

• Participating in sessions

• Setting the size and behavior of the output buffer

• Designating pages to process JSP errors

• XML-compatible syntax for directives
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
JSP directive affects the overall structure of the servlet that results
from the JSP page. The following templates show the two possible
forms for directives. Single quotes can be substituted for the double

quotes around the attribute values, but the quotation marks cannot be omit-
ted altogether. To obtain quote marks within an attribute value, precede
them with a back slash, using \’ for ’ and \" for ".

<%@ directive attribute="value" %>

<%@ directive attribute1="value1"
 attribute2="value2"
 ...
 attributeN="valueN" %>

In JSP, there are three types of directives: page, include, and taglib.
The page directive lets you control the structure of the servlet by importing
classes, customizing the servlet superclass, setting the content type, and the
like. A page directive can be placed anywhere within the document; its use is
the topic of this chapter. The second directive, include, lets you insert a file
into the servlet class at the time the JSP file is translated into a servlet. An
include directive should be placed in the document at the point at which
you want the file to be inserted; it is discussed in Chapter 12 (Including Files
and Applets in JSP Documents) for inserting files into JSP pages. JSP 1.1
introduces a third directive, taglib, which can be used to define custom

A

247

248 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
markup tags; it is discussed in Chapter 14 (Creating Custom JSP Tag Librar-
ies).

The page directive lets you define one or more of the following case-sen-
sitive attributes: import, contentType, isThreadSafe, session, buffer,
autoflush, extends, info, errorPage, isErrorPage, and language.
These attributes are explained in the following sections.

11.1 The import Attribute

The import attribute of the page directive lets you specify the packages that
should be imported by the servlet into which the JSP page gets translated. If
you don’t explicitly specify any classes to import, the servlet imports
java.lang.*, javax.servlet.*, javax.servlet.jsp.*, javax.serv-
let.http.*, and possibly some number of server-specific entries. Never
write JSP code that relies on any server-specific classes being imported auto-
matically. Use of the import attribute takes one of the following two forms:

<%@ page import="package.class" %>
<%@ page import="package.class1,...,package.classN" %>

For example, the following directive signifies that all classes in the
java.util package should be available to use without explicit package iden-
tifiers.

 <%@ page import="java.util.*" %>

The import attribute is the only page attribute that is allowed to appear
multiple times within the same document. Although page directives can
appear anywhere within the document, it is traditional to place import state-
ments either near the top of the document or just before the first place that
the referenced package is used.

Directories for Custom Classes

If you import classes that are not in any of the standard java or
javax.servlet packages, you need to be sure that those classes have been
properly installed on your server. In particular, most servers that support
automatic servlet reloading do not permit classes that are in the auto-reload-
ing directories to be referenced by JSP pages. The particular locations used
for servlet classes vary from server to server, so you should consult your
server’s documentation for definitive guidance. The locations used by Apache
Tomcat 3.0, the JSWDK 1.0.1, and the Java Web Server 2.0 are summarized
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.1 The import Attribute 249

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
in Table 11.1. All three of these servers also make use of JAR files in the lib
subdirectory, and in all three cases you must restart the server whenever you
change files in this directory.

Example

Listing 11.1 presents a page that uses three classes not in the standard JSP
import list: java.util.Date, coreservlets.ServletUtilities (see List-
ing 8.3), and coreservlets.LongLivedCookie (see Listing 8.4). To simplify
references to these classes, the JSP page uses

<%@ page import="java.util.*,coreservlets.*" %>

Figures 11–1 and 11–2 show some typical results.

Table 11.1 Class Installation Directories

Server

Location Relative
to Installation
Directory Use

Automatically
Reloaded
When Class
Changes?

Availab
le from
JSP
Pages?

Tomcat 3.0 webpages/WEB-INF/
classes

Standard location
for servlet classes

No Yes

Tomcat 3.0 classes Alternative loca-
tion for servlet
classes

No Yes

JSWDK
1.0.1

webpages/WEB-INF/
servlets

Standard location
for servlet classes

No Yes

JSWDK
1.0.1

classes Alternative loca-
tion for servlet
classes

No Yes

Java Web
Server 2.0

servlets Location for fre-
quently chang-
ing servlet classes

Yes No

Java Web
Server 2.0

classes Location for
infrequently
changing servlet
classes

No Yes
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

250 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 11.1 ImportAttribute.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>The import Attribute</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H2>The import Attribute</H2>
<%-- JSP page directive --%>
<%@ page import="java.util.*,coreservlets.*" %>

<%-- JSP Declaration (see Section 10.4) --%>
<%!
private String randomID() {
 int num = (int)(Math.random()*10000000.0);
 return("id" + num);
}

private final String NO_VALUE = "<I>No Value</I>";
%>

<%-- JSP Scriptlet (see Section 10.3) --%>
<%
Cookie[] cookies = request.getCookies();
String oldID =
 ServletUtilities.getCookieValue(cookies, "userID", NO_VALUE);
String newID;
if (oldID.equals(NO_VALUE)) {
 newID = randomID();
} else {
 newID = oldID;
}
LongLivedCookie cookie = new LongLivedCookie("userID", newID);
response.addCookie(cookie);
%>

<%-- JSP Expressions (see Section 10.2) --%>
This page was accessed at <%= new Date() %> with a userID
cookie of <%= oldID %>.

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 251

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
11.2 The contentType Attribute

The contentType attribute sets the Content-Type response header, indicat-
ing the MIME type of the document being sent to the client. For more infor-
mation on MIME types, see Table 7.1 (Common MIME Types) in Section
7.2 (HTTP 1.1 Response Headers and Their Meaning).

Figure 11–1 ImportAttribute.jsp when first accessed.

Figure 11–2 ImportAttribute.jsp when accessed in a subsequent visit.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

252 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Use of the contentType attribute takes one of the following two forms:
 <%@ page contentType="MIME-Type" %>
 <%@ page contentType="MIME-Type; charset=Character-Set" %>

For example, the directive
 <%@ page contentType="text/plain" %>

has the same effect as the scriptlet
 <% response.setContentType("text/plain"); %>

Unlike regular servlets, where the default MIME type is text/plain, the
default for JSP pages is text/html (with a default character set of
ISO-8859-1).

Generating Plain Text Documents

Listing 11.2 shows a document that appears to be HTML but has a content-
Type of text/plain. Strictly speaking, browsers are supposed to display the
raw HTML content in such a case, as shown in Netscape in Figure 11–3.
Internet Explorer, however, interprets the document as though it were of
type text/html, as shown in Figure 11–4.

Listing 11.2 ContentType.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>The contentType Attribute</TITLE>
</HEAD>
<BODY>

<H2>The contentType Attribute</H2>
<%@ page contentType="text/plain" %>
This should be rendered as plain text,
not as HTML.

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 253

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Figure 11–3 For plain text documents, Netscape does not try to interpret HTML tags.

Figure 11–4 Internet Explorer interprets HTML tags in plain text documents.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

254 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Generating Excel Spreadsheets

You can create simple Microsoft Excel spreadsheets by specifying applica-
tion/vnd.ms-excel as the content type and then formatting the spread-
sheet entries in one of two ways.

One way to format the content is to put rows on separate lines of the docu-
ment and to use tabs between each of the columns. Listing 11.3 shows a sim-
ple example, and Figures 11–5 and 11–6 show the results of loading the page
in Netscape on a system with Excel installed. Of course, in a real application,
the entries would probably be generated dynamically, perhaps by a JSP
expression or scriptlet that refers to database values that were accessed with
JDBC (see Chapter 18).

Listing 11.3 Excel.jsp

<%@ page contentType="application/vnd.ms-excel" %>
<%-- Note that there are tabs, not spaces, between columns. --%>
1997 1998 1999 2000 2001 (Anticipated)
12.3 13.4 14.5 15.6 16.7

Figure 11–5 With the default browser settings, Netscape prompts you before allowing
Excel content.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 255

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
A second way to format Excel content is to use a normal HTML table,
which recent versions of Excel can interpret properly as long as the page is
marked with the proper MIME type. This capability suggests a simple
method of returning either HTML or Excel content, depending on which
the user prefers: just use an HTML table and set the content type to
application/vnd.ms-excel only if the user requests the results in Excel.
Unfortunately, this approach brings to light a small deficiency in the page
directive: attribute values cannot be computed at run time, nor can page
directives be conditionally inserted as can template text. So, the following
attempt results in Excel content regardless of the result of the checkUser-
Request method.

<% boolean usingExcel = checkUserRequest(request); %>

<% if (usingExcel) { %>

<%@ page contentType="application/vnd.ms-excel" %>

<% } %>

Fortunately, there is a simple solution to the problem of conditionally set-
ting the content type: just use scriptlets and the normal servlet approach of
response.setContentType, as in the following snippet:

<%

String format = request.getParameter("format");

if ((format != null) && (format.equals("excel"))) {

 response.setContentType("application/vnd.ms-excel");

}

%>

Figure 11–6 Result of Excel.jsp on system that has Excel installed.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

256 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 11.4 shows a page that uses this approach; Figures 11–7 and 11–8
show the results in Internet Explorer. Again, in a real application the data
would almost certainly be dynamically generated. For example, see Section
18.3 (Some JDBC Utilities) for some very simple methods to create an HTML
table (usable in HTML or as an Excel spreadsheet) from a database query.

Listing 11.4 ApplesAndOranges.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Comparing Apples and Oranges</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<CENTER>
<H2>Comparing Apples and Oranges</H2>

<%
String format = request.getParameter("format");
if ((format != null) && (format.equals("excel"))) {
 response.setContentType("application/vnd.ms-excel");
}
%>

<TABLE BORDER=1>
 <TR><TH></TH><TH>Apples<TH>Oranges
 <TR><TH>First Quarter<TD>2307<TD>4706
 <TR><TH>Second Quarter<TD>2982<TD>5104
 <TR><TH>Third Quarter<TD>3011<TD>5220
 <TR><TH>Fourth Quarter<TD>3055<TD>5287
</TABLE>

</CENTER>
</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.2 The contentType Attribute 257

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Figure 11–7 The default result of ApplesAndOranges.jsp is HTML content.

Figure 11–8 Specifying format=excel for ApplesAndOranges.jsp results in
Excel content.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

258 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
11.3 The isThreadSafe Attribute

The isThreadSafe attribute controls whether or not the servlet that results
from the JSP page will implement the SingleThreadModel interface. Use of
the isThreadSafe attribute takes one of the following two forms:

<%@ page isThreadSafe="true" %> <%!-- Default --%>
<%@ page isThreadSafe="false" %>

With normal servlets, simultaneous user requests result in multiple
threads concurrently accessing the service method of the same servlet
instance. This behavior assumes that the servlet is thread safe; that is, that the
servlet synchronizes access to data in its fields so that inconsistent values will
not result from an unexpected ordering of thread execution. In some cases
(such as page access counts), you may not care if two visitors occasionally get
the same value, but in other cases (such as user IDs), identical values can
spell disaster. For example, the following snippet is not thread safe since a
thread could be preempted after reading idNum but before updating it, yield-
ing two users with the same user ID.

<%! private int idNum = 0; %>
<%
String userID = "userID" + idNum;
out.println("Your ID is " + userID + ".");
idNum = idNum + 1;
%>

The code should have used a synchronized block. This construct is written
synchronized(someObject) { ... }

and means that once a thread enters the block of code, no other thread can
enter the same block (or any other block marked with the same object refer-
ence) until the first thread exits. So, the previous snippet should have been
written in the following manner.

<%! private int idNum = 0; %>
<%
synchronized(this) {
String userID = "userID" + idNum;
out.println("Your ID is " + userID + ".");
idNum = idNum + 1;

}
%>

That’s the normal servlet behavior: multiple simultaneous requests are dis-
patched to multiple threads concurrently accessing the same servlet instance.
However, if a servlet implements the SingleThreadModel interface, the sys-
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.4 The session Attribute 259

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
tem guarantees that there will not be simultaneous access to the same servlet
instance. The system can satisfy this guarantee either by queuing up all
requests and passing them to the same servlet instance or by creating a pool
of instances, each of which handles a single request at a time.

You use <%@ page isThreadSafe="false" %> to indicate that your code
is not thread safe and thus that the resulting servlet should implement Sin-
gleThreadModel. (See Section 2.6 (The Servlet Life Cycle.) The default
value is true, which means that the system assumes you made your code
thread safe, and it can consequently use the higher-performance approach of
multiple simultaneous threads accessing a single servlet instance. Be careful
about using isThreadSafe="false" when your servlet has instance vari-
ables (fields) that maintain persistent data. In particular, note that servlet
engines are permitted (but not required) to create multiple servlet instances
in such a case and thus instance variables are not necessarily unique. You
could still use static fields in such a case, however.

11.4 The session Attribute

The session attribute controls whether or not the page participates in
HTTP sessions. Use of this attribute takes one of the following two forms:

<%@ page session="true" %> <%-- Default --%>

<%@ page session="false" %>

A value of true (the default) indicates that the predefined variable ses-
sion (of type HttpSession) should be bound to the existing session if one
exists; otherwise, a new session should be created and bound to session. A
value of false means that no sessions will be used automatically and
attempts to access the variable session will result in errors at the time the
JSP page is translated into a servlet.

11.5 The buffer Attribute

The buffer attribute specifies the size of the buffer used by the out variable,
which is of type JspWriter (a subclass of PrintWriter). Use of this
attribute takes one of two forms:

<%@ page buffer="sizekb" %>

<%@ page buffer="none" %>
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

260 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Servers can use a larger buffer than you specify, but not a smaller one. For
example, <%@ page buffer="32kb" %> means the document content
should be buffered and not sent to the client until at least 32 kilobytes have
been accumulated or the page is completed. The default buffer size is server
specific, but must be at least 8 kilobytes. Be cautious about turning off buff-
ering; doing so requires JSP entries that set headers or status codes to appear
at the top of the file, before any HTML content.

11.6 The autoflush Attribute

The autoflush attribute controls whether the output buffer should be auto-
matically flushed when it is full or whether an exception should be raised
when the buffer overflows. Use of this attribute takes one of the following
two forms:

<%@ page autoflush="true" %> <%-- Default --%>

<%@ page autoflush="false" %>

A value of false is illegal when also using buffer="none".

11.7 The extends Attribute

The extends attribute indicates the superclass of the servlet that will be gen-
erated for the JSP page and takes the following form:

<%@ page extends="package.class" %>

Use this attribute with extreme caution since the server may be using a
custom superclass already.

11.8 The info Attribute

The info attribute defines a string that can be retrieved from the servlet by
means of the getServletInfo method. Use of info takes the following
form:

<%@ page info="Some Message" %>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.9 The errorPage Attribute 261

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
11.9 The errorPage Attribute

The errorPage attribute specifies a JSP page that should process any excep-
tions (i.e., something of type Throwable) thrown but not caught in the cur-
rent page. It is used as follows:

<%@ page errorPage="Relative URL" %>

The exception thrown will be automatically available to the designated
error page by means of the exception variable. See Listings 11.5 and 11.6
for examples.

11.10 The isErrorPage Attribute

The isErrorPage attribute indicates whether or not the current page can act
as the error page for another JSP page. Use of isErrorPage takes one of the
following two forms:

<%@ page isErrorPage="true" %>
<%@ page isErrorPage="false" %> <%!-- Default --%>

For example, Listing 11.5 shows a JSP page to compute speed based upon
distance and time parameters. The page neglects to check if the input param-
eters are missing or malformed, so an error could easily occur at run time.
However, the page designated SpeedErrors.jsp (Listing 11.6) as the page
to handle errors that occur in ComputeSpeed.jsp, so the user does not
receive the typical terse JSP error messages. Figures 11–9 and 11–10 show
results when good and bad input parameters are received, respectively.

Listing 11.5 ComputeSpeed.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Computing Speed</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<%@ page errorPage="SpeedErrors.jsp" %>
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

262 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Computing Speed</TABLE>

<%!
// Note lack of try/catch for NumberFormatException if
// value is null or malformed.

private double toDouble(String value) {
 return(Double.valueOf(value).doubleValue());
}
%>

<%
double furlongs = toDouble(request.getParameter("furlongs"));
double fortnights = toDouble(request.getParameter("fortnights"));
double speed = furlongs/fortnights;
%>

 Distance: <%= furlongs %> furlongs.
 Time: <%= fortnights %> fortnights.
 Speed: <%= speed %> furlongs per fortnight.

</BODY>
</HTML>

Listing 11.6 SpeedErrors.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Error Computing Speed</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<%@ page isErrorPage="true" %>

<TABLE BORDER=5 ALIGN="CENTER">

Listing 11.5 ComputeSpeed.jsp (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.10 The isErrorPage Attribute 263

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 <TR><TH CLASS="TITLE">
 Error Computing Speed</TABLE>
<P>
ComputeSpeed.jsp reported the following error:
<I><%= exception %></I>. This problem occurred in the
following place:
<PRE>
<% exception.printStackTrace(new PrintWriter(out)); %>
</PRE>

</BODY>
</HTML>

Listing 11.6 SpeedErrors.jsp (continued)

Figure 11–9 ComputeSpeed.jsp when it receives legal values.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

264 Chapter 11 The JSP page Directive: Structuring Generated Servlets

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
11.11 The language Attribute

At some point, the language attribute is intended to specify the underlying
programming language being used, as below.

<%@ page language="cobol" %>

For now, don’t bother with this attribute since java is both the default and
the only legal choice.

Figure 11–10 ComputeSpeed.jsp when it receives illegal values.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

11.12 XML Syntax for Directives 265

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
11.12 XML Syntax for Directives

JSP permits you to use an alternative XML-compatible syntax for directives.
These constructs take the following form:

<jsp:directive.directiveType attribute="value" />

For example, the XML equivalent of
<%@ page import="java.util.*" %>

is
<jsp:directive.page import="java.util.*" />
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Including Files
and Applets in
JSP Documents
Topics in This Chapter

• Including JSP files at the time the main page is translated
into a servlet

• Including HTML or plain text files at the time the client
requests the page

• Including applets that use the Java Plug-In
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
SP has three main capabilities for including external pieces into a JSP
document.
The include directive lets you reuse navigation bars, tables, and other
elements in multiple pages. The included elements can contain JSP

code and thus are inserted into the page before the page is translated into a
servlet. This capability is discussed in Section 12.1.

Although including external pieces that use JSP is a powerful capability,
other times you would rather sacrifice some power for the convenience of
being able to change the included documents without updating the main JSP
page. For example, my family’s church has a Web page on which it posts snow
cancellation announcements. This page is updated by 6:30 AM on Sundays
when there is a cancellation. It is hardly reasonable to expect the Web devel-
oper to post this update; he probably sleeps in and barely makes the late-late
service. Instead, a simple plain text file could be uploaded with the
announcement, and the main page could use the jsp:include element to
insert the announcement into the home page. This capability is discussed in
Section 12.2.

Although this book is primarily about server-side Java, client-side Java in
the form of Web-embedded applets continues to play a role, especially within
fast corporate intranets. The jsp:plugin element is used to insert applets
that use the Java Plug-In into JSP pages. This capability is discussed in Sec-
tion 12.3.

J

267

268 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
12.1 Including Files at Page
Translation Time

You use the include directive to include a file in the main JSP document at
the time the document is translated into a servlet (which is typically the first
time it is accessed). The syntax is as follows:

<%@ include file="Relative URL" %>

There are two ramifications of the fact that the included file is inserted at
page translation time, not at request time as with jsp:include (Section
12.2).

First, you include the actual file itself, unlike with jsp:include , where
the server runs the page and inserts its output. This approach means that the
included file can contain JSP constructs (such as field or method declara-
tions) that affect the main page as a whole.

Second, if the included file changes, all the JSP files that use it need to be
updated. Unfortunately, although servers are allowed to support a mecha-
nism for detecting when an included file has changed (and then recompiling
the servlet), they are not required to do so. In practice, few servers support
this capability. Furthermore, there is not a simple and portable “retranslate
this JSP page now” command. Instead, you have to update the modification
date of the JSP page. Some operating systems have commands that update
the modification date without your actually editing the file (e.g., the Unix
touch command), but a simple portable alternative is to include a JSP com-
ment in the top-level page. Update the comment whenever the included file
changes. For example, you might put the modification date of the included
file in the comment, as below.

<%-- Navbar.jsp modified 3/1/00 --%>

<%@ include file="Navbar.jsp" %>

Core Warning

If you change an included JSP file, you must update the modification dates
of all JSP files that use it.

For example, Listing 12.1 shows a page fragment that gives corporate con-
tact information and some per-page access statistics appropriate to be
included at the bottom of multiple pages within a site. Listing 12.2 shows a
page that makes use of it, and Figure 12–1 shows the result.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.1 Including Files at Page Translation Time 269

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 12.1 ContactSection.jsp

<%@ page import="java.util.Date" %>

<%-- The following become fields in each servlet that
 results from a JSP page that includes this file. --%>
<%!
private int accessCount = 0;
private Date accessDate = new Date();
private String accessHost = "<I>No previous access</I>";
%>

<P>
<HR>
This page © 2000
my-company.com.
This page has been accessed <%= ++accessCount %>
times since server reboot. It was last accessed from
<%= accessHost %> at <%= accessDate %>.

<% accessHost = request.getRemoteHost(); %>
<% accessDate = new Date(); %>

Listing 12.2 SomeRandomPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some Random Page</TITLE>
<META NAME="author" CONTENT="J. Random Hacker">
<META NAME="keywords"
 CONTENT="foo,bar,baz,quux">
<META NAME="description"
 CONTENT="Some random Web page.">
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Some Random Page</TABLE>
<P>
Information about our products and services.
<P>
Blah, blah, blah.
<P>
Yadda, yadda, yadda.

<%@ include file="ContactSection.jsp" %>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

270 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
12.2 Including Files at Request
Time

The include directive (Section 12.1) lets you include documents that con-
tain JSP code into multiple different pages. Including JSP content is a useful
capability, but the include directive requires you to update the modification
date of the page whenever the included file changes, which is a significant
inconvenience. The jsp:include action includes files at the time of the cli-
ent request and thus does not require you to update the main file when an
included file changes. On the other hand, the page has already been trans-
lated into a servlet by request time, so the included files cannot contain JSP.

Core Approach

Use the include directive if included files will use JSP constructs.
Otherwise, use jsp:include.

Figure 12–1 Result of SomeRandomPage.jsp.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.2 Including Files at Request Time 271

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Although the included files cannot contain JSP, they can be the result of
resources that use JSP to create the output. That is, the URL that refers to
the included resource is interpreted in the normal manner by the server and
thus can be a servlet or JSP page. This is precisely the behavior of the
include method of the RequestDispatcher class, which is what servlets
use if they want to do this type of file inclusion. See Section 15.3 (Including
Static or Dynamic Content) for details.

The jsp:include element has two required attributes, as shown in the
sample below: page (a relative URL referencing the file to be included) and
flush (which must have the value true).

<jsp:include page="Relative URL" flush="true" />

Although you typically include HTML or plain text documents, there is no
requirement that the included files have any particular file extension. How-
ever, the Java Web Server 2.0 has a bug that causes it to terminate page pro-
cessing when it tries to include a file that does not have a .html or .htm
extension (e.g., somefile.txt). Tomcat, the JSWDK, and most commercial
servers have no such restrictions.

Core Warning

Due to a bug, you must use .html or .htm extensions for included files
used with the Java Web Server.

As an example, consider the simple news summary page shown in Listing
12.3. Page developers can change the news items in the files Item1.html
through Item4.html (Listings 12.4 through 12.7) without having to update
the main news page. Figure 12–2 shows the result.

Listing 12.3 WhatsNew.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>What's New</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

272 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<CENTER>
<TABLE BORDER=5>
 <TR><TH CLASS="TITLE">
 What's New at JspNews.com</TABLE>
</CENTER>
<P>

Here is a summary of our four most recent news stories:

 <jsp:include page="news/Item1.html" flush="true" />
 <jsp:include page="news/Item2.html" flush="true" />
 <jsp:include page="news/Item3.html" flush="true" />
 <jsp:include page="news/Item4.html" flush="true" />

</BODY>
</HTML>

Listing 12.4 Item1.html

Bill Gates acts humble. In a startling and unexpected
development, Microsoft big wig Bill Gates put on an open act of
humility yesterday.
More details...

Listing 12.5 Item2.html

Scott McNealy acts serious. In an unexpected twist,
wisecracking Sun head Scott McNealy was sober and subdued at
yesterday's meeting.
More details...

Listing 12.3 WhatsNew.jsp (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.2 Including Files at Request Time 273

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 12.6 Item3.html

Larry Ellison acts conciliatory. Catching his competitors
off guard yesterday, Oracle prez Larry Ellison referred to his
rivals in friendly and respectful terms.
More details...

Listing 12.7 Item4.html

Sportscaster uses "literally" correctly. In an apparent
slip of the tongue, a popular television commentator was
heard to use the word "literally" when he did <I>not</I>
mean "figuratively."
More details...

Figure 12–2 Result of WhatsNew.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

274 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
12.3 Including Applets for the Java
Plug-In

With JSP, you don’t need any special syntax to include ordinary applets: just
use the normal HTML APPLET tag. However, these applets must use JDK 1.1
or JDK 1.02 since neither Netscape 4.x nor Internet Explorer 5.x support the
Java 2 platform (i.e., JDK 1.2). This lack of support imposes several restric-
tions on applets:

• In order to use Swing, you must send the Swing files over the
network. This process is time consuming and fails in Internet
Explorer 3 and Netscape 3.x and 4.01-4.05 (which only support
JDK 1.02), since Swing depends on JDK 1.1.

• You cannot use Java 2D.
• You cannot use the Java 2 collections package.
• Your code runs more slowly, since most compilers for the Java 2

platform are significantly improved over their 1.1 predecessors.

Furthermore, early browser releases had a number of inconsistencies in
the way they supported various AWT components, making testing and deliv-
ery of complex user interfaces more burdensome than it ought to have been.
To address this problem, Sun developed a browser plug-in for Netscape and
Internet Explorer that lets you use the Java 2 platform for applets in a variety
of browsers. This plug-in is available at http://java.sun.com/prod-
ucts/plugin/, and also comes bundled with JDK 1.2.2 and later. Since the
plug-in is quite large (several megabytes), it is not reasonable to expect users
on the WWW at large to download and install it just to run your applets. On
the other hand, it is a reasonable alternative for fast corporate intranets, espe-
cially since applets can automatically prompt browsers that lack the plug-in to
download it.

Unfortunately, however, the normal APPLET tag will not work with the
plug-in, since browsers are specifically designed to use only their built-in vir-
tual machine when they see APPLET. Instead, you have to use a long and
messy OBJECT tag for Internet Explorer and an equally long EMBED tag for
Netscape. Furthermore, since you typically don’t know which browser type
will be accessing your page, you have to either include both OBJECT and
EMBED (placing the EMBED within the COMMENT section of OBJECT) or identify
the browser type at the time of the request and conditionally build the right
tag. This process is straightforward but tedious and time consuming.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.3 Including Applets for the Java Plug-In 275

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The jsp:plugin element instructs the server to build a tag appropriate for
applets that use the plug-in. Servers are permitted some leeway in exactly how
they implement this support, but most simply include both OBJECT and EMBED.

The jsp:plugin Element

The simplest way to use jsp:plugin is to supply four attributes: type, code,
width, and height. You supply a value of applet for the type attribute and
use the other three attributes in exactly the same way as with the APPLET ele-
ment, with two exceptions: the attribute names are case sensitive, and single
or double quotes are always required around the attribute values. So, for
example, you could replace

<APPLET CODE="MyApplet.class"

 WIDTH=475 HEIGHT=350>

</APPLET>

with

<jsp:plugin type="applet"

 code="MyApplet.class"

 width="475" height="350">

</jsp:plugin>

The jsp:plugin element has a number of other optional attributes. Most,
but not all, parallel attributes of the APPLET element. Here is a full list.

• type
For applets, this attribute should have a value of applet.
However, the Java Plug-In also permits you to embed JavaBeans
elements in Web pages. Use a value of bean in such a case.

• code
This attribute is used identically to the CODE attribute of
APPLET, specifying the top-level applet class file that extends
Applet or JApplet. Just remember that the name code must
be lower case with jsp:plugin (since it follows XML syntax),
whereas with APPLET, case did not matter (since HTML
attribute names are never case sensitive).

• width
This attribute is used identically to the WIDTH attribute of
APPLET, specifying the width in pixels to be reserved for the
applet. Just remember that you must enclose the value in single
or double quotes.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

276 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• height
This attribute is used identically to the HEIGHT attribute of
APPLET, specifying the height in pixels to be reserved for the
applet. Just remember that you must enclose the value in single
or double quotes.

• codebase
This attribute is used identically to the CODEBASE attribute of
APPLET, specifying the base directory for the applets. The code
attribute is interpreted relative to this directory. As with the
APPLET element, if you omit this attribute, the directory of the
current page is used as the default. In the case of JSP, this
default location is the directory where the original JSP file
resided, not the system-specific location of the servlet that
results from the JSP file.

• align
This attribute is used identically to the ALIGN attribute of
APPLET and IMG, specifying the alignment of the applet within
the Web page. Legal values are left, right, top, bottom, and
middle. With jsp:plugin, don’t forget to include these values
in single or double quotes, even though quotes are optional for
APPLET and IMG.

• hspace
This attribute is used identically to the HSPACE attribute of
APPLET, specifying empty space in pixels reserved on the left
and right of the applet. Just remember that you must enclose
the value in single or double quotes.

• vspace
This attribute is used identically to the VSPACE attribute of
APPLET, specifying empty space in pixels reserved on the top
and bottom of the applet. Just remember that you must enclose
the value in single or double quotes.

• archive
This attribute is used identically to the ARCHIVE attribute of
APPLET, specifying a JAR file from which classes and images
should be loaded.

• name
This attribute is used identically to the NAME attribute of
APPLET, specifying a name to use for inter-applet
communication or for identifying the applet to scripting
languages like JavaScript.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.3 Including Applets for the Java Plug-In 277

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• title
This attribute is used identically to the very rarely used TITLE
attribute of APPLET (and virtually all other HTML elements in
HTML 4.0), specifying a title that could be used for a tool-tip or
for indexing.

• jreversion
This attribute identifies the version of the Java Runtime
Environment (JRE) that is required. The default is 1.1.

• iepluginurl
This attribute designates a URL from which the plug-in for
Internet Explorer can be downloaded. Users who don’t already
have the plug-in installed will be prompted to download it from
this location. The default value will direct the user to the Sun
site, but for intranet use you might want to direct the user to a
local copy.

• nspluginurl
This attribute designates a URL from which the plug-in for
Netscape can be downloaded. The default value will direct the
user to the Sun site, but for intranet use you might want to
direct the user to a local copy.

The jsp:param and jsp:params Elements
The jsp:param element is used with jsp:plugin in a manner similar to the
way that PARAM is used with APPLET, specifying a name and value that are
accessed from within the applet by getParameter. There are two main dif-
ferences, however. First, since jsp:param follows XML syntax, attribute
names must be lower case, attribute values must be enclosed in single or dou-
ble quotes, and the element must end with />, not just >. Second, all
jsp:param entries must be enclosed within a jsp:params element.

So, for example, you would replace
<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
<PARAM NAME="PARAM1" VALUE="VALUE1">
<PARAM NAME="PARAM2" VALUE="VALUE2">

</APPLET>

with
<jsp:plugin type="applet"
 code="MyApplet.class"
 width="475" height="350">
<jsp:params>

<jsp:param name="PARAM1" value="VALUE1" />
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

278 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<jsp:param name="PARAM2" value="VALUE2" />
</jsp:params>

</jsp:plugin>

The jsp:fallback Element

The jsp:fallback element provides alternative text to browsers that do not
support OBJECT or EMBED. You use this element in almost the same way as
you would use alternative text placed within an APPLET element. So, for
example, you would replace

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
Error: this example requires Java.

</APPLET>

with
<jsp:plugin type="applet"
 code="MyApplet.class"
 width="475" height="350">
<jsp:fallback>

Error: this example requires Java.
</jsp:fallback>

</jsp:plugin>

However, you should note that the Java Web Server 2.0 has a bug that
causes it to fail when translating pages that include jsp:fallback elements.
Tomcat, the JSWDK, and most commercial servers handle jsp:fallback
properly.

Core Warning

The Java Web Server does not properly handle jsp:fallback.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.3 Including Applets for the Java Plug-In 279

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Example: Building Shadowed Text

In Section 7.5 (Using Servlets to Generate GIF Images), Listings 7.9 and
7.11 show a JFrame that uses Java 2D to create shadowed text in the size and
font of the user’s choosing. Listings 12.10 and 12.11 present an applet that
uses Swing components to control this frame.

Since the applet uses Swing and Java 2D, it can run only with the Java
Plug-In. Listing 12.8 shows a page that uses jsp:plugin to load the applet.
Listing 12.9 shows the HTML that results from this page (I added some line
breaks for readability) and Figures 12–3 through 12–6 show some typical out-
put.

Listing 12.8 ShadowedTextApplet.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:plugin</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">

 Using jsp:plugin</TABLE>
<P>
<CENTER>
<jsp:plugin type="applet"
 code="coreservlets.ShadowedTextApplet.class"
 width="475" height="350">
 <jsp:params>
 <jsp:param name="MESSAGE" value="Your Message Here" />
 </jsp:params>
</jsp:plugin>
</CENTER>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

280 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 12.9 HTML resulting from ShadowedTextApplet.jsp.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:plugin</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using jsp:plugin</TABLE>
<P>
<CENTER>
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 width="475" height="350"
 codebase="http://java.sun.com/products/plugin/1.2.2/jin-
stall-1_2_2-win.cab#Version=1,2,2,0">
<PARAM name="java_code"
 value="coreservlets.ShadowedTextApplet.class">
<PARAM name="type" value="application/x-java-applet;">
<PARAM name="MESSAGE" value="Your Message Here">
<COMMENT>
<EMBED type="application/x-java-applet;"
 width="475" height="350"
 pluginspage="http://java.sun.com/products/plugin/"
 java_code="coreservlets.ShadowedTextApplet.class"

 MESSAGE="Your Message Here" >
<NOEMBED>
</COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</CENTER>

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.3 Including Applets for the Java Plug-In 281

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 12.10 ShadowedTextApplet.java

package coreservlets;

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

/** Applet interface to the ShadowedTextFrame
 * class. Requires Swing and Java 2D.
 */

public class ShadowedTextApplet extends JApplet
 implements ActionListener {
 private JTextField messageField;
 private JComboBox fontBox;
 private JSlider fontSizeSlider;
 private JButton showFrameButton;

 public void init() {
 WindowUtilities.setNativeLookAndFeel();
 Color bgColor = new Color(0xFD, 0xF5, 0xE6);
 Font font = new Font("Serif", Font.PLAIN, 16);
 Container contentPane = getContentPane();
 contentPane.setLayout(new GridLayout(4, 1));
 contentPane.setBackground(bgColor);

 // Use a JTextField to gather the text for the message.
 // If the MESSAGE parameter is in the HTML,
 // use it as the initial value of this text field.
 messageField = new JTextField(20);
 String message = getParameter("MESSAGE");
 if (message != null) {
 messageField.setText(message);

 }
 JPanel messagePanel =
 new LabelPanel("Message:", "Message to Display",
 bgColor, font, messageField);
 contentPane.add(messagePanel);

 // Use a JComboBox to let users choose any
 // font available on their system.
 GraphicsEnvironment env =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 String[] fontNames = env.getAvailableFontFamilyNames();
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

282 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 fontBox = new JComboBox(fontNames);
 fontBox.setEditable(false);
 JPanel fontPanel =
 new LabelPanel("Font:", "Font to Use",
 bgColor, font, fontBox);
 contentPane.add(fontPanel);

 // Use a JSlider to select the font size.
 fontSizeSlider = new JSlider(0, 150);
 fontSizeSlider.setBackground(bgColor);
 fontSizeSlider.setMajorTickSpacing(50);
 fontSizeSlider.setMinorTickSpacing(25);
 fontSizeSlider.setPaintTicks(true);
 fontSizeSlider.setPaintLabels(true);
 JPanel fontSizePanel =
 new LabelPanel("Font Size:", "Font Size to Use",
 bgColor, font, fontSizeSlider);
 contentPane.add(fontSizePanel);

 // Pressing the button will open the frame
 // that shows the shadowed text.
 showFrameButton = new JButton("Open Frame");
 showFrameButton.addActionListener(this);
 JPanel buttonPanel =
 new LabelPanel("Show Shadowed Text:",
 "Open JFrame to Show Shadowed Text",
 bgColor, font, showFrameButton);
 contentPane.add(buttonPanel);
 }

 public void actionPerformed(ActionEvent event) {
 String message = messageField.getText();
 if (message.length() == 0) {
 message = "No Message";
 }

 String fontName = (String)fontBox.getSelectedItem();
 int fontSize = fontSizeSlider.getValue();
 JFrame frame = new JFrame("Shadowed Text");
 JPanel panel =
 new ShadowedTextFrame(message, fontName, fontSize);
 frame.setContentPane(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

Listing 12.10 ShadowedTextApplet.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.3 Including Applets for the Java Plug-In 283

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 12.11 LabelPanel.java

package coreservlets;

import java.awt.*;
import javax.swing.*;

/** A small JPanel that includes a JLabel to the left
 * of a designated component. Also puts a titled border
 * around the panel.
 */

public class LabelPanel extends JPanel {
 public LabelPanel(String labelMessage, String title,
 Color bgColor, Font font,
 JComponent component) {
 setBackground(bgColor);
 setFont(font);
 setBorder(BorderFactory.createTitledBorder(title));
 JLabel label = new JLabel(labelMessage);
 label.setFont(font);
 add(label);
 component.setFont(font);
 add(component);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

284 Chapter 12 Including Files and Applets in JSP Documents

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 12–3 Initial result of ShadowedTextApplet.jsp in a browser that has the
JDK 1.2 plug-in installed.

Figure 12–4 ShadowedTextApplet.jsp after changing the message, font, and
size entries.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

12.3 Including Applets for the Java Plug-In 285

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 12–5 Result of pressing the “Open Frame” button in Figure 12–4.

Figure 12–6 Another possible frame built by ShadowedTextApplet.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Using JavaBeans
with JSP
Topics in This Chapter

• Creating and accessing beans

• Installing bean classes on your server

• Setting bean properties explicitly

• Associating bean properties with input parameters

• Automatic conversion of bean property types

• Sharing beans among multiple JSP pages and servlets
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
he JavaBeans API provides a standard format for Java classes. Visual
manipulation tools and other programs can automatically discover
information about classes that follow this format and can then create

and manipulate the classes without the user having to explicitly write any code.
Full coverage of JavaBeans is beyond the scope of this book. If you want

details, pick up one of the many books on the subject or see the documen-
tation and tutorials at http://java.sun.com/beans/docs/. For the pur-
poses of this chapter, all you need to know about beans are three simple
points:

1. A bean class must have a zero-argument (empty) con-
structor. You can satisfy this requirement either by explicitly
defining such a constructor or by omitting all constructors, which
results in an empty constructor being created automatically. The
empty constructor will be called when JSP elements create beans.

2. A bean class should have no public instance variables
(fields). I hope you already follow this practice and use accessor
methods instead of allowing direct access to the instance vari-
ables. Use of accessor methods lets you impose constraints on
variable values (e.g., have the setSpeed method of your Car
class disallow negative speeds), allows you to change your inter-
nal data structures without changing the class interface (e.g.,

T

287

288 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
change from English units to metric units internally, but still
have getSpeedInMPH and getSpeedInKPH methods), and auto-
matically perform side effects when values change (e.g., update
the user interface when setPosition is called).

3. Persistent values should be accessed through methods
called getXxx and setXxx. For example, if your Car class
stores the current number of passengers, you might have meth-
ods named getNumPassengers (which takes no arguments and
returns an int) and setNumPassengers (which takes an int
and has a void return type). In such a case, the Car class is said to
have a property named numPassengers (notice the lowercase n
in the property name, but the uppercase N in the method
names). If the class has a getXxx method but no corresponding
setXxx, the class is said to have a read-only property named xxx.

The one exception to this naming convention is with boolean
properties: they use a method called isXxx to look up their val-
ues. So, for example, your Car class might have methods called
isLeased (which takes no arguments and returns a boolean)
and setLeased (which takes a boolean and has a void return
type), and would be said to have a boolean property named
leased (again, notice the lowercase leading letter in the property
name).

Although you can use JSP scriptlets or expressions to access arbi-
trary methods of a class, standard JSP actions for accessing beans
can only make use of methods that use the getXxx/setXxx or
isXxx/setXxx design pattern.

13.1 Basic Bean Use

The jsp:useBean action lets you load a bean to be used in the JSP page.
Beans provide a very useful capability because they let you exploit the reus-
ability of Java classes without sacrificing the convenience that JSP adds over
servlets alone.

The simplest syntax for specifying that a bean should be used is:

<jsp:useBean id="name" class="package.Class" />
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.1 Basic Bean Use 289

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
This usually means “instantiate an object of the class specified by Class,
and bind it to a variable with the name specified by id.” So, for example, the
JSP action

<jsp:useBean id="book1" class="coreservlets.Book" />

can normally be thought of as equivalent to the scriptlet

<% coreservlets.Book book1 = new coreservlets.Book(); %>

Although it is convenient to think of jsp:useBean as being equivalent to
building an object, jsp:useBean has additional options that make it more
powerful. As we’ll see in Section 13.4 (Sharing Beans), you can specify a
scope attribute that makes the bean associated with more than just the cur-
rent page. If beans can be shared, it is useful to obtain references to existing
beans, so the jsp:useBean action specifies that a new object is instantiated
only if there is no existing one with the same id and scope.

Rather than using the class attribute, you are permitted to use beanName
instead. The difference is that beanName can refer either to a class or to a file
containing a serialized bean object. The value of the beanName attribute is
passed to the instantiate method of java.beans.Bean.

In most cases, you want the local variable to have the same type as the
object being created. In a few cases, however, you might want the variable to
be declared to have a type that is a superclass of the actual bean type or is an
interface that the bean implements. Use the type attribute to control this, as
in the following example:

<jsp:useBean id="thread1" class="MyClass" type="Runnable" />

This use results in code similar to the following being inserted into the
_jspService method:

Runnable thread1 = new MyClass();

Note that since jsp:useBean uses XML syntax, the format differs in three
ways from HTML syntax: the attribute names are case sensitive, either single
or double quotes can be used (but one or the other must be used), and the
end of the tag is marked with />, not just >. The first two syntactic differ-
ences apply to all JSP elements that look like jsp:xxx. The third difference
applies unless the element is a container with a separate start and end tag.

Core Warning

Syntax for jsp:xxx elements differs in three ways from HTML syntax:
attribute names are case sensitive, you must enclose the value in single or
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

290 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
double quotes, and noncontainer elements should end the tag with />, not
just >.

There are also a few character sequences that require special handling in
order to appear inside attribute values:

• To get ’ within an attribute value, use \’.
• To get " within an attribute value, use \".
• To get \ within an attribute value, use \\.
• To get %> within an attribute value, use %\>.
• To get <% within an attribute value, use <\%.

Accessing Bean Properties

Once you have a bean, you can access its properties with jsp:getProperty,
which takes a name attribute that should match the id given in jsp:useBean
and a property attribute that names the property of interest. Alternatively,
you could use a JSP expression and explicitly call a method on the object that
has the variable name specified with the id attribute. For example, assuming
that the Book class has a String property called title and that you’ve cre-
ated an instance called book1 by using the jsp:useBean example just given,
you could insert the value of the title property into the JSP page in either
of the following two ways:

<jsp:getProperty name="book1" property="title" />

<%= book1.getTitle() %>

The first approach is preferable in this case, since the syntax is more acces-
sible to Web page designers who are not familiar with the Java programming
language. However, direct access to the variable is useful when you are using
loops, conditional statements, and methods not represented as properties.

If you are not familiar with the concept of bean properties, the standard
interpretation of the statement “this bean has a property of type T called foo”
is “this class has a method called getFoo that returns something of type T and
has another method called setFoo that takes a T as an argument and stores it
for later access by getFoo.”

Setting Bean Properties: Simple Case

To modify bean properties, you normally use jsp:setProperty. This action
has several different forms, but with the simplest form you just supply three
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.1 Basic Bean Use 291

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
attributes: name (which should match the id given by jsp:useBean), prop-
erty (the name of the property to change), and value (the new value). Sec-
tion 13.3 (Setting Bean Properties) discusses some alternate forms of
jsp:setProperty that let you automatically associate a property with a
request parameter. That section also explains how to supply values that are
computed at request time (rather than fixed strings) and discusses the type
conversion conventions that let you supply string values for parameters that
expect numbers, characters, or boolean values.

An alternative to using the jsp:setProperty action is to use a scriptlet
that explicitly calls methods on the bean object. For example, given the
book1 object shown earlier in this section, you could use either of the follow-
ing two forms to modify the title property:

<jsp:setProperty name="book1"
property="title"
value="Core Servlets and JavaServer Pages" />

<% book1.setTitle("Core Servlets and JavaServer Pages"); %>

Using jsp:setProperty has the advantage that it is more accessible to
the nonprogrammer, but direct access to the object lets you perform more
complex operations such as setting the value conditionally or calling methods
other than getXxx or setXxx on the object.

Installing Bean Classes

The class specified for the bean must be in the server’s regular class path, not
the part reserved for classes that get automatically reloaded when they
change. For example, in the Java Web Server, the main bean class and all the
auxiliary classes it uses should go in the install_dir/classes directory or
be in a JAR file in install_dir/lib, not in install_dir/servlets. Since
Tomcat and the JSWDK don’t support auto-reloading servlets, bean classes
can be installed in any of the normal servlet directories. For Tomcat 3.0,
assuming you haven’t defined your own Web application, the primary direc-
tory for servlet class files is install_dir/webpages/WEB-INF/classes; for
the JSWDK, the default location is
install_dir/webpages/WEB-INF/servlets. With all three servers,
remember that a package name corresponds to a subdirectory. So, for exam-
ple, a bean called Fordhook that declares “package lima;” would typically
be installed in the following locations:

• Tomcat 3.0:
install_dir/webpages/WEB-INF/classes/lima/Fordhook.cla

ss
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

292 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• JSWDK 1.0.1:
install_dir/webpages/WEB-INF/servlets/lima/Fordhook.cl

ass

• Java Web Server 2.o:
install_dir/classes/lima/Fordhook.class

The JSP files that use bean classes don’t need to be installed anywhere spe-
cial, however. As is usual with JSP files on a JSP-capable server, they can be
placed anywhere that normal Web pages can be.

13.2 Example: StringBean

Listing 13.1 presents a simple class called StringBean that is in the core-
servlets package. Because the class has no public instance variables (fields)
and has a zero-argument constructor since it doesn’t declare any explicit con-
structors, it satisfies the basic criteria for being a bean. Since StringBean has
a method called getMessage that returns a String and another method
called setMessage that takes a String as an argument, in beans terminology
the class is said to have a String parameter called message.

Listing 13.2 shows a JSP file that uses the StringBean class. First, an
instance of StringBean is created with the jsp:useBean action as follows:

<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

After this, the message property can be inserted into the page in either of
the following two ways:

<jsp:getProperty name="stringBean" property="message" />

<%= stringBean.getMessage() %>

The message property can be modified in either of the following two ways:

<jsp:setProperty name="stringBean"

property="message"

value="some message" />

<% stringBean.setMessage("some message"); %>

Figure 13–1 shows the result.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.2 Example: StringBean 293

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Listing 13.1 StringBean.java

package coreservlets;

/** A simple bean that has a single String property
 * called message.
 */

public class StringBean {
 private String message = "No message specified";

 public String getMessage() {
 return(message);
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

294 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 13.2 StringBean.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using JavaBeans with JSP</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using JavaBeans with JSP</TABLE>

<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

Initial value (getProperty):
 <I><jsp:getProperty name="stringBean"
 property="message" /></I>

Initial value (JSP expression):
 <I><%= stringBean.getMessage() %></I>
<jsp:setProperty name="stringBean"
 property="message"

 value="Best string bean: Fortex" />

 Value after setting property with setProperty:
 <I><jsp:getProperty name="stringBean"
 property="message" /></I>

<% stringBean.setMessage("My favorite: Kentucky Wonder"); %>
 Value after setting property with scriptlet:
 <I><%= stringBean.getMessage() %></I>

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 295

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
13.3 Setting Bean Properties

You normally use jsp:setProperty to set bean properties. The simplest
form of this action takes three attributes: name (which should match the id
given by jsp:useBean), property (the name of the property to change), and
value (the new value).

For example, the SaleEntry class shown in Listing 13.3 has an itemID
property (a String), a numItems property (an int), a discountCode prop-
erty (a double), and two read-only properties itemCost and totalCost
(each of type double). Listing 13.4 shows a JSP file that builds an instance of
the SaleEntry class by means of:

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />

The results are shown in Figure 13–2.
Once the bean is instantiated, using an input parameter to set the itemID

is straightforward, as shown below:

<jsp:setProperty

 name="entry"

 property="itemID"

 value='<%= request.getParameter("itemID") %>' />

Notice that I used a JSP expression for the value parameter. Most JSP
attribute values have to be fixed strings, but the value and name attributes of
jsp:setProperty are permitted to be request-time expressions. If the
expression uses double quotes internally, recall that single quotes can be used
instead of double quotes around attribute values and that \’ and \" can be
used to represent single or double quotes within an attribute value.

Figure 13–1 Result of StringBean.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

296 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 13.3 SaleEntry.java

package coreservlets;

/** Simple bean to illustrate the various forms
 * of jsp:setProperty.
 */

public class SaleEntry {
 private String itemID = "unknown";
 private double discountCode = 1.0;
 private int numItems = 0;

 public String getItemID() {
 return(itemID);
 }

 public void setItemID(String itemID) {
 if (itemID != null) {
 this.itemID = itemID;
 } else {
 this.itemID = "unknown";
 }
 }

 public double getDiscountCode() {
 return(discountCode);
 }

 public void setDiscountCode(double discountCode) {
 this.discountCode = discountCode;
 }

 public int getNumItems() {
 return(numItems);
 }

 public void setNumItems(int numItems) {
 this.numItems = numItems;
 }

 // Replace this with real database lookup.

 public double getItemCost() {
 double cost;
 if (itemID.equals("a1234")) {
 cost = 12.99*getDiscountCode();
 } else {
 cost = -9999;
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 297

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
 }
 return(roundToPennies(cost));
 }

 private double roundToPennies(double cost) {
 return(Math.floor(cost*100)/100.0);
 }

 public double getTotalCost() {
 return(getItemCost() * getNumItems());
 }
}

Listing 13.4 SaleEntry1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using jsp:setProperty</TABLE>

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />

<jsp:setProperty
 name="entry"
 property="itemID"
 value='<%= request.getParameter("itemID") %>' />

<%
int numItemsOrdered = 1;
try {
 numItemsOrdered =
 Integer.parseInt(request.getParameter("numItems"));
} catch(NumberFormatException nfe) {}
%>

Listing 13.3 SaleEntry.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

298 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<jsp:setProperty
 name="entry"
 property="numItems"
 value="<%= numItemsOrdered %>" />

<%
double discountCode = 1.0;
try {
 String discountString =
 request.getParameter("discountCode");
 // Double.parseDouble not available in JDK 1.1.
 discountCode =
 Double.valueOf(discountString).doubleValue();
} catch(NumberFormatException nfe) {}
%>
<jsp:setProperty
 name="entry"
 property="discountCode"
 value="<%= discountCode %>" />

<TABLE ALIGN="CENTER" BORDER=1>
<TR CLASS="COLORED">
 <TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
 <TD><jsp:getProperty name="entry" property="itemID" />
 <TD>$<jsp:getProperty name="entry" property="itemCost" />
 <TD><jsp:getProperty name="entry" property="numItems" />
 <TD>$<jsp:getProperty name="entry" property="totalCost" />
</TABLE>

</BODY>
</HTML>

Listing 13.4 SaleEntry1.jsp (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 299

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Associating Individual Properties with Input
Parameters

Setting the itemID property was easy since its value is a String. Setting the
numItems and discountCode properties is a bit more problematic since
their values must be numbers and getParameter returns a String. Here is
the somewhat cumbersome code required to set numItems:

<%
int numItemsOrdered = 1;
try {
 numItemsOrdered =
 Integer.parseInt(request.getParameter("numItems"));
} catch(NumberFormatException nfe) {}
%>
<jsp:setProperty
 name="entry"
 property="numItems"
 value="<%= numItemsOrdered %>" />

Fortunately, JSP has a nice solution to this problem that lets you associate
a property with a request parameter and that automatically performs type
conversion from strings to numbers, characters, and boolean values. Instead
of using the value attribute, you use param to name an input parameter. The
value of this parameter is automatically used as the value of the property, and
simple type conversions are performed automatically. If the specified input
parameter is missing from the request, no action is taken (the system does
not pass null to the associated property). So, for example, setting the
numItems property can be simplified to:

<jsp:setProperty

Figure 13–2 Result of SaleEntry1.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

300 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 name="entry"
 property="numItems"
 param="numItems" />

Listing 13.5 shows the entire JSP page reworked in this manner.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 301

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Listing 13.5 SaleEntry2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using jsp:setProperty</TABLE>

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />

<jsp:setProperty
 name="entry"
 property="itemID"
 param="itemID" />

<jsp:setProperty
 name="entry"
 property="numItems"
 param="numItems" />

<%-- WARNING! Both the JSWDK 1.0.1 and the Java Web Server
 have a bug that makes them fail on double
 type conversions of the following sort.
--%>
<jsp:setProperty
 name="entry"
 property="discountCode"
 param="discountCode" />

<TABLE ALIGN="CENTER" BORDER=1>
<TR CLASS="COLORED">
 <TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
 <TD><jsp:getProperty name="entry" property="itemID" />
 <TD>$<jsp:getProperty name="entry" property="itemCost" />
 <TD><jsp:getProperty name="entry" property="numItems" />
 <TD>$<jsp:getProperty name="entry" property="totalCost" />
</TABLE>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

302 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Automatic Type Conversions

Table 13.1 summarizes the automatic type conversions performed when a
bean property is automatically associated with an input parameter. One warn-
ing is in order, however: both JSWDK 1.0.1 and the Java Web Server 2.0 have
a bug that causes them to crash at page translation time for pages that try to
perform automatic type conversions for properties that expect double values.
Tomcat and most commercial servers work as expected.

Core Warning

With the JSWDK and the Java Web Server, you cannot associate properties
that expect double-precision values with input parameters.

Table 13.1 Type Conversions When Properties Are Associated with
Input Parameters

Property Type Conversion Routine

boolean Boolean.valueOf(paramString).booleanValue()

Boolean Boolean.valueOf(paramString)

byte Byte.valueOf(paramString).byteValue()

Byte Byte.valueOf(paramString)

char Character.valueOf(paramString).charValue()

Character Character.valueOf(paramString)

double Double.valueOf(paramString).doubleValue()

Double Double.valueOf(paramString)

int Integer.valueOf(paramString).intValue()

Integer Integer.valueOf(paramString)

float Float.valueOf(paramString).floatValue()

Float Float.valueOf(paramString)

long Long.valueOf(paramString).longValue()

Long Long.valueOf(paramString)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 303

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Associating All Properties with Input Parameters

Associating a property with an input parameter saves you the bother of per-
forming conversions for many of the simple built-in types. JSP lets you take
the process one step further by associating all properties with identically
named input parameters. All you have to do is to supply "*" for the prop-
erty parameter. So, for example, all three of the jsp:setProperty state-
ments of Listing 13.5 can be replaced by the following simple line. Listing
13.6 shows the complete page.

<jsp:setProperty name="entry" property="*" />

Although this approach is simple, four small warnings are in order. First, as
with individually associated properties, no action is taken when an input
parameter is missing. In particular, the system does not supply null as the
property value. Second, the JSWDK and the Java Web Server both fail for
conversions to properties that expect double values. Third, automatic type
conversion does not guard against illegal values as effectively as does manual
type conversion. So you might consider error pages (see Sections 11.9 and
11.10) when using automatic type conversion. Fourth, since both property
names and input parameters are case sensitive, the property name and input
parameter must match exactly.

Core Warning

In order for all properties to be associated with input parameters, the
property names must match the parameter names exactly, including case.

Listing 13.6 SaleEntry3.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

304 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
13.4 Sharing Beans

Up to this point, I have treated the objects that were created with jsp:use-
Bean as though they were simply bound to local variables in the
_jspService method (which is called by the service method of the servlet
that is generated from the page). Although the beans are indeed bound to
local variables, that is not the only behavior. They are also stored in one of
four different locations, depending on the value of the optional scope
attribute of jsp:useBean. The scope attribute has the following possible val-
ues:

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using jsp:setProperty</TABLE>

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />
<%-- WARNING! Both the JSWDK 1.0.1 and the Java Web Server
 have a bug that makes them fail on automatic
 type conversions to double values.
--%>
<jsp:setProperty name="entry" property="*" />

<TABLE ALIGN="CENTER" BORDER=1>
<TR CLASS="COLORED">
 <TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
 <TD><jsp:getProperty name="entry" property="itemID" />
 <TD>$<jsp:getProperty name="entry" property="itemCost" />
 <TD><jsp:getProperty name="entry" property="numItems" />
 <TD>$<jsp:getProperty name="entry" property="totalCost" />
</TABLE>

</BODY>
</HTML>

Listing 13.6 SaleEntry3.jsp (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.4 Sharing Beans 305

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
• page

This is the default value. It indicates that, in addition to being
bound to a local variable, the bean object should be placed in the
PageContext object for the duration of the current request. In
principle, storing the object there means that servlet code can
access it by calling getAttribute on the predefined
pageContext variable. In practice, beans created with page
scope are almost always accessed by jsp:getProperty,
jsp:setProperty, scriptlets, or expressions later in the same
page.

• application

This very useful value means that, in addition to being bound to a
local variable, the bean will be stored in the shared
ServletContext available through the predefined
application variable or by a call to getServletContext().
The ServletContext is shared by all servlets in the same Web
application (or all servlets in the same server or servlet engine if
no explicit Web applications are defined). Values in the
ServletContext can be retrieved by the getAttribute
method. This sharing has a couple of ramifications.

First, it provides a simple mechanism for multiple servlets and
JSP pages to access the same object. See the following subsection
(Conditional Bean Creation) for details and an example.

Second, it lets a servlet create a bean that will be used in JSP
pages, not just access one that was previously created. This
approach lets a servlet handle complex user requests by setting
up beans, storing them in the ServletContext, then forwarding
the request to one of several possible JSP pages to present results
appropriate to the request data. For details on this approach, see
Chapter 15 (Integrating Servlets and JSP).

• session

This value means that, in addition to being bound to a local
variable, the bean will be stored in the HttpSession object
associated with the current request, where it can be retrieved
with getValue. Attempting to use scope="session" causes an
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

306 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
error at page translation time when the page directive stipulates
that the current page is not participating in sessions. (See
Section 11.4, “The session Attribute.”)

• request

This value signifies that, in addition to being bound to a local
variable, the bean object should be placed in the
ServletRequest object for the duration of the current request,
where it is available by means of the getAttribute method.
This value is only a slight variation of the per-request scope
provided by scope="page" (or by default when no scope is
specified).

Conditional Bean Creation

To make bean sharing more convenient, there are two situations where
bean-related elements are evaluated conditionally.

First, a jsp:useBean element results in a new bean being instantiated
only if no bean with the same id and scope can be found. If a bean with the
same id and scope is found, the preexisting bean is simply bound to the vari-
able referenced by id. A typecast is performed if the preexisting bean is of a
more specific type than the bean being declared, and a ClassCastExcep-
tion results if this typecast is illegal.

Second, instead of
<jsp:useBean ... />

you can use
<jsp:useBean ...>
statements

</jsp:useBean>

The point of using the second form is that the statements between the
jsp:useBean start and end tags are executed only if a new bean is created,
not if an existing bean is used. This conditional execution is convenient for
setting initial bean properties for beans that are shared by multiple pages.
Since you don’t know which page will be accessed first, you don’t know which
page should contain the initialization code. No problem: they can all contain
the code, but only the page first accessed actually executes it. For example,
Listing 13.7 shows a simple bean that can be used to record cumulative
access counts to any of a set of related pages. It also stores the name of the
first page that was accessed. Since there is no way to predict which page in a
set will be accessed first, each page that uses the shared counter has state-
ments like the following:
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.4 Sharing Beans 307

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
<jsp:useBean id="counter"
 class="coreservlets.AccessCountBean"
 scope="application">
 <jsp:setProperty name="counter"
 property="firstPage"
 value="Current Page Name" />
</jsp:useBean>

Collectively, the pages using the counter have been accessed
<jsp:getProperty name="counter" property="accessCount" />
times.

Listing 13.8 shows the first of three pages that use this approach. The
source code archive at http://www.coreservlets.com/ contains the other
two nearly identical pages. Figure 13–3 shows a typical result.

Listing 13.7 AccessCountBean.java

package coreservlets;

/** Simple bean to illustrate sharing beans through
 * use of the scope attribute of jsp:useBean.
 */

public class AccessCountBean {
 private String firstPage;
 private int accessCount = 1;

 public String getFirstPage() {
 return(firstPage);
 }

 public void setFirstPage(String firstPage) {
 this.firstPage = firstPage;
 }

 public int getAccessCount() {
 return(accessCount++);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

308 Chapter 13 Using JavaBeans with JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 13.8 SharedCounts1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Shared Access Counts: Page 1</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Shared Access Counts: Page 1</TABLE>
<P>
<jsp:useBean id="counter"
 class="coreservlets.AccessCountBean"
 scope="application">
 <jsp:setProperty name="counter"
 property="firstPage"
 value="SharedCounts1.jsp" />
</jsp:useBean>

Of SharedCounts1.jsp (this page),
SharedCounts2.jsp, and
SharedCounts3.jsp,
<jsp:getProperty name="counter" property="firstPage" />
was the first page accessed.
<P>
Collectively, the three pages have been accessed
<jsp:getProperty name="counter" property="accessCount" />
times.

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.4 Sharing Beans 309

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
Se
Figure 13–3 Result of a user visiting SharedCounts3.jsp. The first page visited
by any user was SharedCounts2.jsp. SharedCounts1.jsp,
SharedCounts2.jsp, and SharedCounts3.jsp were collectively visited a total
of twelve times after the server was last started but prior to the visit shown in this figure.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Creating
Custom JSP Tag

Libraries
Topics in This Chapter

• Tag handler classes

• Tag library descriptor files

• The JSP taglib directive

• Simple tags

• Tags that use attributes

• Tags that use the body content between their start and
end tags

• Tags that modify their body content

• Looping tags

• Nested tags
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
SP 1.1 introduced an extremely valuable new capability: the ability to
define your own JSP tags. You define how the tag, its attributes, and its
body are interpreted, then group your tags into collections called tag
libraries that can be used in any number of JSP files. The ability to

define tag libraries in this way permits Java developers to boil down complex
server-side behaviors into simple and easy-to-use elements that content
developers can easily incorporate into their JSP pages.

Custom tags accomplish some of the same goals as beans that are accessed
with jsp:useBean (see Chapter 13, “Using JavaBeans with JSP”)—encapsu-
lating complex behaviors into simple and accessible forms. There are several
differences, however. First, beans cannot manipulate JSP content; custom
tags can. Second, complex operations can be reduced to a significantly sim-
pler form with custom tags than with beans. Third, custom tags require quite
a bit more work to set up than do beans. Fourth, beans are often defined in
one servlet and then used in a different servlet or JSP page (see Chapter 15,
“Integrating Servlets and JSP”), whereas custom tags usually define more
self-contained behavior. Finally, custom tags are available only in JSP 1.1, but
beans can be used in both JSP 1.0 and 1.1.

At the time this book went to press, no official release of Tomcat 3.0 prop-
erly supported custom tags, so the examples in this chapter use the beta ver-
sion of Tomcat 3.1. Other than the support for custom tags and a few
efficiency improvements and minor bug fixes, there is little difference in the

J

309

310 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
behavior of the two versions. However, Tomcat 3.1 uses a slightly different
directory structure, as summarized Table 14.1.

14.1 The Components That Make
Up a Tag Library

In order to use custom JSP tags, you need to define three separate compo-
nents: the tag handler class that defines the tag’s behavior, the tag library
descriptor file that maps the XML element names to the tag implementa-
tions, and the JSP file that uses the tag library. The rest of this section gives
an overview of each of these components and the following sections give
details on how to build these components for various different styles of tags.

The Tag Handler Class

When defining a new tag, your first task is to define a Java class that tells the
system what to do when it sees the tag. This class must implement the
javax.servlet.jsp.tagext.Tag interface. This is usually accomplished by
extending the TagSupport or BodyTagSupport class. Listing 14.1 is an
example of a simple tag that just inserts “Custom tag example (coreserv-
lets.tags.ExampleTag)” into the JSP page wherever the corresponding
tag is used. Don’t worry about understanding the exact behavior of this class;
that will be made clear in the next section. For now, just note that it is in the

Table 14.1 Standard Tomcat Directories

Tomcat 3.0 Tomcat 3.1

Location of startup
and shutdown Scripts

install_dir install_dir/bin

Standard Top-Level
Directory for Servlets
and Supporting Classes

install_dir/webpages/
WEB-INF/classes

install_dir/webapps/
ROOT/WEB-INF/classes

Standard Top-Level
Directory for HTML
and JSP Files

install_dir/webpages install_dir/webapps/
ROOT
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.1 The Components That Make Up a Tag Library 311

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

coreservlets.tags class and is called ExampleTag. Thus, with Tomcat 3.1,
the class file would be in install_dir/webapps/ROOT/WEB-INF/classes/core-
servlets/tags/ExampleTag.class.

The Tag Library Descriptor File

Once you have defined a tag handler, your next task is to identify the class to
the server and to associate it with a particular XML tag name. This task is
accomplished by means of a tag library descriptor file (in XML format) like
the one shown in Listing 14.2. This file contains some fixed information, an
arbitrary short name for your library, a short description, and a series of tag
descriptions. The nonbold part of the listing is the same in virtually all tag
library descriptors and can be copied verbatim from the source code archive
at http://www.coreservlets.com/ or from the Tomcat 3.1 standard exam-
ples (install_dir/webapps/examples/WEB-INF/jsp).

Listing 14.1 ExampleTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** Very simple JSP tag that just inserts a string
 * ("Custom tag example...") into the output.
 * The actual name of the tag is not defined here;
 * that is given by the Tag Library Descriptor (TLD)
 * file that is referenced by the taglib directive
 * in the JSP file.
 */

public class ExampleTag extends TagSupport {
 public int doStartTag() {
 try {
 JspWriter out = pageContext.getOut();
 out.print("Custom tag example " +
 "(coreservlets.tags.ExampleTag)");
 } catch(IOException ioe) {
 System.out.println("Error in ExampleTag: " + ioe);
 }
 return(SKIP_BODY);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

312 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The format of tag descriptions will be described in later sections. For now,
just note that the tag element defines the main name of the tag (really tag
suffix, as will be seen shortly) and identifies the class that handles the tag.
Since the tag handler class is in the coreservlets.tags package, the fully
qualified class name of coreservlets.tags.ExampleTag is used. Note
that this is a class name, not a URL or relative path name. The class can
be installed anywhere on the server that beans or other supporting classes
can be put. With Tomcat 3.1, the standard base location is
install_dir/webapps/ROOT/WEB-INF/classes, so ExampleTag would be in
install_dir/webapps/ROOT/WEB-INF/classes/coreservlets/tags. Although
it is always a good idea to put your servlet classes in packages, a surprising
feature of Tomcat 3.1 is that tag handlers are required to be in packages.

Listing 14.2 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <tag>
 <name>example</name>
 <tagclass>coreservlets.tags.ExampleTag</tagclass>
 <info>Simplest example: inserts one line of output</info>
 <bodycontent>EMPTY</bodycontent>
 </tag>
 <!-- Other tags defined later... -->

</taglib>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.1 The Components That Make Up a Tag Library 313

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The JSP File

Once you have a tag handler implementation and a tag library description,
you are ready to write a JSP file that makes use of the tag. Listing 14.3 gives
an example. Somewhere before the first use of your tag, you need to use the
taglib directive. This directive has the following form:

<%@ taglib uri="..." prefix="..." %>

The required uri attribute can be either an absolute or relative URL
referring to a tag library descriptor file like the one shown in Listing 14.2.
To complicate matters a little, however, Tomcat 3.1 uses a web.xml file that
maps an absolute URL for a tag library descriptor to a file on the local sys-
tem. I don’t recommend that you use this approach, but you should be
aware of it in case you look at the Apache examples and wonder why it
works when they specify a nonexistent URL for the uri attribute of the
taglib directive.

The prefix attribute, also required, specifies a prefix that will be used in
front of whatever tag name the tag library descriptor defined. For example, if
the TLD file defines a tag named tag1 and the prefix attribute has a value
of test, the actual tag name would be test:tag1. This tag could be used in
either of the following two ways, depending on whether it is defined to be a
container that makes use of the tag body:

<test:tag1>
Arbitrary JSP
</test:tag1>

or just
<test:tag1 />

To illustrate, the descriptor file of Listing 14.2 is called csa-

jsp-taglib.tld, and resides in the same directory as the JSP file shown in
Listing 14.3. Thus, the taglib directive in the JSP file uses a simple relative
URL giving just the filename, as shown below.

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

Furthermore, since the prefix attribute is csajsp (for Core Servlets and
JavaServer Pages), the rest of the JSP page uses csajsp:example to refer to
the example tag defined in the descriptor file. Figure 14–1 shows the
result.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

314 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
14.2 Defining a Basic Tag

This section gives details on defining simple tags without attributes or tag
bodies; the tags are thus of the form <prefix:tagname />.

Listing 14.3 SimpleExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

<TITLE><csajsp:example /></TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1><csajsp:example /></H1>
<csajsp:example />

</BODY>
</HTML>

Figure 14–1 Result of SimpleExample.jsp.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.2 Defining a Basic Tag 315

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The Tag Handler Class

Tags that either have no body or that merely include the body verbatim
should extend the TagSupport class. This is a built-in class in the
javax.servlet.jsp.tagext package that implements the Tag interface
and contains much of the standard functionality basic tags need. Because of
other classes you will use, your tag should normally import classes in the
javax.servlet.jsp and java.io packages as well. So, most tag implementa-
tions contain the following import statements after the package declaration:

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.*;

I recommend that you download an example from http://www.coreserv-
lets.com/ and use it as the starting point for your own implementations.

For a tag without attributes or body, all you need to do is override the
doStartTag method, which defines code that gets called at request time
where the element’s start tag is found. To generate output, the method
should obtain the JspWriter (the specialized PrintWriter available in JSP
pages through use of the predefined out variable) from the pageContext
field by means of getOut. In addition to the getOut method, the pageCon-
text field (of type PageContext) has methods for obtaining other data struc-
tures associated with the request. The most important ones are getRequest,
getResponse, getServletContext, and getSession.

Since the print method of JspWriter throws IOException, the print
statements should be inside a try/catch block. To report other types of
errors to the client, you can declare that your doStartTag method throws a
JspException and then throw one when the error occurs.

If your tag does not have a body, your doStartTag should return the
SKIP_BODY constant. This instructs the system to ignore any content between
the tag’s start and end tags. As we will see in Section 14.5 (Optionally Includ-
ing the Tag Body), SKIP_BODY is sometimes useful even when there is a tag
body, but the simple tag we’re developing here will be used as a stand-alone
tag (<prefix:tagname />) and thus does not have body content.

Listing 14.4 shows a tag implementation that uses this approach to gener-
ate a random 50-digit prime through use of the Primes class developed in
Chapter 7 (Generating the Server Response: HTTP Response Headers) —
see Listing 7.4.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

316 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The Tag Library Descriptor File

The general format of a descriptor file is almost always the same: it should
contain an XML version identifier followed by a DOCTYPE declaration
followed by a taglib container element. To get started, just download a
sample from http://www.coreservlets.com/. The important part to
understand is what goes in the taglib element: the tag element. For tags
without attributes, the tag element should contain four elements between
<tag> and </tag>:

1. name, whose body defines the base tag name to which the prefix
of the taglib directive will be attached. In this case, I use
<name>simplePrime</name>

to assign a base tag name of simplePrime.

Listing 14.4 SimplePrimeTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import java.math.*;
import coreservlets.*;

/** Generates a prime of approximately 50 digits.
 * (50 is actually the length of the random number
 * generated -- the first prime above that number will
 * be returned.)
 */

public class SimplePrimeTag extends TagSupport {
 protected int len = 50;

 public int doStartTag() {
 try {
 JspWriter out = pageContext.getOut();
 BigInteger prime = Primes.nextPrime(Primes.random(len));
 out.print(prime);
 } catch(IOException ioe) {
 System.out.println("Error generating prime: " + ioe);
 }
 return(SKIP_BODY);
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.2 Defining a Basic Tag 317

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

2. tagclass, which gives the fully qualified class name of the tag
handler. In this case, I use
<tagclass>coreservlets.tags.SimplePrimeTag

</tagclass>

3. info, which gives a short description. Here, I use
<info>Outputs a random 50-digit prime.</info>

4. bodycontent, which should have the value EMPTY for tags with-
out bodies. Tags with normal bodies that might be interpreted
as normal JSP use a value of JSP, and the rare tags whose han-
dlers completely process the body themselves use a value of
TAGDEPENDENT. For the SimplePrimeTag discussed here, I use
EMPTY as below:
<bodycontent>EMPTY</bodycontent>

Listing 14.5 shows the full TLD file.

Listing 14.5 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <!-- Other tags defined earlier... -->
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

318 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The JSP File

JSP documents that make use of custom tags need to use the taglib directive,
supplying a uri attribute that gives the location of the tag library descriptor file
and a prefix attribute that specifies a short string that will be attached (along
with a colon) to the main tag name. Listing 14.6 shows a JSP document that uses

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

to use the TLD file just shown in Listing 14.5 with a prefix of csajsp. Since
the base tag name is simplePrime, the full tag used is

<csajsp:simplePrime />

Figure 14–2 shows the result.

 <tag>
 <name>simplePrime</name>
 <tagclass>coreservlets.tags.SimplePrimeTag</tagclass>
 <info>Outputs a random 50-digit prime.</info>
 <bodycontent>EMPTY</bodycontent>
 </tag>

</taglib>

Listing 14.6 SimplePrimeExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some 50-Digit Primes</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>Some 50-Digit Primes</H1>

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

 <csajsp:simplePrime />
 <csajsp:simplePrime />
 <csajsp:simplePrime />
 <csajsp:simplePrime />

</BODY>
</HTML>

Listing 14.5 csajsp-taglib.tld (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.3 Assigning Attributes to Tags 319

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

14.3 Assigning Attributes to Tags

Allowing tags like

<prefix:name attribute1="value1" attribute2="value2" ... />

adds significant flexibility to your tag library. This section explains how to add
attribute support to your tags.

The Tag Handler Class

Providing support for attributes is straightforward. Use of an attribute called
attribute1 simply results in a call to a method called setAttribute1 in
your class that extends TagSupport (or otherwise implements the Tag inter-
face). The attribute value is supplied to the method as a String. Conse-
quently, adding support for an attribute named attribute1 is merely a
matter of implementing the following method:

public void setAttribute1(String value1) {

doSomethingWith(value1);

}

Note that an attribute of attributeName (lowercase a) corresponds to a
method called setAttributeName (uppercase A).

Figure 14–2 Result of SimplePrimeExample.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

320 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
One of the most common things to do in the attribute handler is to simply
store the attribute in a field that will later be used by doStartTag or a similar
method. For example, following is a section of a tag implementation that adds
support for the message attribute.

private String message = "Default Message";

public void setMessage(String message) {

this.message = message;

}

If the tag handler will be accessed from other classes, it is a good idea to
provide a getAttributeName method in addition to the setAttributeName
method. Only setAttributeName is required, however.

Listing 14.7 shows a subclass of SimplePrimeTag that adds support for
the length attribute. When such an attribute is supplied, it results in a call to
setLength, which converts the input String to an int and stores it in the
len field already used by the doStartTag method in the parent class.

Listing 14.7 PrimeTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import java.math.*;
import coreservlets.*;

/** Generates an N-digit random prime (default N = 50).
 * Extends SimplePrimeTag, adding a length attribute
 * to set the size of the prime. The doStartTag
 * method of the parent class uses the len field
 * to determine the approximate length of the prime.
 */

public class PrimeTag extends SimplePrimeTag {
 public void setLength(String length) {
 try {
 len = Integer.parseInt(length);
 } catch(NumberFormatException nfe) {
 len = 50;
 }
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.3 Assigning Attributes to Tags 321

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The Tag Library Descriptor File

Tag attributes must be declared inside the tag element by means of an
attribute element. The attribute element has three nested elements that
can appear between <attribute> and </attribute>.

1. name, a required element that defines the case-sensitive
attribute name. In this case, I use
<name>length</name>

2. required, a required element that stipulates whether the
attribute must always be supplied (true) or is optional (false).
In this case, to indicate that length is optional, I use
<required>false</required>

If you omit the attribute, no call is made to the setAttribute-
Name method. So, be sure to give default values to the fields that
the method sets.

3. rtexprvalue, an optional attribute that indicates whether the
attribute value can be a JSP expression like
<%= expression %> (true) or whether it must be a fixed
string (false). The default value is false, so this element is
usually omitted except when you want to allow attributes to
have values determined at request time.

Listing 14.8 shows the complete tag element within the tag library
descriptor file. In addition to supplying an attribute element to describe
the length attribute, the tag element also contains the standard name
(prime), tagclass (coreservlets.tags.PrimeTag), info (short descrip-
tion), and bodycontent (EMPTY) elements.

Listing 14.8 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

322 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The JSP File

Listing 14.9 shows a JSP document that uses the taglib directive to load the
tag library descriptor file and to specify a prefix of csajsp. Since the prime
tag is defined to permit a length attribute, Listing 14.9 uses

<csajsp:prime length="xxx" />

Remember that custom tags follow XML syntax, which requires attribute
values to be enclosed in either single or double quotes. Also, since the
length attribute is not required, it is permissible to use

<csajsp:prime />

The tag handler is responsible for using a reasonable default value in such
a case.

Figure 14–3 shows the result of Listing 14.9.

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <!-- Other tag defined earlier... -->

 <tag>
 <name>prime</name>
 <tagclass>coreservlets.tags.PrimeTag</tagclass>
 <info>Outputs a random N-digit prime.</info>
 <bodycontent>EMPTY</bodycontent>
 <attribute>
 <name>length</name>
 <required>false</required>
 </attribute>
 </tag>

</taglib>

Listing 14.8 csajsp-taglib.tld (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.4 Including the Tag Body 323

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

14.4 Including the Tag Body

Up to this point, all of the custom tags you have seen ignore the tag body and
thus are used as stand-alone tags of the form

<prefix:tagname />

Listing 14.9 PrimeExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some N-Digit Primes</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>Some N-Digit Primes</H1>

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

 20-digit: <csajsp:prime length="20" />
 40-digit: <csajsp:prime length="40" />
 80-digit: <csajsp:prime length="80" />
 Default (50-digit): <csajsp:prime />

</BODY>
</HTML>

Figure 14–3 Result of PrimeExample.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

324 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
In this section, we see how to define tags that use their body content, and
are thus used in the following manner:

<prefix:tagname>body</prefix:tagname>

The Tag Handler Class

In the previous examples, the tag handlers defined a doStartTag method
that returned SKIP_BODY. To instruct the system to make use of the body that
occurs between the new element’s start and end tags, your doStartTag
method should return EVAL_BODY_INCLUDE instead. The body content can
contain JSP scripting elements, directives, and actions, just like the rest of the
page. The JSP constructs are translated into servlet code at page translation
time, and that code is invoked at request time.

If you make use of a tag body, then you might want to take some action
after the body as well as before it. Use the doEndTag method to specify this
action. In almost all cases, you want to continue with the rest of the page after
finishing with your tag, so the doEndTag method should return EVAL_PAGE. If
you want to abort the processing of the rest of the page, you can return
SKIP_PAGE instead.

Listing 14.10 defines a tag for a heading element that is more flexible than
the standard HTML H1 through H6 elements. This new element allows a pre-
cise font size, a list of preferred font names (the first entry that is available on
the client system will be used), a foreground color, a background color, a bor-
der, and an alignment (LEFT, CENTER, RIGHT). Only the alignment capability
is available with the H1 through H6 elements. The heading is implemented
through use of a one-cell table enclosing a SPAN element that has embedded
style sheet attributes. The doStartTag method generates the TABLE and
SPAN start tags, then returns EVAL_BODY_INCLUDE to instruct the system to
include the tag body. The doEndTag method generates the and
</TABLE> tags, then returns EVAL_PAGE to continue with normal page pro-
cessing. Various setAttributeName methods are used to handle the
attributes like bgColor and fontSize.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.4 Including the Tag Body 325

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 14.10 HeadingTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** Generates an HTML heading with the specified background
 * color, foreground color, alignment, font, and font size.
 * You can also turn on a border around it, which normally
 * just barely encloses the heading, but which can also
 * stretch wider. All attributes except the background
 * color are optional.
 */

public class HeadingTag extends TagSupport {
 private String bgColor; // The one required attribute
 private String color = null;
 private String align="CENTER";
 private String fontSize="36";
 private String fontList="Arial, Helvetica, sans-serif";
 private String border="0";
 private String width=null;

 public void setBgColor(String bgColor) {
 this.bgColor = bgColor;
 }

 public void setColor(String color) {
 this.color = color;
 }

 public void setAlign(String align) {
 this.align = align;
 }

 public void setFontSize(String fontSize) {
 this.fontSize = fontSize;
 }

 public void setFontList(String fontList) {
 this.fontList = fontList;
 }

 public void setBorder(String border) {
 this.border = border;
 }

 public void setWidth(String width) {
 this.width = width;
 }
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

326 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The Tag Library Descriptor File

There is only one new feature in the use of the tag element for tags that use
body content: the bodycontent element should contain the value JSP as
below.

<bodycontent>JSP</bodycontent>

The name, tagclass, info, and attribute elements are used in the same
manner as described previously. Listing 14.11 gives the code.

 public int doStartTag() {
 try {
 JspWriter out = pageContext.getOut();
 out.print("<TABLE BORDER=" + border +
 " BGCOLOR=\"" + bgColor + "\"" +
 " ALIGN=\"" + align + "\"");
 if (width != null) {
 out.print(" WIDTH=\"" + width + "\"");
 }
 out.print("><TR><TH>");
 out.print("<SPAN STYLE=\"" +
 "font-size: " + fontSize + "px; " +
 "font-family: " + fontList + "; ");
 if (color != null) {
 out.println("color: " + color + ";");
 }
 out.print("\"> "); // End of
 } catch(IOException ioe) {
 System.out.println("Error in HeadingTag: " + ioe);
 }
 return(EVAL_BODY_INCLUDE); // Include tag body
 }

 public int doEndTag() {
 try {
 JspWriter out = pageContext.getOut();
 out.print("</TABLE>");
 } catch(IOException ioe) {
 System.out.println("Error in HeadingTag: " + ioe);
 }
 return(EVAL_PAGE); // Continue with rest of JSP page
 }
}

Listing 14.10 HeadingTag.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.4 Including the Tag Body 327

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 14.11 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <!-- Other tags defined earlier... -->

 <tag>
 <name>heading</name>
 <tagclass>coreservlets.tags.HeadingTag</tagclass>
 <info>Outputs a 1-cell table used as a heading.</info>
 <bodycontent>JSP</bodycontent>
 <attribute>
 <name>bgColor</name>
 <required>true</required> <!-- bgColor is required -->
 </attribute>
 <attribute>
 <name>color</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>align</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>fontSize</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>fontList</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>border</name>
 <required>false</required>
 </attribute>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

328 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The JSP File

Listing 14.12 shows a document that uses the heading tag just defined. Since
the bgColor attribute was defined to be required, all uses of the tag include
it. Figure 14–4 shows the result.

 <attribute>
 <name>width</name>
 <required>false</required>
 </attribute>
 </tag>

</taglib>

Listing 14.12 HeadingExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some Tag-Generated Headings</TITLE>
</HEAD>

<BODY>
<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

<csajsp:heading bgColor="#C0C0C0">
Default Heading
</csajsp:heading>
<P>
<csajsp:heading bgColor="BLACK" color="WHITE">
White on Black Heading
</csajsp:heading>
<P>
<csajsp:heading bgColor="#EF8429" fontSize="60" border="5">
Large Bordered Heading
</csajsp:heading>
<P>
<csajsp:heading bgColor="CYAN" width="100%">
Heading with Full-Width Background
</csajsp:heading>
<P>
<csajsp:heading bgColor="CYAN" fontSize="60"
 fontList="Brush Script MT, Times, serif">
Heading with Non-Standard Font
</csajsp:heading>
<P>
</BODY>
</HTML>

Listing 14.11 csajsp-taglib.tld (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.5 Optionally Including the Tag Body 329

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

14.5 Optionally Including the Tag
Body

Most tags either never make use of body content or always do so. This sec-
tion shows you how to use request time information to decide whether or not
to include the tag body. Although the body can contain JSP that is interpreted
at page translation time, the result of that translation is servlet code that can
be invoked or ignored at request time.

The Tag Handler Class

Optionally including the tag body is a trivial exercise: just return
EVAL_BODY_INCLUDE or SKIP_BODY depending on the value of some
request time expression. The important thing to know is how to discover
that request time information, since doStartTag does not have Http-
ServletRequest and HttpServletResponse arguments as do service,

Figure 14–4 The custom csajsp:heading element gives you much more control
over heading format than does the standard H1 through H6 elements in HTML.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

330 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
_jspService, doGet, and doPost. The solution to this dilemma is to use
getRequest to obtain the HttpServletRequest from the automatically
defined pageContext field of TagSupport. Strictly speaking, the return
type of getRequest is ServletRequest, so you have to do a typecast to
HttpServletRequest if you want to call a method that is not inherited
from ServletRequest. However, in this case I just use getParameter, so
no typecast is required.

Listing 14.13 defines a tag that ignores its body unless a request time
debug parameter is supplied. Such a tag provides a useful capability whereby
you embed debugging information directly in the JSP page during develop-
ment, but activate it only when a problem occurs.

Listing 14.13 DebugTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import javax.servlet.*;

/** A tag that includes the body content only if
 * the "debug" request parameter is set.
 */

public class DebugTag extends TagSupport {
 public int doStartTag() {
 ServletRequest request = pageContext.getRequest();
 String debugFlag = request.getParameter("debug");
 if ((debugFlag != null) &&
 (!debugFlag.equalsIgnoreCase("false"))) {
 return(EVAL_BODY_INCLUDE);
 } else {
 return(SKIP_BODY);
 }
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.5 Optionally Including the Tag Body 331

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The Tag Library Descriptor File

If your tag ever makes use of its body, you must provide the value JSP inside
the bodycontent element. Other than that, all the elements within tag are
used in the same way as described previously. Listing 14.14 shows the entries
needed for DebugTag.

Listing 14.14 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <!-- Other tags defined earlier... -->

 <tag>
 <name>debug</name>
 <tagclass>coreservlets.tags.DebugTag</tagclass>
 <info>Includes body only if debug param is set.</info>
 <bodycontent>JSP</bodycontent>
 </tag>

</taglib>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

332 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The JSP File

Listing 14.15 shows a page that encloses debugging information between
<csajsp:debug> and </csajsp:debug>. Figures 14–5 and 14–6 show the
normal result and the result when a request time debug parameter is sup-
plied, respectively.

Listing 14.15 DebugExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using the Debug Tag</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>Using the Debug Tag</H1>

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

Top of regular page. Blah, blah, blah. Yadda, yadda, yadda.
<P>

<csajsp:debug>
Debug:

 Current time: <%= new java.util.Date() %>
 Requesting hostname: <%= request.getRemoteHost() %>
 Session ID: <%= session.getId() %>

</csajsp:debug>

<P>
Bottom of regular page. Blah, blah, blah. Yadda, yadda, yadda.

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.5 Optionally Including the Tag Body 333

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 14–5 The body of the csajsp:debug element is normally ignored.

Figure 14–6 The body of the csajsp:debug element is included when a debug
request parameter is supplied.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

334 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
14.6 Manipulating the Tag Body

The csajsp:prime element (Section 14.3) ignored any body content, the
csajsp:heading element (Section 14.4) used body content, and the csa-
jsp:debug element (Section 14.5) ignored or used it depending on a request
time parameter. The common thread among these elements is that the tag
body was never modified; it was either ignored or included verbatim (after
JSP translation). This section shows you how to process the tag body.

The Tag Handler Class

Up to this point, all of the tag handlers have extended the TagSupport class.
This is a good standard starting point, as it implements the required Tag
interface and performs a number of useful setup operations like storing the
PageContext reference in the pageContext field. However, TagSupport is
not powerful enough for tag implementations that need to manipulate their
body content, and BodyTagSupport should be used instead.

BodyTagSupport extends TagSupport, so the doStartTag and doEndTag
methods are used in the same way as before. The two important new meth-
ods defined by BodyTagSupport are:

1. doAfterBody, a method that you should override to handle the
manipulation of the tag body. This method should normally
return SKIP_BODY when it is done, indicating that no further
body processing should be performed.

2. getBodyContent, a method that returns an object of type
BodyContent that encapsulates information about the tag body.

The BodyContent class has three important methods:

1. getEnclosingWriter, a method that returns the JspWriter
being used by doStartTag and doEndTag.

2. getReader, a method that returns a Reader that can read the
tag’s body.

3. getString, a method that returns a String containing the
entire tag body.

In Section 3.4 (Example: Reading All Parameters), we saw a static filter
method that would take a string and replace <, >, ", and & with <, >,
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.6 Manipulating the Tag Body 335

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

", and &, respectively. This method is useful when servlets output
strings that might contain characters that would interfere with the HTML
structure of the page in which the strings are embedded. Listing 14.16 shows
a tag implementation that gives this filtering functionality to a custom JSP
tag.

The Tag Library Descriptor File

Tags that manipulate their body content should use the bodycontent ele-
ment the same way as tags that simply include it verbatim; they should supply
a value of JSP. Other than that, nothing new is required in the descriptor file,
as you can see by examining Listing 14.17.

Listing 14.16 FilterTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import coreservlets.*;

/** A tag that replaces <, >, ", and & with their HTML
 * character entities (<, >, ", and &).
 * After filtering, arbitrary strings can be placed
 * in either the page body or in HTML attributes.
 */

public class FilterTag extends BodyTagSupport {
 public int doAfterBody() {
 BodyContent body = getBodyContent();
 String filteredBody =
 ServletUtilities.filter(body.getString());
 try {
 JspWriter out = body.getEnclosingWriter();
 out.print(filteredBody);
 } catch(IOException ioe) {
 System.out.println("Error in FilterTag: " + ioe);
 }
 // SKIP_BODY means I'm done. If I wanted to evaluate
 // and handle the body again, I'd return EVAL_BODY_TAG.
 return(SKIP_BODY);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

336 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The JSP File

Listing 14.18 shows a page that uses a table to show some sample HTML and
its result. Creating this table would be tedious in regular HTML since the
table cell that shows the original HTML would have to change all the < and >
characters to < and >. Doing so is particularly onerous during devel-
opment when the sample HTML is frequently changing. Use of the <csa-
jsp:filter> tag greatly simplifies the process, as Listing 14.18 illustrates.
Figure 14–7 shows the result.

Listing 14.17 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <!-- Other tags defined earlier... -->

 <tag>
 <name>filter</name>
 <tagclass>coreservlets.tags.FilterTag</tagclass>
 <info>Replaces HTML-specific characters in body.</info>
 <bodycontent>JSP</bodycontent>
 </tag>

</taglib>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.6 Manipulating the Tag Body 337

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 14.18 FilterExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>HTML Logical Character Styles</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>HTML Logical Character Styles</H1>
Physical character styles (B, I, etc.) are rendered consistently
in different browsers. Logical character styles, however,
may be rendered differently by different browsers.
Here's how your browser
(<%= request.getHeader("User-Agent") %>)
renders the HTML 4.0 logical character styles:
<P>

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

<TABLE BORDER=1 ALIGN="CENTER">
<TR CLASS="COLORED"><TH>Example<TH>Result
<TR>

<TD><PRE><csajsp:filter>
Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>
</csajsp:filter></PRE>

<TD>
Some emphasized text.

Some strongly emphasized text.

<CODE>Some code.</CODE>

<SAMP>Some sample text.</SAMP>

<KBD>Some keyboard text.</KBD>

<DFN>A term being defined.</DFN>

<VAR>A variable.</VAR>

<CITE>A citation or reference.</CITE>

</TABLE>
</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

338 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
14.7 Including or Manipulating the
Tag Body Multiple Times

Rather than just including or processing the body of the tag a single time, you
sometimes want to do so more than once. The ability to support multiple
body inclusion lets you define a variety of iteration tags that repeat JSP frag-
ments a variable number of times, repeat them until a certain condition
occurs, and so forth. This section shows you how to build such tags.

The Tag Handler Class

Tags that process the body content multiple times should start by extending
BodyTagSupport and implementing doStartTag, doEndTag, and, most
importantly, doAfterBody as before. The difference lies in the return value
of doAfterBody. If this method returns EVAL_BODY_TAG, the tag body is
evaluated again, resulting in a new call to doAfterBody. This process contin-
ues until doAfterBody returns SKIP_BODY.

Figure 14–7 The csajsp:filter element lets you insert text without worrying about
it containing special HTML characters.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.7 Including or Manipulating the Tag Body Multiple Times 339

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 14.19 defines a tag that repeats the body content the number of
times specified by the reps attribute. Since the body content can contain JSP
(which gets made into servlet code at page translation time but invoked at
request time), each repetition does not necessarily result in the same output
to the client.

Listing 14.19 RepeatTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

/** A tag that repeats the body the specified
 * number of times.
 */

public class RepeatTag extends BodyTagSupport {
 private int reps;

 public void setReps(String repeats) {
 try {
 reps = Integer.parseInt(repeats);
 } catch(NumberFormatException nfe) {
 reps = 1;
 }
 }

 public int doAfterBody() {
 if (reps-- >= 1) {
 BodyContent body = getBodyContent();
 try {
 JspWriter out = body.getEnclosingWriter();
 out.println(body.getString());
 body.clearBody(); // Clear for next evaluation
 } catch(IOException ioe) {
 System.out.println("Error in RepeatTag: " + ioe);
 }
 return(EVAL_BODY_TAG);
 } else {
 return(SKIP_BODY);
 }
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

340 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The Tag Library Descriptor File

Listing 14.20 shows a TLD file that gives the name csajsp:repeat to the
tag just defined. To accommodate request time values in the reps attribute,
the file uses an rtexprvalue element (enclosing a value of true) within the
attribute element.

Listing 14.20 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <!-- Other tags defined earlier... -->

 <tag>
 <name>repeat</name>
 <tagclass>coreservlets.tags.RepeatTag</tagclass>
 <info>Repeats body the specified number of times.</info>
 <bodycontent>JSP</bodycontent>
 <attribute>
 <name>reps</name>
 <required>true</required>
 <!-- rtexprvalue indicates whether attribute
 can be a JSP expression. -->
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

</taglib>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.8 Using Nested Tags 341

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The JSP File

Listing 14.21 shows a JSP document that creates a numbered list of prime
numbers. The number of primes in the list is taken from the request time
repeats parameter. Figure 14–8 shows one possible result.

14.8 Using Nested Tags

Although Listing 14.21 places the csajsp:prime element within the csa-
jsp:repeat element, the two elements are independent of each other. The
first generates a prime number regardless of where it is used, and the second
repeats the enclosed content regardless of whether that content uses a csa-
jsp:prime element.

Some tags, however, depend on a particular nesting. For example, in stan-
dard HTML, the TD and TH elements can only appear within TR, which in turn

Listing 14.21 RepeatExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Some 40-Digit Primes</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>Some 40-Digit Primes</H1>
Each entry in the following list is the first prime number
higher than a randomly selected 40-digit number.

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

<!-- Repeats N times. A null reps value means repeat once. -->
<csajsp:repeat reps='<%= request.getParameter("repeats") %>'>
 <csajsp:prime length="40" />
</csajsp:repeat>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

342 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
can only appear within TABLE. The color and alignment settings of TABLE are
inherited by TR, and the values of TR affect how TD and TH behave. So, the
nested elements cannot act in isolation even when nested properly. Similarly,
the tag library descriptor file makes use of a number of elements like taglib,
tag, attribute and required where a strict nesting hierarchy is imposed.

This section shows you how to define tags that depend on a particular nest-
ing order and where the behavior of certain tags depends on values supplied
by earlier ones.

The Tag Handler Classes

Class definitions for nested tags can extend either TagSupport or BodyTag-
Support, depending on whether they need to manipulate their body content
(these extend BodyTagSupport) or, more commonly, just ignore it or include
it verbatim (these extend TagSupport).

Figure 14–8 Result of RepeatExample.jsp when accessed with a repeats
parameter of 20.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.8 Using Nested Tags 343

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

There are two key new approaches for nested tags, however. First, nested
tags can use findAncestorWithClass to find the tag in which they are
nested. This method takes a reference to the current class (e.g., this) and the
Class object of the enclosing class (e.g., EnclosingTag.class) as arguments.
If no enclosing class is found, the method in the nested class can throw a Jsp-
TagException that reports the problem. Second, if one tag wants to store data
that a later tag will use, it can place that data in the instance of the enclosing
tag. The definition of the enclosing tag should provide methods for storing and
accessing this data. Listing 14.22 outlines this approach.

Listing 14.22 Template for Nested Tags

public class OuterTag extends TagSupport {
 public void setSomeValue(SomeClass arg) { ... }
 public SomeClass getSomeValue() { ... }
}

public class FirstInnerTag extends BodyTagSupport {
 public int doStartTag() throws JspTagException {
 OuterTag parent =
 (OuterTag)findAncestorWithClass(this, OuterTag.class);
 if (parent == null) {
 throw new JspTagException("nesting error");
 } else {
 parent.setSomeValue(...);
 }
 return(EVAL_BODY_TAG);
 }
 ...
}

public class SecondInnerTag extends BodyTagSupport {
 public int doStartTag() throws JspTagException {
 OuterTag parent =
 (OuterTag)findAncestorWithClass(this, OuterTag.class);
 if (parent == null) {
 throw new JspTagException("nesting error");
 } else {
 SomeClass value = parent.getSomeValue();
 doSomethingWith(value);
 }
 return(EVAL_BODY_TAG);
 }
 ...
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

344 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Now, suppose that we want to define a set of tags that would be used like
this:

<csajsp:if>
<csajsp:condition><%= someExpression %></csajsp:condition>
<csajsp:then>JSP to include if condition is true</csajsp:then>
<csajsp:else>JSP to include if condition is false</csajsp:else>

</csajsp:if>

To accomplish this task, the first step is to define an IfTag class to handle
the csajsp:if tag. This handler should have methods to specify and check
whether the condition is true or false (setCondition and getCondition) as
well as methods to designate and check if the condition has ever been explic-
itly set (setHasCondition and getHasCondition), since we want to disal-
low csajsp:if tags that contain no csajsp:condition entry. Listing 14.23
shows the code for IfTag.

The second step is to define a tag handler for csajsp:condition. This
class, called IfConditionTag, defines a doStartTag method that merely
checks if the tag appears within IfTag. It returns EVAL_BODY_TAG if so and
throws an exception if not. The handler’s doAfterBody method looks up
the body content (getBodyContent), converts it to a String (getString),
and compares that to "true". This approach means that an explicit value of
true can be substituted for a JSP expression like <%= expression %> if,
during initial page development, you want to temporarily designate that the
then portion should always be used. Using a comparison to "true" also
means that any other value will be considered “false.” Once this compari-
son is performed, the result is stored in the enclosing tag by means of the
setCondition method of IfTag. The code for IfConditionTag is shown
in Listing 14.24.

The third step is to define a class to handle the csajsp:then tag. The
doStartTag method of this class verifies that it is inside IfTag and also
checks that an explicit condition has been set (i.e., that the IfConditionTag
has already appeared within the IfTag). The doAfterBody method checks
for the condition in the IfTag class, and, if it is true, looks up the body con-
tent and prints it. Listing 14.25 shows the code.

The final step in defining tag handlers is to define a class for csa-
jsp:else. This class is very similar to the one to handle the then part of
the tag, except that this handler only prints the tag body from doAfterBody
if the condition from the surrounding IfTag is false. The code is shown in
Listing 14.26.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.8 Using Nested Tags 345

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 14.23 IfTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import javax.servlet.*;

/** A tag that acts like an if/then/else.
 */

public class IfTag extends TagSupport {
 private boolean condition;
 private boolean hasCondition = false;

 public void setCondition(boolean condition) {
 this.condition = condition;
 hasCondition = true;
 }

 public boolean getCondition() {
 return(condition);
 }

 public void setHasCondition(boolean flag) {
 this.hasCondition = flag;
 }

 /** Has the condition field been explicitly set? */

 public boolean hasCondition() {
 return(hasCondition);
 }

 public int doStartTag() {
 return(EVAL_BODY_INCLUDE);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

346 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 14.24 IfConditionTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import javax.servlet.*;

/** The condition part of an if tag.
 */

public class IfConditionTag extends BodyTagSupport {
 public int doStartTag() throws JspTagException {
 IfTag parent =
 (IfTag)findAncestorWithClass(this, IfTag.class);
 if (parent == null) {
 throw new JspTagException("condition not inside if");
 }
 return(EVAL_BODY_TAG);
 }

 public int doAfterBody() {
 IfTag parent =
 (IfTag)findAncestorWithClass(this, IfTag.class);
 String bodyString = getBodyContent().getString();
 if (bodyString.trim().equals("true")) {
 parent.setCondition(true);
 } else {
 parent.setCondition(false);
 }
 return(SKIP_BODY);
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.8 Using Nested Tags 347

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 14.25 IfThenTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import javax.servlet.*;

/** The then part of an if tag.
 */

public class IfThenTag extends BodyTagSupport {
 public int doStartTag() throws JspTagException {
 IfTag parent =
 (IfTag)findAncestorWithClass(this, IfTag.class);
 if (parent == null) {
 throw new JspTagException("then not inside if");
 } else if (!parent.hasCondition()) {
 String warning =
 "condition tag must come before then tag";
 throw new JspTagException(warning);
 }
 return(EVAL_BODY_TAG);
 }

 public int doAfterBody() {
 IfTag parent =
 (IfTag)findAncestorWithClass(this, IfTag.class);
 if (parent.getCondition()) {
 try {
 BodyContent body = getBodyContent();
 JspWriter out = body.getEnclosingWriter();
 out.print(body.getString());
 } catch(IOException ioe) {
 System.out.println("Error in IfThenTag: " + ioe);
 }
 }
 return(SKIP_BODY);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

348 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The Tag Library Descriptor File

Even though there is an explicit required nesting structure for the tags just
defined, the tags must be declared separately in the TLD file. This means
that nesting validation is performed only at request time, not at page transla-

Listing 14.26 IfElseTag.java

package coreservlets.tags;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
import javax.servlet.*;

/** The else part of an if tag.
 */

public class IfElseTag extends BodyTagSupport {
 public int doStartTag() throws JspTagException {
 IfTag parent =
 (IfTag)findAncestorWithClass(this, IfTag.class);
 if (parent == null) {
 throw new JspTagException("else not inside if");
 } else if (!parent.hasCondition()) {
 String warning =
 "condition tag must come before else tag";
 throw new JspTagException(warning);
 }
 return(EVAL_BODY_TAG);
 }

 public int doAfterBody() {
 IfTag parent =
 (IfTag)findAncestorWithClass(this, IfTag.class);
 if (!parent.getCondition()) {
 try {
 BodyContent body = getBodyContent();
 JspWriter out = body.getEnclosingWriter();
 out.print(body.getString());
 } catch(IOException ioe) {
 System.out.println("Error in IfElseTag: " + ioe);
 }
 }
 return(SKIP_BODY);
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.8 Using Nested Tags 349

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

tion time. In principle, you could instruct the system to do some validation at
page translation time by using a TagExtraInfo class. This class has a get-
VariableInfo method that you can use to check that attributes exist and
where they are used. Once you have defined a subclass of TagExtraInfo,
you associate it with your tag in the tag library descriptor file by means of the
teiclass element, which is used just like tagclass. In practice, however,
TagExtraInfo is poorly documented and cumbersome to use.

Listing 14.27 csajsp-taglib.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tag library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>csajsp</shortname>
 <urn></urn>
 <info>
 A tag library from Core Servlets and JavaServer Pages,
 http://www.coreservlets.com/.
 </info>

 <!-- Other tags defined earlier... -->

 <tag>
 <name>if</name>
 <tagclass>coreservlets.tags.IfTag</tagclass>
 <info>if/condition/then/else tag.</info>
 <bodycontent>JSP</bodycontent>
 </tag>

 <tag>
 <name>condition</name>
 <tagclass>coreservlets.tags.IfConditionTag</tagclass>
 <info>condition part of if/condition/then/else tag.</info>
 <bodycontent>JSP</bodycontent>
 </tag>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

350 Chapter 14 Creating Custom JSP Tag Libraries

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The JSP File

Listing 14.28 shows a page that uses the csajsp:if tag three different ways.
In the first instance, a value of true is hardcoded for the condition. In the
second instance, a parameter from the HTTP request is used for the condi-
tion, and in the third case, a random number is generated and compared to a
fixed cutoff. Figure 14–9 shows a typical result.

 <tag>
 <name>then</name>
 <tagclass>coreservlets.tags.IfThenTag</tagclass>
 <info>then part of if/condition/then/else tag.</info>
 <bodycontent>JSP</bodycontent>
 </tag>

 <tag>
 <name>else</name>
 <tagclass>coreservlets.tags.IfElseTag</tagclass>
 <info>else part of if/condition/then/else tag.</info>
 <bodycontent>JSP</bodycontent>
 </tag>

</taglib>

Listing 14.28 IfExample.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>If Tag Example</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>If Tag Example</H1>

<%@ taglib uri="csajsp-taglib.tld" prefix="csajsp" %>

<csajsp:if>
 <csajsp:condition>true</csajsp:condition>
 <csajsp:then>Condition was true</csajsp:then>
 <csajsp:else>Condition was false</csajsp:else>
</csajsp:if>

Listing 14.27 csajsp-taglib.tld (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

14.8 Using Nested Tags 351

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

<P>
<csajsp:if>
 <csajsp:condition><%= request.isSecure() %></csajsp:condition>
 <csajsp:then>Request is using SSL (https)</csajsp:then>
 <csajsp:else>Request is not using SSL</csajsp:else>
</csajsp:if>
<P>
Some coin tosses:

<csajsp:repeat reps="20">
 <csajsp:if>
 <csajsp:condition>
 <%= Math.random() > 0.5 %>
 </csajsp:condition>
 <csajsp:then>Heads
</csajsp:then>
 <csajsp:else>Tails
</csajsp:else>
 </csajsp:if>
</csajsp:repeat>

</BODY>
</HTML>

Listing 14.28 IfExample.jsp (continued)

Figure 14–9 Result of
IfExample.jsp.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Integrating
Servlets and JSP
Topics in This Chapter

• Obtaining a RequestDispatcher

• Forwarding requests from servlets to dynamic resources

• Forwarding requests from servlets to static resources

• Using servlets to set up beans for use by JSP pages

• An on-line travel agency combining servlets and JSP

• Including JSP output in servlets

• A servlet that shows the raw HTML output of JSP pages

• Using jsp:forward to forward requests from JSP pages
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ervlets are great when your application requires a lot of real program-
ming to accomplish its task. As you’ve seen elsewhere in the book,
servlets can manipulate HTTP status codes and headers, use cookies,

track sessions, save information between requests, compress pages, access
databases, generate GIF images on-the-fly, and perform many other tasks
flexibly and efficiently. But, generating HTML with servlets can be tedious
and can yield a result that is hard to modify. That’s where JSP comes in; it lets
you separate much of the presentation from the dynamic content. That way,
you can write the HTML in the normal manner, even using HTML-specific
tools and putting your Web content developers to work on your JSP docu-
ments. JSP expressions, scriptlets, and declarations let you insert simple Java
code into the servlet that results from the JSP page, and directives let you
control the overall layout of the page. For more complex requirements, you
can wrap up Java code inside beans or define your own JSP tags.

Great. We have everything we need, right? Well, no, not quite. The
assumption behind a JSP document is that it provides a single overall presen-
tation. What if you want to give totally different results depending on the data
that you receive? Beans and custom tags, although extremely powerful and
flexible, don’t overcome the limitation that the JSP page defines a relatively
fixed top-level page appearance. The solution is to use both servlets and Jav-
aServer Pages. If you have a complicated application that may require several
substantially different presentations, a servlet can handle the initial request,

S

353

354 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
partially process the data, set up beans, then forward the results to one of a
number of different JSP pages, depending on the circumstances. In early JSP
specifications, this approach was known as the model 2 approach to JSP.
Rather than completely forwarding the request, the servlet can generate part
of the output itself, then include the output of one or more JSP pages to
obtain the final result.

15.1 Forwarding Requests

The key to letting servlets forward requests or include external content is to
use a RequestDispatcher. You obtain a RequestDispatcher by calling the
getRequestDispatcher method of ServletContext, supplying a URL rel-
ative to the server root. For example, to obtain a RequestDispatcher associ-
ated with http://yourhost/presentations/presentation1.jsp, you
would do the following:

String url = "/presentations/presentation1.jsp";

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(url);

Once you have a RequestDispatcher, you use forward to completely
transfer control to the associated URL and use include to output the associ-
ated URL’s content. In both cases, you supply the HttpServletRequest and
HttpServletResponse as arguments. Both methods throw Servlet-

Exception and IOException. For example, Listing 15.1 shows a portion of a
servlet that forwards the request to one of three different JSP pages, depend-
ing on the value of the operation parameter. To avoid repeating the getRe-
questDispatcher call, I use a utility method called gotoPage that takes the
URL, the HttpServletRequest and the HttpServletResponse; gets a
RequestDispatcher; and then calls forward on it.

Using Static Resources

In most cases, you forward requests to a JSP page or another servlet. In some
cases, however, you might want to send the request to a static HTML page.
In an e-commerce site, for example, requests that indicate that the user does
not have a valid account name might be forwarded to an account application
page that uses HTML forms to gather the requisite information. With GET
requests, forwarding requests to a static HTML page is perfectly legal and
requires no special syntax; just supply the address of the HTML page as the
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.1 Forwarding Requests 355

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

argument to getRequestDispatcher. However, since forwarded requests
use the same request method as the original request, POST requests cannot
be forwarded to normal HTML pages. The solution to this problem is to sim-
ply rename the HTML page to have a .jsp extension. Renaming some-
file.html to somefile.jsp does not change its output for GET requests,
but somefile.html cannot handle POST requests, whereas somefile.jsp
gives an identical response for both GET and POST.

Supplying Information to the Destination Pages

To forward the request to a JSP page, a servlet merely needs to obtain a
RequestDispatcher by calling the getRequestDispatcher method of
ServletContext, then call forward on the result, supplying the Http-
ServletRequest and HttpServletResponse as arguments. That’s fine as
far as it goes, but this approach requires the destination page to read the

Listing 15.1 Request Forwarding Example

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String operation = request.getParameter("operation");
 if (operation == null) {
 operation = "unknown";
 }
 if (operation.equals("operation1")) {
 gotoPage("/operations/presentation1.jsp",
 request, response);
 } else if (operation.equals("operation2")) {
 gotoPage("/operations/presentation2.jsp",
 request, response);
 } else {
 gotoPage("/operations/unknownRequestHandler.jsp",
 request, response);
 }
}

private void gotoPage(String address,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(address);
 dispatcher.forward(request, response);
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

356 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
information it needs out of the HttpServletRequest. There are two reasons
why it might not be a good idea to have the destination page look up and pro-
cess all the data itself. First, complicated programming is easier in a servlet
than in a JSP page. Second, multiple JSP pages may require the same data, so
it would be wasteful for each JSP page to have to set up the same data. A bet-
ter approach is for the original servlet to set up the information that the desti-
nation pages need, then store it somewhere that the destination pages can
easily access.

There are two main places for the servlet to store the data that the JSP pages
will use: in the HttpServletRequest and as a bean in the location specific to
the scope attribute of jsp:useBean (see Section 13.4, “Sharing Beans”).

The originating servlet would store arbitrary objects in the HttpServlet-
Request by using

request.setAttribute("key1", value1);

The destination page would access the value by using a JSP scripting ele-
ment to call

Type1 value1 = (Type1)request.getAttribute("key1");

For complex values, an even better approach is to represent the value as a
bean and store it in the location used by jsp:useBean for shared beans. For
example, a scope of application means that the value is stored in the
ServletContext, and ServletContext uses setAttribute to store values.
Thus, to make a bean accessible to all servlets or JSP pages in the server or
Web application, the originating servlet would do the following:

Type1 value1 = computeValueFromRequest(request);

getServletContext().setAttribute("key1", value1);

The destination JSP page would normally access the previously stored
value by using jsp:useBean as follows:

<jsp:useBean id="key1" class="Type1" scope="application" />

Alternatively, the destination page could use a scripting element to explic-
itly call application.getAttribute("key1") and cast the result to Type1.

For a servlet to make data specific to a user session rather than globally
accessible, the servlet would store the value in the HttpSession in the nor-
mal manner, as below:

Type1 value1 = computeValueFromRequest(request);

HttpSession session = request.getSession(true);

session.putValue("key1", value1);

The destination page would then access the value by means of

<jsp:useBean id="key1" class="Type1" scope="session" />
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.1 Forwarding Requests 357

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The Servlet 2.2 specification adds a third way to send data to the destina-
tion page when using GET requests: simply append the query data to the
URL. For example,

String address = "/path/resource.jsp?newParam=value";
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(address);

dispatcher.forward(request, response);

This technique results in an additional request parameter of newParam
(with a value of value) being added to whatever request parameters already
existed. The new parameter is added to the beginning of the query data so
that it will replace existing values if the destination page uses getParameter
(use the first occurrence of the named parameter) rather than get-
ParameterValues (use all occurrences of the named parameter).

Interpreting Relative URLs in the Destination
Page

Although a servlet can forward the request to arbitrary locations on the same
server, the process is quite different from that of using the sendRedirect
method of HttpServletResponse (see Section 6.1). First, sendRedirect
requires the client to reconnect to the new resource, whereas the forward
method of RequestDispatcher is handled completely on the server. Sec-
ond, sendRedirect does not automatically preserve all of the request data;
forward does. Third, sendRedirect results in a different final URL,
whereas with forward, the URL of the original servlet is maintained.

This final point means that, if the destination page uses relative URLs for
images or style sheets, it needs to make them relative to the server root, not
to the destination page’s actual location. For example, consider the following
style sheet entry:

<LINK REL=STYLESHEET
HREF="my-styles.css"
TYPE="text/css">

If the JSP page containing this entry is accessed by means of a forwarded
request, my-styles.css will be interpreted relative to the URL of the origi-
nating servlet, not relative to the JSP page itself, almost certainly resulting in
an error. The solution is to give the full server path to the style sheet file, as
follows:

<LINK REL=STYLESHEET
HREF="/path/my-styles.css"

TYPE="text/css">
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

358 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The same approach is required for addresses used in and
.

Alternative Means of Getting a
RequestDispatcher

In servers that support version 2.2 of the servlet specification, there are
two additional ways of obtaining a RequestDispatcher besides the get-
RequestDispatcher method of ServletContext.

First, since most servers let you give explicit names to servlets or JSP
pages, it makes sense to access them by name rather than by path. Use the
getNamedDispatcher method of ServletContext for this task.

Second, you might want to access a resource by a path relative to the cur-
rent servlet’s location, rather than relative to the server root. This approach is
not common when servlets are accessed in the standard manner
(http://host/servlet/ServletName), because JSP files would not be
accessible by means of http://host/servlet/... since that URL is
reserved especially for servlets. However, it is common to register servlets
under another path, and in such a case you can use the getRequest-
Dispatcher method of HttpServletRequest rather than the one from
ServletContext. For example, if the originating servlet is at
 http://host/travel/TopLevel,

getServletContext().getRequestDispatcher("/travel/cruises.jsp")

could be replaced by
request.getRequestDispatcher("cruises.jsp");

15.2 Example: An On-Line Travel
Agent

Consider the case of an on-line travel agent that has a quick-search page, as
shown in Figure 15–1 and Listing 15.2. Users need to enter their e-mail
address and password to associate the request with their previously established
customer account. Each request also includes a trip origin, trip destination,
start date, and end date. However, the action that will result will vary substan-
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 359

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

tially based upon the action requested. For example, pressing the “Book
Flights” button should show a list of available flights on the dates specified,
ordered by price (see Figure 15–1). The user’s real name, frequent flyer infor-
mation, and credit card number should be used to generate the page. On the
other hand, selecting “Edit Account” should show any previously entered cus-
tomer information, letting the user modify values or add entries. Likewise, the
actions resulting from choosing “Rent Cars” or “Find Hotels” will share much
of the same customer data but will have a totally different presentation.

To accomplish the desired behavior, the front end (Listing 15.2) submits
the request to the top-level travel servlet shown in Listing 15.3. This servlet
looks up the customer information (see Listings 15.5 through 15.9), puts it in
the HttpSession object associating the value (of type coreservlets.Trav-
elCustomer) with the name customer, and then forwards the request to a
different JSP page corresponding to each of the possible actions. The desti-
nation page (see Listing 15.4 and the result in Figure 15–2) looks up the cus-
tomer information by means of

<jsp:useBean id="customer"

 class="coreservlets.TravelCustomer"

 scope="session" />

then uses jsp:getProperty to insert customer information into various
parts of the page. You should note two things about the TravelCustomer
class (Listing 15.5).

First, the class spends a considerable amount of effort making the customer
information accessible as plain strings or even HTML-formatted strings through
simple properties. Almost every task that requires any substantial amount of
programming at all is spun off into the bean, rather than being performed in the
JSP page itself. This is typical of servlet/JSP integration—the use of JSP does not
entirely obviate the need to format data as strings or HTML in Java code. Sig-
nificant up-front effort to make the data conveniently available to JSP more than
pays for itself when multiple JSP pages access the same type of data.

Second, remember that many servers that automatically reload servlets when
their class files change do not allow bean classes used by JSP to be in
the auto-reloading directories. Thus, with the Java Web Server for example,
TravelCustomer and its supporting classes must be in install_dir/
classes/coreservlets/, not install_dir/servlets/coreservlets/.
Tomcat 3.0 and the JSWDK 1.0.1 do not support auto-reloading servlets, so
TravelCustomer can be installed in the normal location.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

360 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 15–1 Front end to travel servlet (see Listing 15.2).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 361

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 15.2 /travel/quick-search.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Online Travel Quick Search</TITLE>
 <LINK REL=STYLESHEET
 HREF="travel-styles.css"
 TYPE="text/css">
</HEAD>

Figure 15–2 Result of travel servlet (Listing 15.3) dispatching request to
BookFlights.jsp (Listing 15.4).
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

362 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<BODY>

<H1>Online Travel Quick Search</H1>

<FORM ACTION="/servlet/coreservlets.Travel" METHOD="POST">
<CENTER>
Email address: <INPUT TYPE="TEXT" NAME="emailAddress">

Password: <INPUT TYPE="PASSWORD" NAME="password" SIZE=10>

Origin: <INPUT TYPE="TEXT" NAME="origin">

Destination: <INPUT TYPE="TEXT" NAME="destination">

Start date (MM/DD/YY):
 <INPUT TYPE="TEXT" NAME="startDate" SIZE=8>

End date (MM/DD/YY):
 <INPUT TYPE="TEXT" NAME="endDate" SIZE=8>

<P>
<TABLE CELLSPACING=1>
<TR>
 <TH> <IMG SRC="airplane.gif" WIDTH=100 HEIGHT=29
 ALIGN="TOP" ALT="Book Flight">
 <TH> <IMG SRC="car.gif" WIDTH=100 HEIGHT=31
 ALIGN="MIDDLE" ALT="Rent Car">
 <TH> <IMG SRC="bed.gif" WIDTH=100 HEIGHT=85
 ALIGN="MIDDLE" ALT="Find Hotel">
 <TH> <IMG SRC="passport.gif" WIDTH=71 HEIGHT=100
 ALIGN="MIDDLE" ALT="Edit Account">
<TR>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="flights" VALUE="Book Flight">
 </SMALL>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="cars" VALUE="Rent Car">
 </SMALL>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="hotels" VALUE="Find Hotel">
 </SMALL>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="account" VALUE="Edit Account">
 </SMALL>
</TABLE>
</CENTER>
</FORM>

<P ALIGN="CENTER">
Not yet a member? Get a free account
here.</P>
</BODY>
</HTML>

Listing 15.2 /travel/quick-search.html (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 363

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 15.3 Travel.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Top-level travel-processing servlet. This servlet sets up
 * the customer data as a bean, then forwards the request
 * to the airline booking page, the rental car reservation
 * page, the hotel page, the existing account modification
 * page, or the new account page.
 */

public class Travel extends HttpServlet {
 private TravelCustomer[] travelData;

 public void init() {
 travelData = TravelData.getTravelData();
 }

 /** Since password is being sent, use POST only. However,
 * the use of POST means that you cannot forward
 * the request to a static HTML page, since the forwarded
 * request uses the same request method as the original
 * one, and static pages cannot handle POST. Solution:
 * have the "static" page be a JSP file that contains
 * HTML only. That’s what accounts.jsp is. The other
 * JSP files really need to be dynamically generated,
 * since they make use of the customer data.
 */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String emailAddress = request.getParameter("emailAddress");
 String password = request.getParameter("password");
 TravelCustomer customer =
 TravelCustomer.findCustomer(emailAddress, travelData);
 if ((customer == null) || (password == null) ||
 (!password.equals(customer.getPassword()))) {
 gotoPage("/travel/accounts.jsp", request, response);
 }
 // The methods that use the following parameters will
 // check for missing or malformed values.
 customer.setStartDate(request.getParameter("startDate"));
 customer.setEndDate(request.getParameter("endDate"));
 customer.setOrigin(request.getParameter("origin"));
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

364 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 customer.setDestination(request.getParameter
 ("destination"));
 HttpSession session = request.getSession(true);
 session.putValue("customer", customer);
 if (request.getParameter("flights") != null) {
 gotoPage("/travel/BookFlights.jsp",
 request, response);
 } else if (request.getParameter("cars") != null) {
 gotoPage("/travel/RentCars.jsp",
 request, response);
 } else if (request.getParameter("hotels") != null) {
 gotoPage("/travel/FindHotels.jsp",
 request, response);
 } else if (request.getParameter("cars") != null) {
 gotoPage("/travel/EditAccounts.jsp",
 request, response);
 } else {
 gotoPage("/travel/IllegalRequest.jsp",
 request, response);
 }
 }

 private void gotoPage(String address,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Listing 15.3 Travel.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 365

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 15.4 BookFlights.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Best Available Flights</TITLE>
 <LINK REL=STYLESHEET
 HREF="/travel/travel-styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>Best Available Flights</H1>
<CENTER>
<jsp:useBean id="customer"
 class="coreservlets.TravelCustomer"
 scope="session" />
Finding flights for
<jsp:getProperty name="customer" property="fullName" />
<P>
<jsp:getProperty name="customer" property="flights" />

<P>

<HR>

<FORM ACTION="/servlet/BookFlight">
<jsp:getProperty name="customer"
 property="frequentFlyerTable" />
<P>
Credit Card:
<jsp:getProperty name="customer" property="creditCard" />
<P>
<INPUT TYPE="SUBMIT" NAME="holdButton" VALUE="Hold for 24 Hours">
<P>
<INPUT TYPE="SUBMIT" NAME="bookItButton" VALUE="Book It!">
</FORM>
</CENTER>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

366 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 15.5 TravelCustomer.java

package coreservlets;

import java.util.*;
import java.text.*;

/** Describes a travel services customer. Implemented
 * as a bean with some methods that return data in HTML
 * format, suitable for access from JSP.
 */

public class TravelCustomer {
 private String emailAddress, password, firstName, lastName;
 private String creditCardName, creditCardNumber;
 private String phoneNumber, homeAddress;
 private String startDate, endDate;
 private String origin, destination;
 private FrequentFlyerInfo[] frequentFlyerData;
 private RentalCarInfo[] rentalCarData;
 private HotelInfo[] hotelData;

 public TravelCustomer(String emailAddress,
 String password,
 String firstName,
 String lastName,
 String creditCardName,
 String creditCardNumber,
 String phoneNumber,
 String homeAddress,
 FrequentFlyerInfo[] frequentFlyerData,
 RentalCarInfo[] rentalCarData,
 HotelInfo[] hotelData) {
 setEmailAddress(emailAddress);
 setPassword(password);
 setFirstName(firstName);
 setLastName(lastName);
 setCreditCardName(creditCardName);
 setCreditCardNumber(creditCardNumber);
 setPhoneNumber(phoneNumber);
 setHomeAddress(homeAddress);
 setStartDate(startDate);
 setEndDate(endDate);
 setFrequentFlyerData(frequentFlyerData);
 setRentalCarData(rentalCarData);
 setHotelData(hotelData);
 }

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 367

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 public String getEmailAddress() {
 return(emailAddress);
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }

 public String getPassword() {
 return(password);
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getFirstName() {
 return(firstName);
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return(lastName);
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getFullName() {
 return(getFirstName() + " " + getLastName());
 }

 public String getCreditCardName() {
 return(creditCardName);
 }

 public void setCreditCardName(String creditCardName) {
 this.creditCardName = creditCardName;
 }

 public String getCreditCardNumber() {
 return(creditCardNumber);
 }

Listing 15.5 TravelCustomer.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

368 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 public void setCreditCardNumber(String creditCardNumber) {
 this.creditCardNumber = creditCardNumber;
 }

 public String getCreditCard() {
 String cardName = getCreditCardName();
 String cardNum = getCreditCardNumber();
 cardNum = cardNum.substring(cardNum.length() - 4);
 return(cardName + " (XXXX-XXXX-XXXX-" + cardNum + ")");
 }

 public String getPhoneNumber() {
 return(phoneNumber);
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getHomeAddress() {
 return(homeAddress);
 }

 public void setHomeAddress(String homeAddress) {
 this.homeAddress = homeAddress;
 }

 public String getStartDate() {
 return(startDate);
 }

 public void setStartDate(String startDate) {
 this.startDate = startDate;
 }

 public String getEndDate() {
 return(endDate);
 }

 public void setEndDate(String endDate) {
 this.endDate = endDate;
 }

 public String getOrigin() {
 return(origin);
 }

Listing 15.5 TravelCustomer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 369

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 public void setOrigin(String origin) {
 this.origin = origin;
 }

 public String getDestination() {
 return(destination);
 }

 public void setDestination(String destination) {
 this.destination = destination;
 }

 public FrequentFlyerInfo[] getFrequentFlyerData() {
 return(frequentFlyerData);
 }

 public void setFrequentFlyerData(FrequentFlyerInfo[]
 frequentFlyerData) {
 this.frequentFlyerData = frequentFlyerData;
 }

 public String getFrequentFlyerTable() {
 FrequentFlyerInfo[] frequentFlyerData =
 getFrequentFlyerData();
 if (frequentFlyerData.length == 0) {
 return("<I>No frequent flyer data recorded.</I>");
 } else {
 String table =
 "<TABLE>\n" +
 " <TR><TH>Airline<TH>Frequent Flyer Number\n";
 for(int i=0; i<frequentFlyerData.length; i++) {
 FrequentFlyerInfo info = frequentFlyerData[i];
 table = table +
 "<TR ALIGN=\"CENTER\">" +
 "<TD>" + info.getAirlineName() +
 "<TD>" + info.getFrequentFlyerNumber() + "\n";
 }
 table = table + "</TABLE>\n";
 return(table);
 }
 }

 public RentalCarInfo[] getRentalCarData() {
 return(rentalCarData);
 }

Listing 15.5 TravelCustomer.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

370 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 public void setRentalCarData(RentalCarInfo[] rentalCarData) {
 this.rentalCarData = rentalCarData;
 }

 public HotelInfo[] getHotelData() {
 return(hotelData);
 }

 public void setHotelData(HotelInfo[] hotelData) {
 this.hotelData = hotelData;
 }

 // This would be replaced by a database lookup
 // in a real application.

 public String getFlights() {
 String flightOrigin =
 replaceIfMissing(getOrigin(), "Nowhere");
 String flightDestination =
 replaceIfMissing(getDestination(), "Nowhere");
 Date today = new Date();
 DateFormat formatter =
 DateFormat.getDateInstance(DateFormat.MEDIUM);
 String dateString = formatter.format(today);
 String flightStartDate =
 replaceIfMissing(getStartDate(), dateString);
 String flightEndDate =
 replaceIfMissing(getEndDate(), dateString);
 String [][] flights =
 { { "Java Airways", "1522", "455.95", "Java, Indonesia",
 "Sun Microsystems", "9:00", "3:15" },
 { "Servlet Express", "2622", "505.95", "New Atlanta",
 "New Atlanta", "9:30", "4:15" },
 { "Geek Airlines", "3.14159", "675.00", "JHU",
 "MIT", "10:02:37", "2:22:19" } };
 String flightString = "";
 for(int i=0; i<flights.length; i++) {
 String[] flightInfo = flights[i];

Listing 15.5 TravelCustomer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 371

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 flightString =
 flightString + getFlightDescription(flightInfo[0],
 flightInfo[1],
 flightInfo[2],
 flightInfo[3],
 flightInfo[4],
 flightInfo[5],
 flightInfo[6],
 flightOrigin,
 flightDestination,
 flightStartDate,
 flightEndDate);
 }
 return(flightString);
 }

 private String getFlightDescription(String airline,
 String flightNum,
 String price,
 String stop1,
 String stop2,
 String time1,
 String time2,
 String flightOrigin,
 String flightDestination,
 String flightStartDate,
 String flightEndDate) {
 String flight =
 "<P>
\n" +
 "<TABLE WIDTH=\"100%\"><TR><TH CLASS=\"COLORED\">\n" +
 "" + airline + " Flight " + flightNum +
 " ($" + price + ")</TABLE>
\n" +
 "Outgoing: Leaves " + flightOrigin +
 " at " + time1 + " AM on " + flightStartDate +
 ", arriving in " + flightDestination +
 " at " + time2 + " PM (1 stop -- " + stop1 + ").\n" +
 "
\n" +
 "Return: Leaves " + flightDestination +
 " at " + time1 + " AM on " + flightEndDate +
 ", arriving in " + flightOrigin +
 " at " + time2 + " PM (1 stop -- " + stop2 + ").\n";
 return(flight);
 }

Listing 15.5 TravelCustomer.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

372 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 private String replaceIfMissing(String value,
 String defaultValue) {
 if ((value != null) && (value.length() > 0)) {
 return(value);
 } else {
 return(defaultValue);
 }
 }

 public static TravelCustomer findCustomer
 (String emailAddress,
 TravelCustomer[] customers) {
 if (emailAddress == null) {
 return(null);
 }
 for(int i=0; i<customers.length; i++) {
 String custEmail = customers[i].getEmailAddress();
 if (emailAddress.equalsIgnoreCase(custEmail)) {
 return(customers[i]);
 }
 }
 return(null);
 }
}

Listing 15.6 TravelData.java

package coreservlets;

/** This class simply sets up some static data to
 * describe some supposed preexisting customers.
 * Use a database call in a real application. See
 * CSAJSP Chapter 18 for many examples of the use
 * of JDBC from servlets.
 */

public class TravelData {
 private static FrequentFlyerInfo[] janeFrequentFlyerData =
 { new FrequentFlyerInfo("Java Airways", "123-4567-J"),
 new FrequentFlyerInfo("Delta", "234-6578-D") };
 private static RentalCarInfo[] janeRentalCarData =
 { new RentalCarInfo("Alamo", "345-AA"),
 new RentalCarInfo("Hertz", "456-QQ-H"),
 new RentalCarInfo("Avis", "V84-N8699") };

Listing 15.5 TravelCustomer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 373

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 private static HotelInfo[] janeHotelData =
 { new HotelInfo("Marriot", "MAR-666B"),
 new HotelInfo("Holiday Inn", "HI-228-555") };
 private static FrequentFlyerInfo[] joeFrequentFlyerData =
 { new FrequentFlyerInfo("Java Airways", "321-9299-J"),
 new FrequentFlyerInfo("United", "442-2212-U"),
 new FrequentFlyerInfo("Southwest", "1A345") };
 private static RentalCarInfo[] joeRentalCarData =
 { new RentalCarInfo("National", "NAT00067822") };
 private static HotelInfo[] joeHotelData =
 { new HotelInfo("Red Roof Inn", "RRI-PREF-236B"),
 new HotelInfo("Ritz Carlton", "AA0012") };
 private static TravelCustomer[] travelData =
 { new TravelCustomer("jane@somehost.com",
 "tarzan52",
 "Jane",
 "Programmer",
 "Visa",
 "1111-2222-3333-6755",
 "(123) 555-1212",
 "6 Cherry Tree Lane\n" +
 "Sometown, CA 22118",
 janeFrequentFlyerData,
 janeRentalCarData,
 janeHotelData),
 new TravelCustomer("joe@somehost.com",
 "qWeRtY",
 "Joe",
 "Hacker",
 "JavaSmartCard",
 "000-1111-2222-3120",
 "(999) 555-1212",
 "55 25th St., Apt 2J\n" +
 "New York, NY 12345",
 joeFrequentFlyerData,
 joeRentalCarData,
 joeHotelData)
 };

 public static TravelCustomer[] getTravelData() {
 return(travelData);
 }
}

Listing 15.6 TravelData.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

374 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 15.7 FrequentFlyerInfo.java

package coreservlets;

/** Simple class describing an airline and associated
 * frequent flyer number, used from the TravelData class
 * (where an array of FrequentFlyerInfo is associated with
 * each customer).
 */

public class FrequentFlyerInfo {
 private String airlineName, frequentFlyerNumber;

 public FrequentFlyerInfo(String airlineName,
 String frequentFlyerNumber) {
 this.airlineName = airlineName;
 this.frequentFlyerNumber = frequentFlyerNumber;
 }

 public String getAirlineName() {
 return(airlineName);
 }

 public String getFrequentFlyerNumber() {
 return(frequentFlyerNumber);
 }
}

Listing 15.8 RentalCarInfo.java

package coreservlets;

/** Simple class describing a car company and associated
 * frequent renter number, used from the TravelData class
 * (where an array of RentalCarInfo is associated with
 * each customer).
 */

public class RentalCarInfo {
 private String rentalCarCompany, rentalCarNumber;

 public RentalCarInfo(String rentalCarCompany,
 String rentalCarNumber) {
 this.rentalCarCompany = rentalCarCompany;
 this.rentalCarNumber = rentalCarNumber;
 }

 public String getRentalCarCompany() {
 return(rentalCarCompany);
 }

 public String getRentalCarNumber() {
 return(rentalCarNumber);
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.3 Including Static or Dynamic Content 375

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

15.3 Including Static or Dynamic
Content

If a servlet uses the forward method of RequestDispatcher, it cannot actu-
ally send any output to the client—it must leave that entirely to the destina-
tion page. If the servlet wants to generate some of the content itself but use a
JSP page or static HTML document for other parts of the result, the servlet
can use the include method of RequestDispatcher instead. The process is
very similar to that for forwarding requests: call the getRequestDispatcher
method of ServletContext with an address relative to the server root, then
call include with the HttpServletRequest and HttpServletResponse.
The two differences when include is used are that you can send content to
the browser before making the call and that control is returned to the servlet
after the include call finishes. Although the included pages (servlets, JSP

Listing 15.9 HotelInfo.java

package coreservlets;

/** Simple class describing a hotel name and associated
 * frequent guest number, used from the TravelData class
 * (where an array of HotelInfo is associated with
 * each customer).
 */

public class HotelInfo {
 private String hotelName, frequentGuestNumber;

 public HotelInfo(String hotelName,
 String frequentGuestNumber) {
 this.hotelName = hotelName;
 this.frequentGuestNumber = frequentGuestNumber;
 }

 public String getHotelName() {
 return(hotelName);
 }

 public String getfrequentGuestNumber() {
 return(frequentGuestNumber);
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

376 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
pages, or even static HTML) can send output to the client, they should not
try to set HTTP response headers. Here is an example:

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("...");

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/path/resource");

dispatcher.include(request, response);

out.println("...");

The include method has many of the same features as the forward
method. If the original method uses POST, so does the forwarded request.
Whatever request data was associated with the original request is also associ-
ated with the auxiliary request, and you can add new parameters (in version
2.2 only) by appending them to the URL supplied to getRequestDis-
patcher. Also supported in version 2.2 is the ability to get a RequestDis-
patcher by name (getNamedDispatcher) or by using a relative URL (use
the getRequestDispatcher method of the HttpServletRequest); see Sec-
tion 15.1 (Forwarding Requests) for details. However, include does one
thing that forward does not: it automatically sets up attributes in the Http-
ServletRequest object that describe the original request path in case the
included servlet or JSP page needs that information. These attributes,
available to the included resource by calling getAttribute on the Http-
ServletRequest, are listed below:

• javax.servlet.include.request_uri
• javax.servlet.include.context_path
• javax.servlet.include.servlet_path
• javax.servlet.include.path_info
• javax.servlet.include.query_string

Note that this type of file inclusion is not the same as the nonstandard
servlet chaining supported as an extension by several early servlet engines.
With servlet chaining, each servlet in a series of requests can see (and mod-
ify) the output of the servlet before it. With the include method of
RequestDispatcher, the included resource cannot see the output generated
by the original servlet. In fact, there is no standard construct in the servlet
specification that reproduces the behavior of servlet chaining.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.4 Example: Showing Raw Servlet and JSP Output 377

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Also note that this type of file inclusion differs from that supported by
the JSP include directive discussed in Section 12.1 (Including Files at
Page Translation Time). There, the actual source code of JSP files was
included in the page by use of the include directive, whereas the include
method of RequestDispatcher just includes the result of the specified
resource. On the other hand, the jsp:include action discussed in Section
12.2 (Including Files at Request Time) has behavior similar to that of the
include method, except that jsp:include is available only from JSP
pages, not from servlets.

15.4 Example: Showing Raw
Servlet and JSP Output

When you are debugging servlets or JSP pages, it is often useful to see the
raw HTML they generate. To do this, you can choose “View Source” from
the browser menu after seeing the result. Alternatively, to set HTTP
request headers and see the HTTP response headers in addition to HTML
source, use the WebClient program shown in Section 2.10 (WebClient:
Talking to Web Servers Interactively). For quick debugging, another option
is available: create a servlet that takes a URL as input and creates an output
page showing the HTML source code. Accomplishing this task relies on the
fact that the HTML TEXTAREA element ignores all HTML markup other
than the </TEXTAREA> tag. So, the original servlet generates the top of a
Web page, up to a <TEXTAREA> tag. Then, it includes the output of what-
ever URL was specified in the query data. Next, it continues with the Web
page, starting with a </TEXTAREA> tag. Of course, the servlet will fail if it
tries to display a resource that contains the </TEXTAREA> tag, but the point
here is the process of including files.

Listing 15.10 shows the servlet that accomplishes this task, and Listing
15.11 shows an HTML form that gathers input and sends it to the servlet.
Figures 15–3 and 15–4 show the results of the HTML form and servlet,
respectively.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

378 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 15.10 ShowPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Example of the include method of RequestDispatcher.
 * Given a URI on the same system as this servlet, the
 * servlet shows you its raw HTML output.
 */

public class ShowPage extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String url = request.getParameter("url");
 out.println(ServletUtilities.headWithTitle(url) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + url + "</H1>\n" +
 "<FORM><CENTER>\n" +
 "<TEXTAREA ROWS=30 COLS=70>");
 if ((url == null) || (url.length() == 0)) {
 out.println("No URL specified.");
 } else {
 // Attaching data works only in version 2.2.
 String data = request.getParameter("data");
 if ((data != null) && (data.length() > 0)) {
 url = url + "?" + data;
 }
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(url);
 dispatcher.include(request, response);
 }
 out.println("</TEXTAREA>\n" +
 "</CENTER></FORM>\n" +
 "</BODY></HTML>");
 }

 /** Handle GET and POST identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.4 Example: Showing Raw Servlet and JSP Output 379

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

Figure 15–3 Front end to ShowPage servlet. See Listing 15.11 for the HTML source.

Figure 15–4 Result of ShowPage servlet when given a URL referring to
Expressions.jsp (see Listing 10.1 in Section 10.2).
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

380 Chapter 15 Integrating Servlets and JSP

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.

15.5 Forwarding Requests From
JSP Pages

The most common request forwarding scenario is that the request first comes
to a servlet and the servlet forwards the request to a JSP page. The reason a
servlet usually handles the original request is that checking request parame-
ters and setting up beans requires a lot of programming, and it is more conve-
nient to do this programming in a servlet than in a JSP document. The reason
that the destination page is usually a JSP document is that JSP simplifies the
process of creating the HTML content.

However, just because this is the usual approach doesn’t mean that it is the
only way of doing things. It is certainly possible for the destination page to be
a servlet. Similarly, it is quite possible for a JSP page to forward requests else-

Listing 15.11 ShowPage.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Viewing JSP and Servlet Output</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Viewing JSP and Servlet Output</H1>
Enter a relative URL of the form /path/name and, optionally,
any attached GET data you want to send. The raw HTML output
of the specified URL (usually a JSP page or servlet) will be
shown. Caveats: the URL specified cannot contain the string
<CODE></TEXTAREA></CODE>, and attached GET data works
only with servlet engines that support version 2.2.

<FORM ACTION="/servlet/coreservlets.ShowPage">
 <CENTER>
 URL:
 <INPUT TYPE="TEXT" NAME="url" SIZE=50 VALUE="/">

 GET Data:
 <INPUT TYPE="TEXT" NAME="data" SIZE=50>

 <Input TYPE="SUBMIT" VALUE="Show Output">
 </CENTER>
</FORM>

</BODY>
</HTML>
P training courses by book’s author: courses.coreservlets.com.

15.5 Forwarding Requests From JSP Pages 381

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

where. For example, a request might go to a JSP page that normally presents
results of a certain type and that forwards the request elsewhere only when it
receives unexpected values.

Sending requests to servlets instead of JSP pages requires no changes
whatsoever in the use of the RequestDispatcher. However, there is special
syntactic support for forwarding requests from JSP pages. In JSP, the
jsp:forward action is simpler and easier to use than wrapping up Request-
Dispatcher code in a scriptlet. This action takes the following form:

<jsp:forward page="Relative URL" />

The page attribute is allowed to contain JSP expressions so that the desti-
nation can be computed at request time. For example, the following sends
about half the visitors to http://host/examples/page1.jsp and the oth-
ers to http://host/examples/page2.jsp.

<% String destination;
if (Math.random() > 0.5) {
destination = "/examples/page1.jsp";

} else {
destination = "/examples/page2.jsp";

}
%>
<jsp:forward page="<%= destination %>" />
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

3

Supporting
Technologies

Chapter 16 Using HTML Forms, 384
Chapter 17 Using Applets As Servlet Front Ends,

432
Chapter 18 JDBC and Database Connection

Pooling, 460

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Using HTML
Forms
Topics in This Chapter

• Sending data from forms

• Text controls

• Push buttons

• Check boxes and radio buttons

• Combo boxes and list boxes

• File upload controls

• Server-side image maps

• Hidden fields

• Grouping controls

• Tab ordering

• A Web server for debugging forms
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 16

his chapter discusses using HTML forms as front ends to servlets or
other server-side programs. These forms provide simple and reliable
user interface controls to collect data from the user and transmit it to

the servlet. The following chapter discusses the use of applets as servlet front
ends. Using applets in this role requires considerably more effort and has some
security limitations. However, it permits a much richer user interface and can
support significantly more efficient and flexible network communication.

To use forms, you’ll need to know where to place regular HTML files in
order to make them accessible to the Web server. This location varies from
server to server, but with the JSWDK and Tomcat, you place an HTML file in
install_dir/webpages/path/file.html and then access it via
http://localhost/path/file.html (replace localhost with the real
hostname if running remotely).

16.1 How HTML Forms Transmit Data

HTML forms let you create a variety of user interface controls to collect
input on a Web page. Each of the controls typically has a name and a value,
where the name is specified in the HTML and the value comes either from
the HTML or by means of user input. The entire form is associated with the

T

385

386 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
URL of a program that will process the data, and when the user submits the
form (usually by pressing a button), the names and values of the controls are
sent to the designated URL as a string of the form

Name1=Value1&Name2=Value2...NameN=ValueN

This string can be sent to the designated program in one of two ways. The
first, which uses the HTTP GET method, appends the string to the end of the
specified URL, after a question mark. The second way data can be sent is by
the HTTP POST method. Here, the POST request line, the HTTP request
headers, and a blank line are first sent to the server, and then the data string
is sent on the following line.

For example, Listing 16.1 (HTML code) and Figure 16–1 (typical result)
show a simple form with two textfields. The HTML elements that make up this
form are discussed in detail in the rest of this chapter, but for now note a couple
of things. First, observe that one text field has a name of firstName and the
other has a name of lastName. Second, note that the GUI controls are consid-
ered text-level (inline) elements, so you need to use explicit HTML formatting
to make sure that the controls appear next to the text describing them. Finally,
notice that the FORM element designates http://localhost:8088/Some-
Program as the URL to which the data will be sent.

Before submitting the form, I start a server program called EchoServer
on port 8088 of my local machine. EchoServer, shown in Section 16.12, is a
mini “Web server” used for debugging. No matter what URL is specified and
what data is sent to it, it merely returns a Web page showing all the HTTP
information sent by the browser. As shown in Figure 16–2, when the form is
submitted with Joe in the first textfield and Hacker in the second, the
browser simply requests the URL http://localhost:8088/Some-

Program?firstName=Joe&lastName=Hacker. Listing 16.2 (HTML code)
and Figure 16–3 (typical result) show a variation that uses POST instead of
GET. As shown in Figure 16–4, submitting the form with textfield values of
Joe and Hacker results in the line firstName=Joe&lastName=Hacker
being sent to the browser on a separate line after the HTTP request headers
and a blank line.

That’s the general idea behind HTML forms: GUI controls gather data
from the user, each control has a name and a value, and a string containing all
the name/value pairs is sent to the server when the form is submitted.
Extracting the names and values on the server is straightforward in servlets:
that was covered in Chapter 3 (Handling the Client Request: Form Data).
The remainder of this chapter covers options in setting up forms and the var-
ious GUI controls you can put in them.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.1 How HTML Forms Transmit Data 387

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 16.1 GetForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>A Sample Form Using GET</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H2 ALIGN="CENTER">A Sample Form Using GET</H2>

<FORM ACTION="http://localhost:8088/SomeProgram">
 <CENTER>
 First name:
 <INPUT TYPE="TEXT" NAME="firstName" VALUE="Joe">

 Last name:
 <INPUT TYPE="TEXT" NAME="lastName" VALUE="Hacker"><P>
 <INPUT TYPE="SUBMIT"> <!-- Press this button to submit form -->
 </CENTER>
</FORM>

</BODY>
</HTML>

Figure 16–1 Initial result of GetForm.html.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

388 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 16.2 PostForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>A Sample Form Using POST</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H2 ALIGN="CENTER">A Sample Form Using POST</H2>

<FORM ACTION="http://localhost:8088/SomeProgram"
 METHOD="POST">
 <CENTER>
 First name:
 <INPUT TYPE="TEXT" NAME="firstName" VALUE="Joe">

 Last name:
 <INPUT TYPE="TEXT" NAME="lastName" VALUE="Hacker"><P>
 <INPUT TYPE="SUBMIT">
 </CENTER>
</FORM>

</BODY>
</HTML>

Figure 16–2 HTTP request sent by Netscape 4.7 when submitting GetForm.html.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.1 How HTML Forms Transmit Data 389

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 16–3 Initial result of PostForm.html.

Figure 16–4 HTTP request sent by Netscape 4.7 when submitting PostForm.html.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

390 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
16.2 The FORM Element

HTML forms allow you to create a set of data input elements associated with
a particular URL. Each of these elements is typically given a name and has a
value based on the original HTML or user input. When the form is submit-
ted, the names and values of all active elements are collected into a string
with = between each name and value and with & between each name/value
pair. This string is then transmitted to the URL designated by the FORM ele-
ment. The string is either appended to the URL after a question mark or sent
on a separate line after the HTTP request headers and a blank line, depend-
ing on whether GET or POST is used as the submission method. This section
covers the FORM element itself, used primarily to designate the URL and to
choose the submission method. The following sections cover the various user
interface controls that can be used within forms.

HTML Element: <FORM ACTION="URL" ...> ... </FORM>

Attributes: ACTION (required), METHOD, ENCTYPE, TARGET, ONSUBMIT,
ONRESET, ACCEPT, ACCEPT-CHARSET

The FORM element creates an area for data input elements and designates the
URL to which any collected data will be transmitted. For example:

<FORM ACTION="http://some.isp.com/servlet/SomeServlet">
FORM input elements and regular HTML

</FORM>

The rest of this section explains the attributes that apply to the FORM ele-
ment: ACTION, METHOD, ENCTYPE, TARGET, ONSUBMIT, ONRESET, ACCEPT, and
ACCEPT-CHARSET. Note that I am not discussing attributes like STYLE, CLASS,
and LANG that apply to general HTML elements, but only those that are spe-
cific to the FORM element.

ACTION
The ACTION attribute specifies the URL of the servlet or CGI program
that will process the FORM data (e.g., http://cgi.whitehouse.gov/
bin/schedule-fund-raiser) or an email address where the FORM
data will be sent (e.g., mailto:audit@irs.gov). Some ISPs do not
allow ordinary users to create servlets or CGI programs, or they charge
extra for this privilege. In such a case, sending the data by email is a
convenient option when you create pages that need to collect data but
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.2 The FORM Element 391

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

not return results (e.g., for accepting orders for products). You must use
the POST method (see METHOD in the following subsection) when using a
mailto URL.

METHOD
The METHOD attribute specifies how the data will be transmitted to the
HTTP server. When GET is used, the data is appended to the end of
the designated URL after a question mark. For an example, see Sec-
tion 16.1 (How HTML Forms Transmit Data). GET is the default and is
also the method that is used when a browser requests a normal URL.
When POST is used, the data is sent on a separate line.

The advantages of using the GET method are twofold: the method is
simple; and with servlets that use GET, users can access those servlets
for testing and debugging without creating a form, simply by entering
a URL with the proper data appended. On the other hand, due to
URL size restrictions on some browsers, GET requests have limits on
the amount of data that can be appended, whereas POST requests do
not. Another disadvantage of GET is that most browsers show the URL,
including the attached data string, in an address field at the top of the
browser. This display makes GET inappropriate for sending sensitive
data if your computer is in a relatively public place.

ENCTYPE
This attribute specifies the way in which the data will be encoded
before being transmitted. The default is applica-
tion/x-www-form-urlencoded, which means that the client converts
each space into a plus sign (+) and every other nonalphanumeric char-
acter into a percent sign (%) followed by the two hexadecimal digits
representing that character (e.g., in ASCII or ISO Latin-1). Those
transformations are in addition to placing an equal sign (=) between
entry names and values and an ampersand (&) between entries.

For example, Figure 16–5 shows a version of the GetForm.html page
(Listing 16.1) where “Marty (Java Hacker?)” is entered for the first
name. As can be seen in Figure 16–6, this entry gets sent as
“Marty+%28Java+Hacker%3F%29”. That’s because spaces become plus
signs, 28 is the ASCII value (in hex) for a left parenthesis, 3F is the
ASCII value of a question mark, and 29 is a right parenthesis.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

392 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 16–5 Customized result of GetForm.html.

Figure 16–6 HTTP request sent by Internet Explorer 5.0 when submitting
GetForm.html with the data shown in Figure 16–5.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.2 The FORM Element 393

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Most recent browsers support an additional ENCTYPE of multipart/
form-data. This encoding transmits each of the fields as separate parts
of a MIME-compatible document and automatically uses POST to sub-
mit them. This encoding sometimes makes it easier for the server-side
program to handle complex data and is required when using file upload
controls to send entire documents (see Section 16.7). For example, List-
ing 16.3 shows a form that differs from GetForm.html (Listing 16.1)
only in that
<FORM ACTION="http://localhost:8088/SomeProgram">

has been changed to
<FORM ACTION="http://localhost:8088/SomeProgram"

 ENCTYPE="multipart/form-data">

Figures 16–7 and 16–8 show the results.

Listing 16.3 MultipartForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Using ENCTYPE="multipart/form-data"</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H2 ALIGN="CENTER">Using ENCTYPE="multipart/form-data"</H2>

<FORM ACTION="http://localhost:8088/SomeProgram"
 ENCTYPE="multipart/form-data">
 <CENTER>
 First name:
 <INPUT TYPE="TEXT" NAME="firstName" VALUE="Joe">

 Last name:
 <INPUT TYPE="TEXT" NAME="lastName" VALUE="Hacker"><P>
 <INPUT TYPE="SUBMIT">
 </CENTER>
</FORM>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

394 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 16–7 Initial result of MultipartForm.html.

Figure 16–8 HTTP request sent by Netscape 4.7 when submitting
MultipartForm.html.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.3 Text Controls 395

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

TARGET
The TARGET attribute is used by frame-capable browsers to determine
which frame cell should be used to display the results of the servlet or
other program handling the form submission. The default is to display
the results in whatever frame contains the form being submitted.

ONSUBMIT and ONRESET
These attributes are used by JavaScript to attach code that should be
evaluated when the form is submitted or reset. For ONSUBMIT, if the
expression evaluates to false, the form is not submitted. This case lets
you invoke JavaScript code on the client that checks the format of the
form field values before they are submitted, prompting the user for
missing or illegal entries.

ACCEPT and ACCEPT-CHARSET
These attributes are new in HTML 4.0 and specify the MIME types
(ACCEPT) and character encodings (ACCEPT-CHARSET) that must be
accepted by the servlet or other program processing the form data. The
MIME types listed in ACCEPT could also be used by the client to limit
which file types are displayed to the user for file upload elements.

16.3 Text Controls

HTML supports three types of text-input elements: textfields, password
fields, and text areas. Each is given a name, and the value is taken from the
content of the control. The name and value are sent to the server when the
form is submitted, which is typically done by means of a submit button (see
Section 16.4).

Textfields

HTML Element: <INPUT TYPE="TEXT" NAME="..." ...>
(No End Tag)

Attributes: NAME (required), VALUE, SIZE, MAXLENGTH,
ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN,
ONKEYPRESS, ONKEYUP

This element creates a single-line input field where the user can enter text, as
illustrated earlier in Listings 16.1, 16.2, and 16.3. For multiline fields, see
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

396 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
TEXTAREA in the following subsection. TEXT is the default TYPE in INPUT
forms, although it is recommended that TEXT be supplied explicitly. You
should remember that the normal browser word wrapping applies inside
FORM elements, so be careful to make sure the browser will not separate the
descriptive text from the associated textfield.

Core Approach

Use explicit HTML constructs to group textfields with their descriptive text.

Some browsers submit the form when the user presses Enter when the
cursor is in a textfield, but you should avoid depending on this behavior
because it is not standard. For instance, Netscape submits the form when the
user types a carriage return only if the current form has a single textfield,
regardless of the number of forms on the page. Internet Explorer submits the
form on Enter only when there is a single form on the page, regardless of the
number of textfields in the form. Mosaic submits the form on Enter only
when the cursor is in the last textfield on the entire page.

Core Warning

Don’t rely on the browser submitting the form when the user presses Enter
when in a textfield. Always include a button or image map that submits the
form explicitly.

The following subsections describe the attributes that apply specifically to
textfields. Attributes that apply to general HTML elements (e.g., STYLE,
CLASS, ID) are not discussed. The TABINDEX attribute, which applies to all
form elements, is discussed in Section 16.11 (Controlling Tab Order).

NAME
The NAME attribute identifies the textfield when the form is submitted.
In standard HTML the attribute is required. Because data is always sent
to the server in the form of name/value pairs, no data is sent from form
controls that have no NAME.

VALUE
A VALUE attribute, if supplied, specifies the initial contents of the text-
field. When the form is submitted, the current contents are sent; these
can reflect user input. If the textfield is empty when the form is submit-
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.3 Text Controls 397

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ted, the form data simply consists of the name and an equal sign (e.g.,
other-data&textfieldname=&other-data).

SIZE
This attribute specifies the width of the textfield, based on the average
character width of the font being used. If text beyond this size is
entered, the textfield scrolls to accommodate it. This could happen if
the user enters more characters than the SIZE or enters SIZE number
of wide characters (e.g., capital W) if a proportional-width font is being
used. Netscape automatically uses a proportional font in textfields.
Internet Explorer, unfortunately, does not, and you cannot change the
font by embedding the INPUT element in a FONT or CODE element.

MAXLENGTH
MAXLENGTH gives the maximum number of allowable characters. This
number is in contrast to the number of visible characters, which is spec-
ified via SIZE.

ONCHANGE, ONSELECT, ONFOCUS, ONBLUR,
ONDBLDOWN, ONKEYPRESS, and ONKEYUP
These attributes are used only by browsers that support JavaScript.
They specify the action to take when the mouse leaves the textfield after
a change has occurred, when the user selects text in the textfield, when
the textfield gets the input focus, when it loses the input focus, and
when individual keys are pressed.

Password Fields

HTML Element: <INPUT TYPE="PASSWORD" NAME="..." ...>
(No End Tag)

Attributes: NAME (required), VALUE, SIZE, MAXLENGTH,
ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN,
ONKEYPRESS, ONKEYUP

Password fields are created and used just like textfields, except that when the
user enters text, the input is not echoed but instead some obscuring charac-
ter, usually an asterisk, is displayed (see Figure 16–9). Obscured input is use-
ful for collecting data such as credit card numbers or passwords that the user
would not want shown to people who may be near his computer. The regular,
unobscured text is transmitted as the value of the field when the form is sub-
mitted. Since GET data is appended to the URL after a question mark, you
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

398 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
will want to use the POST method when using a password field so that a
bystander cannot read the unobscured password from the URL display at the
top of the browser.

Core Approach

To protect the user’s privacy, always use POST when creating forms with
password fields.

NAME, VALUE, SIZE, MAXLENGTH, ONCHANGE,
ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN, ONKEY-
PRESS, and ONKEYUP
Attributes for password fields are used in exactly the same manner as
with textfields.

Text Areas

HTML Element: <TEXTAREA NAME="..."
ROWS=xxx COLS=yyy> ...

</TEXTAREA>

Attributes: NAME (required), ROWS (required), COLS (required), WRAP
(nonstandard), ONCHANGE, ONSELECT, ONFOCUS, ONBLUR,
ONKEYDOWN, ONKEYPRESS, ONKEYUP

The TEXTAREA element creates a multiline text area; see Figure 16–10. There
is no VALUE attribute; instead, text between the start and end tags is used as
the initial contents of the text area. The initial text between <TEXTAREA ...>
and </TEXTAREA> is treated similarly to text inside the now-obsolete XMP ele-
ment. That is, white space in this initial text is maintained and HTML
markup between the start and end tags is taken literally, except for character
entities such as <, ©, and so forth, which are interpreted normally.
Unless a custom ENCTYPE is used in the form (see Section 16.2, “The FORM

Figure 16–9 A password field created by means of
<INPUT TYPE="PASSWORD" ...>.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.3 Text Controls 399

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Element”), characters, including those generated from character entities, are
URL-encoded before being transmitted. That is, spaces become plus signs
and other nonalphanumeric characters become %XX, where XX is the numeric
value of the character in hex.

NAME

This attribute specifies the name that will be sent to the server.

ROWS

ROWS specifies the number of visible lines of text. If more lines of text
are entered, a vertical scrollbar will be added to the text area.

COLS

COLS specifies the visible width of the text area, based on the average
width of characters in the font being used. If the text on a single line
contains more characters than the specified width allows, the result is
browser dependent. In Netscape, horizontal scrollbars are added (but
see the WRAP attribute, described next, to change this behavior). In
Internet Explorer, the word wraps around to the next line.

WRAP

The Netscape-specific WRAP attribute specifies what to do with lines
that are longer than the size specified by COLS. A value of OFF disables
word wrap and is the default. The user can still enter explicit line breaks
in such a case. A value of HARD causes words to wrap in the text area and
the associated line breaks to be transmitted when the form is submitted.
Finally, a value of SOFT causes the words to wrap in the text area but no
extra line breaks to be transmitted when the form is submitted.

ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEY-
DOWN, ONKEYPRESS, and ONKEYUP

These attributes apply only to browsers that support JavaScript; they
specify code to be executed when certain conditions arise. ONCHANGE
handles the situation when the input focus leaves the text area after it
has changed, ONSELECT describes what to do when text in the text area
is selected by the user, ONFOCUS and ONBLUR specify what to do when
the text area acquires or loses the input focus, and the remaining
attributes determine what to do when individual keys are typed.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

400 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The following example creates a text area with 5 visible rows that can hold
about 30 characters per row. The result is shown in Figure 16–10.

<CENTER>
<P>
Enter some HTML:

<TEXTAREA NAME="HTML" ROWS=5 COLS=30>
Delete this text and replace
with some HTML to validate.
</TEXTAREA>
<CENTER>

16.4 Push Buttons

Push buttons are used for two main purposes in HTML forms: to submit
forms and to reset the controls to the values specified in the original HTML.
Browsers that use JavaScript can also use buttons for a third purpose: to trig-
ger arbitrary JavaScript code.

Traditionally, buttons have been created by the INPUT element used with a
TYPE attribute of SUBMIT, RESET, or BUTTON. In HTML 4.0, the BUTTON ele-
ment was introduced but is currently supported only by Internet Explorer.
This new element lets you create buttons with multiline labels, images, font
changes, and the like, so is preferred if you are sure your users will all be
using browsers that support it (e.g., in a corporate intranet). Since the ele-
ment is not supported by Netscape, at least as of Netscape version 4.7, for
now you should reserve BUTTON for intranets that use Internet Explorer
exclusively.

Figure 16–10 A text area.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.4 Push Buttons 401

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Core Warning

Netscape does not support the BUTTON element.

Submit Buttons

HTML Element: <INPUT TYPE="SUBMIT" ...> (No End Tag)
Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

When a submit button is clicked, the form is sent to the servlet or other
server-side program designated by the ACTION parameter of the FORM.
Although the action can be triggered other ways, such as the user clicking on
an image map, most forms have at least one submit button. Submit buttons,
like other form controls, adopt the look and feel of the client operating sys-
tem, so will look slightly different on different platforms. Figure 16–11 shows
a submit button on Windows 98, created by

<INPUT TYPE="SUBMIT">

NAME and VALUE
Most input elements have a name and an associated value. When the
form is submitted, the names and values of active elements are concate-
nated to form the data string. If a submit button is used simply to ini-
tiate the submission of the form, its name can be omitted and then it
does not contribute to the data string that is sent. If a name is supplied,
then only the name and value of the button that was actually clicked are
sent. The label is used as the value that is transmitted. Supplying an
explicit VALUE will change the default label. For instance, the following
code snippet creates a textfield and two submit buttons, shown in Fig-
ure 16–12. If, for example, the first button is selected, the data string
sent to the server would be
Item=256MB+SIMM&Add=Add+Item+to+Cart.

<CENTER>

Item:

<INPUT TYPE="TEXT" NAME="Item" VALUE="256MB SIMM">

Figure 16–11 A submit button with the default label.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

402 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<INPUT TYPE="SUBMIT" NAME="Add"

 VALUE="Add Item to Cart">

<INPUT TYPE="SUBMIT" NAME="Delete"

 VALUE="Delete Item from Cart">

</CENTER>

ONCLICK, ONDBLCLICK, ONFOCUS, and ONBLUR
These nonstandard attributes are used by JavaScript-capable browsers
to associate JavaScript code with the button. The ONCLICK and ONDBL-
CLICK code is executed when the button is pressed, the ONFOCUS code
when the button gets the input focus, and the ONBLUR code when the
button loses the focus. If the code attached to a button returns false,
the submission of the form is suppressed. HTML attributes are not case
sensitive, and these attributes are traditionally called onClick, onD-
blClick, onFocus, and onBlur by JavaScript programmers.

HTML Element: <BUTTON TYPE="SUBMIT" ...>
HTML Markup
</BUTTON>

Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

This alternative way of creating submit buttons, supported only by Internet
Explorer, lets you use arbitrary HTML markup for the content of the button.
This element lets you to have multiline button labels, button labels with font
changes, image buttons, and so forth. Listing 16.4 gives a few examples, with
results shown in Figure 16–13.

NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, and
ONBLUR
These attributes are used in the same way as with
<INPUT TYPE="SUBMIT" ...>.

Figure 16–12 Submit buttons with user-defined labels.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.4 Push Buttons 403

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 16.4 ButtonElement.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>The BUTTON Element</TITLE>
</HEAD>
<BODY BGCOLOR="WHITE">
<H2 ALIGN="CENTER">The BUTTON Element</H2>

<FORM ACTION="http://localhost:8088/SomeProgram">
<CENTER>
<BUTTON TYPE="SUBMIT">Single-line Label</BUTTON>

<BUTTON TYPE="SUBMIT">Multi-line
label</BUTTON>
<P>
<BUTTON TYPE="SUBMIT">
Label with <I>font</I> changes.
</BUTTON>
<P>
<BUTTON TYPE="SUBMIT">
<IMG SRC="images/Java-Logo.gif" WIDTH=110 HEIGHT=101
 ALIGN="LEFT" ALT="Java Cup Logo">
Label
with image
</BUTTON>
</CENTER>
</FORM>

</BODY>
</HTML>

Figure 16–13 Submit buttons created with the BUTTON element.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

404 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Reset Buttons

HTML Element: <INPUT TYPE="RESET" ...> (No End Tag)
Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

Reset buttons serve to reset the values of all items in the FORM to those speci-
fied in the original VALUE parameters. Their value is never transmitted as part
of the form’s contents.

VALUE
The VALUE attribute specifies the button label; “Reset” is the default.

NAME
Because reset buttons do not contribute to the data string transmitted
when the form is submitted, they are not named in standard HTML.
However, JavaScript permits a NAME attribute to be used to simplify ref-
erence to the element.

ONCLICK, ONDBLCLICK, ONFOCUS, and ONBLUR
These nonstandard attributes are used by JavaScript-capable browsers
to associate JavaScript code with the button. The ONCLICK and ONDBL-
CLICK code is executed when the button is pressed, the ONFOCUS code
when the button gets the input focus, and the ONBLUR code when it
loses the focus. HTML attributes are not case sensitive, and these
attributes are traditionally called onClick, onDblClick, onFocus, and
onBlur by JavaScript programmers.

HTML Element: <BUTTON TYPE="RESET" ...>
HTML Markup
</BUTTON>

Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

This alternative way of creating reset buttons, supported only by Internet
Explorer, lets you use arbitrary HTML markup for the content of the button.
All attributes are used identically to those in <INPUT TYPE="RESET" ...>.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.5 Check Boxes and Radio Buttons 405

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

JavaScript Buttons

HTML Element: <INPUT TYPE="BUTTON" ...> (No End Tag)
Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

The BUTTON element is recognized only by browsers that support JavaScript.
It creates a button with the same visual appearance as a SUBMIT or RESET
button and allows the author to attach JavaScript code to the ONCLICK,
ONDBLCLICK, ONFOCUS, or ONBLUR attributes. The name/value pair associated
with a JavaScript button is not transmitted as part of the data when the form
is submitted. Arbitrary code can be associated with the button, but one of the
most common uses is to verify that all input elements are in the proper for-
mat before the form is submitted to the server. For instance, the following
would create a button where the user-defined validateForm function would
be called whenever the button is activated.

<INPUT TYPE="BUTTON" VALUE="Check Values"

onClick="validateForm()">

HTML Element: <BUTTON TYPE="BUTTON" ...>
HTML Markup
</BUTTON>

Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

This alternative way of creating JavaScript buttons, supported only by
Internet Explorer, lets you use arbitrary HTML markup for the content of
the button. All attributes are used identically to those in <INPUT

TYPE="BUTTON" ...>.

16.5 Check Boxes and Radio
Buttons

Check boxes and radio buttons are useful controls for allowing the user to
select among a set of predefined choices. While each individual check box
can be selected or deselected individually, radio buttons can be grouped so
that only a single member of the group can be selected at a time.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

406 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Check boxes

HTML Element: <INPUT TYPE="CHECKBOX" NAME="..." ...>
(No End Tag)

Attributes: NAME (required), VALUE, CHECKED, ONCLICK, ONFOCUS, ONBLUR

This input element creates a check box whose name/value pair is transmitted
only if the check box is checked when the form is submitted. For instance,
the following code results in the check box shown in Figure 16–14.

<P>
<INPUT TYPE="CHECKBOX" NAME="noEmail" CHECKED>
Check here if you do <I>not</I> want to
get our email newsletter

Note that the descriptive text associated with the check box is normal
HTML, and care should be taken to guarantee that it appears next to the
check box. Thus, the <P> in the preceding example ensures that the check
box isn’t part of the previous paragraph.

Core Approach

Paragraphs inside a FORM are filled and wrapped just like regular
paragraphs. So, be sure to insert explicit HTML markup to keep input
elements with the text that describes them.

NAME
This attribute supplies the name that is sent to the server. It is required
for standard HTML check boxes but optional when used with JavaScript.

VALUE
The VALUE attribute is optional and defaults to on. Recall that the name
and value are only sent to the server if the check box is checked when
the form is submitted. For instance, in the preceding example,
noEmail=on would be added to the data string since the box is checked,
but nothing would be added if the box was unchecked. As a result, serv-
lets or CGI programs often check only for the existence of the check
box name, ignoring its value.

Figure 16–14An HTML check box.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.5 Check Boxes and Radio Buttons 407

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

CHECKED
If the CHECKED attribute is supplied, then the check box is initially
checked when the associated Web page is loaded. Otherwise, it is ini-
tially unchecked.

ONCLICK, ONFOCUS, and ONBLUR
These attributes supply JavaScript code to be executed when the button
is clicked, receives the input focus, and loses the focus, respectively.

Radio Buttons

HTML Element: <INPUT TYPE="RADIO" NAME="..."
VALUE="..." ...> (No End Tag)

Attributes: NAME (required), VALUE (required), CHECKED, ONCLICK,
ONFOCUS, ONBLUR

Radio buttons differ from check boxes in that only a single radio button in a
given group can be selected at any one time. You indicate a group of radio
buttons by providing all of them with the same NAME. Only one button in a
group can be depressed at a time; selecting a new button when one is already
selected results in the previous choice becoming deselected. The value of the
one selected is sent when the form is submitted. Although radio buttons
technically need not appear near to each other, this proximity is almost always
recommended.

An example of a radio button group follows. Because input elements are
wrapped as part of normal paragraphs, a DL list is used to make sure that the but-
tons appear under each other in the resultant page and are indented from the
heading above them. Figure 16–15 shows the result. In this case, credit-
Card=java would get sent as part of the form data when the form is submitted.

<DL>
 <DT>Credit Card:
 <DD><INPUT TYPE="RADIO" NAME="creditCard" VALUE="visa">
 Visa
 <DD><INPUT TYPE="RADIO" NAME="creditCard" VALUE="mastercard">
 Master Card
 <DD><INPUT TYPE="RADIO" NAME="creditCard"
 VALUE="java" CHECKED>
 Java Smart Card
 <DD><INPUT TYPE="RADIO" NAME="creditCard" VALUE="amex">
 American Express
 <DD><INPUT TYPE="RADIO" NAME="creditCard" VALUE="discover">
 Discover
</DL>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

408 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
NAME
Unlike the NAME attribute of most input elements, this NAME is shared by
multiple elements. All radio buttons associated with the same name are
grouped logically so that no more than one can be selected at any given
time. Note that attribute values are case sensitive, so the following
would result in two radio buttons that are not logically connected.

<INPUT TYPE="RADIO" NAME="Foo" VALUE="Value1">

<INPUT TYPE="RADIO" NAME="FOO" VALUE="Value2">

Core Warning

Be sure the NAME of each radio button in a logical group matches exactly.

VALUE
The VALUE attribute supplies the value that gets transmitted with the
NAME when the form is submitted. It doesn’t affect the appearance of
the radio button. Instead, normal text and HTML markup are placed
around the radio button, just as with check boxes.

CHECKED
If the CHECKED attribute is supplied, then the radio button is initially
checked when the associated Web page is loaded. Otherwise, it is ini-
tially unchecked.

ONCLICK, ONFOCUS, and ONBLUR
These attributes supply JavaScript code to be executed when the but-
ton is clicked, receives the input focus, and loses the focus, respectively.

Figure 16–15 Radio buttons in HTML.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.6 Combo Boxes and List Boxes 409

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

16.6 Combo Boxes and List Boxes

A SELECT element presents a set of options to the user. If only a single entry
can be selected and no visible size has been specified, the options are pre-
sented in a combo box (drop-down menu); list boxes are used when multiple
selections are permitted or a specific visible size has been specified. The
choices themselves are specified by OPTION entries embedded in the SELECT
element. The typical format is as follows:

<SELECT NAME="Name" ...>

<OPTION VALUE="Value1">Choice 1 Text

<OPTION VALUE="Value2">Choice 2 Text

...

<OPTION VALUE="ValueN">Choice N Text

</SELECT>

The HTML 4.0 specification suggests the use of OPTGROUP (with a single
attribute of LABEL) to enclose OPTION elements in order to create cascading
menus, but neither Netscape nor Internet Explorer supports this element.

HTML Element: <SELECT NAME="..." ...> ... </SELECT>

Attributes: NAME (required), SIZE, MULTIPLE, ONCLICK, ONFOCUS, ONBLUR,
ONCHANGE

SELECT creates a combo box or list box for selecting among choices. You
specify each choice with an OPTION element enclosed between <SELECT
...> and </SELECT>.

NAME
NAME identifies the form to the servlet or CGI program.

SIZE
SIZE gives the number of visible rows. If SIZE is used, the SELECT
menu is usually represented as a list box instead of a combo box. A
combo box is the normal representation when neither SIZE nor MULTI-
PLE is supplied.

MULTIPLE
The MULTIPLE attribute specifies that multiple entries can be selected
simultaneously. If MULTIPLE is omitted, only a single selection is per-
mitted.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

410 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ONCLICK, ONFOCUS, ONBLUR, and ONCHANGE
These nonstandard attributes are supported by browsers that under-
stand JavaScript. They indicate code to be executed when the entry is
clicked on, gains the input focus, loses the input focus, and loses the
focus after having been changed, respectively.

HTML Element: <OPTION ...> (End Tag Optional)
Attributes: SELECTED, VALUE

Only valid inside a SELECT element, this element specifies the menu choices.

VALUE
VALUE gives the value to be transmitted with the NAME of the SELECT
menu if the current option is selected. This is not the text that is dis-
played to the user; that is specified by separate text listed after the
OPTION tag.

SELECTED
If present, SELECTED specifies that the particular menu item shown is
selected when the page is first loaded.

The following example creates a menu of programming language choices.
Because only a single selection is allowed and no visible SIZE is specified, it is
displayed as a combo box. Figures 16–16 and 16–17 show the initial appear-
ance and the appearance after the user activates the menu by clicking on it. If
the entry Java is active when the form is submitted, then language=java is
sent to the server-side program. Notice that it is the VALUE attribute, not the
descriptive text, that is transmitted.

Favorite language:

<SELECT NAME="language">

 <OPTION VALUE="c">C

 <OPTION VALUE="c++">C++

 <OPTION VALUE="java" SELECTED>Java

 <OPTION VALUE="lisp">Lisp

 <OPTION VALUE="perl">Perl

 <OPTION VALUE="smalltalk">Smalltalk

</SELECT>

Figure 16–16 A SELECT element displayed as a combo box (drop-down menu).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.6 Combo Boxes and List Boxes 411

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The second example shows a SELECT element rendered as a list box. If
more than one entry is active when the form is submitted, then more than
one value is sent, listed as separate entries (repeating the NAME). For instance,
in the example shown in Figure 16–18, language=java&language=perl
gets added to the data being sent to the server. Multiple entries that share the
same name is the reason servlet authors need be familiar with the getParam-
eterValues method of HttpServletRequest in addition to the more com-
mon getParameter method. See Chapter 3 (Handling the Client Request:
Form Data) for details.

Languages you know:

<SELECT NAME="language" MULTIPLE>

 <OPTION VALUE="c">C

 <OPTION VALUE="c++">C++

 <OPTION VALUE="java" SELECTED>Java

 <OPTION VALUE="lisp">Lisp

 <OPTION VALUE="perl" SELECTED>Perl

 <OPTION VALUE="smalltalk">Smalltalk

</SELECT>

Figure 16–17 Choosing options from a SELECT menu.

Figure 16–18 A SELECT element that specifies
MULTIPLE or SIZE results in a list box.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

412 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
16.7 File Upload Controls

HTML Element: <INPUT TYPE="FILE" ...> (No End Tag)

Attributes: NAME (required), VALUE (ignored), SIZE, MAXLENGTH, ACCEPT,
ONCHANGE, ONSELECT, ONFOCUS, ONBLUR (nonstandard)

This element results in a filename textfield next to a Browse button. Users
can enter a path directly in the textfield or click on the button to bring up a
file selection dialog that lets them interactively choose the path to a file.
When the form is submitted, the contents of the file are transmitted as long
as an ENCTYPE of multipart/form-data was specified in the initial FORM
declaration. This element provides a convenient way to make user-support
pages, where the user sends a description of the problem along with any asso-
ciated data or configuration files.

Core Tip

Always specify ENCTYPE="multipart/form-data" in forms with file
upload controls.

NAME

The NAME attribute identifies the textfield when the form is submitted.

VALUE

For security reasons, this attribute is ignored. Only the end user can
specify a filename.

SIZE and MAXLENGTH

The SIZE and MAXLENGTH attributes are used the same way as in text-
fields, specifying the number of visible and maximum allowable charac-
ters, respectively.

ACCEPT

The ACCEPT attribute is intended to be a comma-separated list of
MIME types used to restrict the available filenames. However, very few
browsers support this attribute.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.7 File Upload Controls 413

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ONCHANGE, ONSELECT, ONFOCUS, and ONBLUR
These attributes are used by browsers that support JavaScript to specify
the action to take when the mouse leaves the textfield after a change has
occurred, when the user selects text in the textfield, when the textfield
gets the input focus, and when it loses the input focus, respectively.

For example, the following code creates a file upload control. Figure
16–19 shows the initial result, and Figure 16–20 shows a typical pop-up win-
dow that results when the Browse button is activated.

<FORM ACTION="http://localhost:8088/SomeProgram"

 ENCTYPE="multipart/form-data">

Enter data file below:

<INPUT TYPE="FILE" NAME="fileName">

</FORM>

Figure 16–19 Initial look of a file upload control.

Figure 16–20 A file chooser resulting from the user clicking on Browse in a file upload
control.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

414 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
16.8 Server-Side Image Maps

In HTML, an element called MAP lets you associate URLs with various
regions of an image; then, when the image is clicked in one of the designated
regions, the browser loads the appropriate URL. This form of mapping is
known as a client-side image map, since the determination of which URL to
contact is made on the client and no server-side program is involved. HTML
also supports server-side image maps that can be used within HTML forms.
With such maps, an image is drawn, and when the user clicks on it, the coor-
dinates of the click are sent to a server-side program.

Client-side image maps are simpler and more efficient than server-side
ones and should be used when all you want to do is associate a fixed set of
URLs with some predefined image regions. However, server-side image
maps are appropriate if the URL needs to be computed (e.g,. for weather
maps), the regions change frequently, or other form data needs to be
included with the request. This section discusses two approaches to
server-side image maps.

IMAGE—Standard Server-Side Image Maps

The usual way to create server-side image maps is by means of an <INPUT
TYPE="IMAGE" ...> element inside a form.

HTML Element: <INPUT TYPE="IMAGE" ...> (No End Tag)
Attributes: NAME (required), SRC, ALIGN

This element displays an image that, when clicked, sends the form to the
servlet or other server-side program specified by the enclosing form’s
ACTION. The name itself is not sent; instead, name.x=xpos and
name.y=ypos are transmitted, where xpos and ypos are the coordinates
of the mouse click relative to the upper-left corner of the image.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.8 Server-Side Image Maps 415

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

NAME
The NAME attribute identifies the textfield when the form is submitted.

SRC
SRC designates the URL of the associated image.

ALIGN
The ALIGN attribute has the same options (TOP, MIDDLE, BOTTOM, LEFT,
RIGHT) and default (BOTTOM) as the ALIGN attribute of the IMG element
and is used in the same way.

Listing 16.5 shows a simple example, where the form’s ACTION specifies
the EchoServer developed in Section 16.12. Figures 16–21 and 16–22 show
the results before and after the image is clicked.

Listing 16.5 ImageMap.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>The IMAGE Input Control</TITLE>
</HEAD>

<BODY>
<H1 ALIGN="CENTER">The IMAGE Input Control</H1>
Which island is Java? Click and see if you are correct.

<FORM ACTION="http://localhost:8088/GeographyTester">
 <INPUT TYPE="IMAGE" NAME="map" SRC="images/indonesia.gif">
</FORM>

Of course, image maps can be implemented in
Java as well. :-)

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

416 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 16–21An IMAGE input control with NAME="map".

Figure 16–22 Clicking on the image at (305, 280) submits the form and adds
map.x=305&map.y=280 to the form data.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.8 Server-Side Image Maps 417

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ISMAP—Alternative Server-Side Image Maps

ISMAP is an optional attribute of the IMG element and can be used in a simi-
lar manner to the <INPUT TYPE="IMAGE" ...> FORM entry. ISMAP is not
actually a FORM element at all, but can still be used for simple connections
to servlets or CGI programs. If an image with ISMAP is inside a hypertext
link, then clicking on the image results in the coordinates of the click being
sent to the specified URL. Coordinates are separated by commas and are
specified in pixels relative to the top-left corner of the image.

For instance, Listing 16.6 embeds an image that uses the ISMAP attribute
inside a hypertext link to http://localhost:8088/ChipTester, which is
answered by the mini HTTP server developed in Section 16.12. Figure
16–23 shows the initial result, which is identical to what would have been
shown had the ISMAP attribute been omitted. However, when the mouse
button is pressed 271 pixels to the right and 184 pixels below the top-left
corner of the image, the browser requests the URL http://local-
host:8088/ChipTester?271,184 (as is shown in Figure 16–24).

If a server-side image map is used simply to select among a static set of
destination URLs, then a client-side MAP element is a much better option
because the server doesn’t have to be contacted just to decide which URL
applies. If the image map is intended to be mixed with other input ele-
ments, then the IMAGE input type is preferred instead. However, for a
stand-alone image map where the URL associated with a region changes
frequently or requires calculation, an image with ISMAP is a reasonable
choice.

Listing 16.6 IsMap.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>The ISMAP Attribute</TITLE>
</HEAD>

<BODY>

<H1 ALIGN="CENTER">The ISMAP Attribute</H1>
<H2>Select a pin:</H2>

<IMG SRC="images/chip.gif" WIDTH=495 HEIGHT=200 ALT="Chip"
 BORDER=0 ISMAP>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

418 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 16–23 Setting the ISMAP attribute of an IMG element inside a hypertext link
changes what happens when the image is selected.

Figure 16–24 When an ISMAP image is selected, the coordinates of the selection are
transmitted with the URL.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.9 Hidden Fields 419

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

16.9 Hidden Fields

Hidden fields do not affect the appearance of the page that is presented to
the user. Instead, they store fixed names and values that are sent unchanged
to the server, regardless of user input. Hidden fields are typically used for
three purposes.

First, they are one method of tracking users as they move around within a
site (see Section 9.1, “The Need for Session Tracking”). Servlet authors typi-
cally rely on the servlet session tracking API (Section 9.2) rather than
attempting to implement session tracking at this low level.

Second, hidden fields are used to provide predefined input to a server-side
program when a variety of static HTML pages act as front ends to the same
program on the server. For example, an on-line store might pay commissions
to people who refer customers to their site. In this scenario, the referring
page could let visitors search the store’s catalog by means of a form, but
embed a hidden field listing its referral ID.

Third, hidden fields are used to store contextual information in pages that
are dynamically generated. For example, in the order confirmation page of
the on-line store developed in Section 9.4, each row in the table corresponds
to a particular item being ordered (see Figure 9–6). The user can modify the
number of items ordered, but there is no visible form element that stores the
item ID. So, a hidden form is used (see Listing 9.5).

HTML Element: <INPUT TYPE="HIDDEN" NAME="..." VALUE="...">
(No End Tag)

Attributes: NAME (required), VALUE

This element stores a name and a value, but no graphical element is created
in the browser. The name/value pair is added to the form data when the form
is submitted. For instance, with the following example, itemID=hall001 will
always get sent with the form data.

<INPUT TYPE="HIDDEN" NAME="itemID" VALUE="hall001">

Note that the term “hidden” does not mean that the field cannot be dis-
covered by the user, since it is clearly visible in the HTML source. Because
there is no reliable way to “hide” the HTML that generates a page, authors
are cautioned not to use hidden fields to embed passwords or other sensitive
information.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

420 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
16.10 Grouping Controls

HTML 4.0 defines the FIELDSET element, with an associated LEGEND, that
can be used to visually group controls within a form. This capability is quite
useful but is supported only by Internet Explorer. Hopefully, Netscape ver-
sion 5 will add support for this element. In the meantime, you should reserve
use of this element to intranet applications where all your users are using
Internet Explorer.

Core Warning

As of version 4.7, Netscape does not support the FIELDSET element.

HTML Element: <FIELDSET>

Attributes: None.

This element is used as a container to enclose controls and, optionally, a LEG-
END element. It has no attributes beyond the universal ones for style sheets,
language, and so forth. Listing 16.7 gives an example, with the result shown
in Figure 16–25.

Figure 16–25 The FIELDSET element lets you visually group related controls.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.10 Grouping Controls 421

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

HTML Element: <LEGEND>

Attributes: ALIGN

This element, legal only within an enclosing FIELDSET, places a label on the
etched border that is drawn around the group of controls.

ALIGN
This attribute controls the position of the label. Legal values are TOP,
BOTTOM, LEFT, and RIGHT, with TOP being the default. In Figure 16–25,
the first group has the default legend alignment, and the second
group stipulates ALIGN="RIGHT". In HTML, style sheets are often a
better way to control element alignment, since they permit a single
change to be propagated to multiple places.

Listing 16.7 Fieldset.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Grouping Controls in Internet Explorer</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H2 ALIGN="CENTER">Grouping Controls in Internet Explorer</H2>

<FORM ACTION="http://localhost:8088/SomeProgram">

<FIELDSET>
<LEGEND>Group One</LEGEND>
Field 1A: <INPUT TYPE="TEXT" NAME="field1A" VALUE="Field A">

Field 1B: <INPUT TYPE="TEXT" NAME="field1B" VALUE="Field B">

Field 1C: <INPUT TYPE="TEXT" NAME="field1C" VALUE="Field C">

</FIELDSET>

<FIELDSET>
<LEGEND ALIGN="RIGHT">Group Two</LEGEND>
Field 2A: <INPUT TYPE="TEXT" NAME="field2A" VALUE="Field A">

Field 2B: <INPUT TYPE="TEXT" NAME="field2B" VALUE="Field B">

Field 2C: <INPUT TYPE="TEXT" NAME="field2C" VALUE="Field C">

</FIELDSET>

</FORM>

</BODY>
</HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

422 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
16.11 Controlling Tab Order

HTML 4.0 defines a TABINDEX attribute that can be used in any of the visual
HTML elements. Its value is an integer, and it controls the order in which
elements receive the input focus when the TAB key is pressed. Unfortu-
nately, however, it is supported only by Internet Explorer. Nevertheless, you
can use TABINDEX even for pages that will be viewed by multiple browsers, as
long as the designated tabbing order is a convenience to the user, not a neces-
sity for proper operation of the page.

Core Warning

As of version 4.7, Netscape does not support the TABINDEX attribute.

Listing 16.8 Tabindex.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Controlling TAB Order</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H2 ALIGN="CENTER">Controlling TAB Order</H2>

<FORM ACTION="http://localhost:8088/SomeProgram">
Field 1 (first tab selection):
<INPUT TYPE="TEXT" NAME="field1" TABINDEX=1>

Field 2 (third tab selection):
<INPUT TYPE="TEXT" NAME="field2" TABINDEX=3>

Field 3 (second tab selection):
<INPUT TYPE="TEXT" NAME="field3" TABINDEX=2>

</FORM>

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.12 A Debugging Web Server 423

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

16.12 A Debugging Web Server

This section presents a mini “Web server” that is useful when you are trying
to understand the behavior of HTML forms. I used it for many of the exam-
ples earlier in the chapter. It simply reads all the HTTP data sent to it by the
browser, then returns a Web page with those lines embedded within a PRE
element. This server is also extremely useful for debugging servlets. When
something goes wrong, the first task is to determine if the problem lies in the
way in which you collect data or the way in which you process it. Starting the
EchoServer on, say, port 8088 of your local machine, then changing your
forms to specify http://localhost:8088/ lets you see if the data being col-
lected is in the format you expect.

EchoServer

Listing 16.9 presents the top-level server code. You typically run it from the
command line, specifying a port to listen on or accepting the default of 8088.
It then accepts repeated HTTP requests from clients, packaging all HTTP
data sent to it inside a Web page that is returned to the client. In most cases,
the server reads until it gets a blank line, indicating the end of GET, HEAD, or
most other types of HTTP requests. In the case of POST, however, the server
checks the Content-Length request header and reads that many bytes
beyond the blank line.

Figure 16–26 In Internet Explorer, repeatedly pressing the TAB key cycles the input
focus among the first, third, and second text fields, in that order (as dictated by
TABINDEX). In Netscape, the input focus would cycle among the first, second, and
third fields, in that order (based on the order the elements appear on the page).
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

424 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 16.9 EchoServer.java

import java.net.*;
import java.io.*;
import java.util.StringTokenizer;

/** A simple HTTP server that generates a Web page
 * showing all the data that it received from
 * the Web client (usually a browser). To use this,
 * start it on the system of your choice, supplying
 * a port number if you want something other than
 * port 8088. Call this system server.com. Next,
 * start a Web browser on the same or a different
 * system, and connect to http://server.com:8088/whatever.
 * The resultant Web page will show the data that your browser
 * sent. For debugging in servlet or CGI programming,
 * specify http://server.com:8088/whatever as the
 * ACTION of your HTML form. You can send GET
 * or POST data; either way, the resultant page
 * will show what your browser sent.
 */

public class EchoServer extends NetworkServer {
 protected int maxRequestLines = 50;
 protected String serverName = "EchoServer";

 /** Supply a port number as a command-line
 * argument. Otherwise port 8088 will be used.
 */

 public static void main(String[] args) {
 int port = 8088;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 } catch(NumberFormatException nfe) {}
 }
 new EchoServer(port, 0);
 }

 public EchoServer(int port, int maxConnections) {
 super(port, maxConnections);
 listen();
 }

 /** Overrides the NetworkServer handleConnection
 * method to read each line of data received, save it
 * into an array of strings, then send it
 * back embedded inside a PRE element in an
 * HTML page.
 */

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.12 A Debugging Web Server 425

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 public void handleConnection(Socket server)
 throws IOException{
 System.out.println
 (serverName + ": got connection from " +
 server.getInetAddress().getHostName());
 BufferedReader in = SocketUtil.getReader(server);
 PrintWriter out = SocketUtil.getWriter(server);
 String[] inputLines = new String[maxRequestLines];
 int i;
 for (i=0; i<maxRequestLines; i++) {
 inputLines[i] = in.readLine();
 if (inputLines[i] == null) // Client closed connection
 break;
 if (inputLines[i].length() == 0) { // Blank line
 if (usingPost(inputLines)) {
 readPostData(inputLines, i, in);
 i = i + 2;
 }
 break;
 }
 }
 printHeader(out);
 for (int j=0; j<i; j++) {
 out.println(inputLines[j]);
 }
 printTrailer(out);
 server.close();
 }

 // Send standard HTTP response and top of a standard Web page.
 // Use HTTP 1.0 for compatibility with all clients.

 private void printHeader(PrintWriter out) {
 out.println
 ("HTTP/1.0 200 OK\r\n" +
 "Server: " + serverName + "\r\n" +
 "Content-Type: text/html\r\n" +
 "\r\n" +
 "<!DOCTYPE HTML PUBLIC " +
 "\"-//W3C//DTD HTML 4.0 Transitional//EN\">\n" +
 "<HTML>\n" +
 "<HEAD>\n" +
 " <TITLE>" + serverName + " Results</TITLE>\n" +
 "</HEAD>\n" +
 "\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + serverName +
 " Results</H1>\n" +

Listing 16.9 EchoServer.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

426 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 "Here is the request line and request headers\n" +
 "sent by your browser:\n" +
 "<PRE>");
 }

 // Print bottom of a standard Web page.

 private void printTrailer(PrintWriter out) {
 out.println
 ("</PRE>\n" +
 "</BODY>\n" +
 "</HTML>\n");
 }

 // Normal Web page requests use GET, so this
 // server can simply read a line at a time.
 // However, HTML forms can also use POST, in which
 // case we have to determine the number of POST bytes
 // that are sent so we know how much extra data
 // to read after the standard HTTP headers.

 private boolean usingPost(String[] inputs) {
 return(inputs[0].toUpperCase().startsWith("POST"));
 }

 private void readPostData(String[] inputs, int i,
 BufferedReader in)
 throws IOException {
 int contentLength = contentLength(inputs);
 char[] postData = new char[contentLength];
 in.read(postData, 0, contentLength);
 inputs[++i] = new String(postData, 0, contentLength);
 }

 // Given a line that starts with Content-Length,
 // this returns the integer value specified.

 private int contentLength(String[] inputs) {
 String input;
 for (int i=0; i<inputs.length; i++) {
 if (inputs[i].length() == 0)
 break;
 input = inputs[i].toUpperCase();
 if (input.startsWith("CONTENT-LENGTH"))
 return(getLength(input));
 }
 return(0);
 }

Listing 16.9 EchoServer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.12 A Debugging Web Server 427

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

ThreadedEchoServer

Listing 16.10 presents a multithreaded variation of the EchoServer, useful
when your server needs to accept multiple simultaneous client requests.

 private int getLength(String length) {
 StringTokenizer tok = new StringTokenizer(length);
 tok.nextToken();
 return(Integer.parseInt(tok.nextToken()));
 }
}

Listing 16.10 ThreadedEchoServer.java

import java.net.*;
import java.io.*;

/** A multithreaded variation of EchoServer. */

public class ThreadedEchoServer extends EchoServer
 implements Runnable {
 public static void main(String[] args) {
 int port = 8088;
 if (args.length > 0) {
 try {
 port = Integer.parseInt(args[0]);
 } catch(NumberFormatException nfe) {}
 }
 ThreadedEchoServer echoServer =
 new ThreadedEchoServer(port, 0);
 echoServer.serverName = "Threaded Echo Server";
 }

 public ThreadedEchoServer(int port, int connections) {
 super(port, connections);
 }

 /** The new version of handleConnection starts
 * a thread. This new thread will call back to the
 * <I>old</I> version of handleConnection, resulting
 * in the same server behavior in a multithreaded
 * version. The thread stores the Socket instance
 * since run doesn’t take any arguments, and since
 * storing the socket in an instance variable risks
 * having it overwritten if the next thread starts

Listing 16.9 EchoServer.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

428 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
NetworkServer

Listings 16.11 and 16.12 present some utilities classes that simplify network-
ing. The EchoServer is built on top of them.

 * before the run method gets a chance to
 * copy the socket reference.
 */

 public void handleConnection(Socket server) {
 Connection connectionThread = new Connection(this, server);
 connectionThread.start();
 }

 public void run() {
 Connection currentThread =
 (Connection)Thread.currentThread();
 try {
 super.handleConnection(currentThread.serverSocket);
 } catch(IOException ioe) {
 System.out.println("IOException: " + ioe);
 ioe.printStackTrace();
 }
 }
}

/** This is just a Thread with a field to store a
 * Socket object. Used as a thread-safe means to pass
 * the Socket from handleConnection to run.
 */

class Connection extends Thread {
 protected Socket serverSocket;

 public Connection(Runnable serverObject,
 Socket serverSocket) {
 super(serverObject);
 this.serverSocket = serverSocket;
 }
}

Listing 16.10 ThreadedEchoServer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.12 A Debugging Web Server 429

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 16.11 NetworkServer.java

import java.net.*;
import java.io.*;

/** A starting point for network servers. You’ll need to
 * override handleConnection, but in many cases
 * listen can remain unchanged. NetworkServer uses
 * SocketUtil to simplify the creation of the
 * PrintWriter and BufferedReader.
 * @see SocketUtil
 */

public class NetworkServer {
 private int port, maxConnections;

 /** Build a server on specified port. It will continue
 * to accept connections, passing each to
 * handleConnection, until an explicit exit
 * command is sent (e.g., System.exit) or the
 * maximum number of connections is reached. Specify
 * 0 for maxConnections if you want the server
 * to run indefinitely.
 */

 public NetworkServer(int port, int maxConnections) {
 setPort(port);
 setMaxConnections(maxConnections);
 }

 /** Monitor a port for connections. Each time one
 * is established, pass resulting Socket to
 * handleConnection.
 */

 public void listen() {
 int i=0;
 try {
 ServerSocket listener = new ServerSocket(port);
 Socket server;
 while((i++ < maxConnections) || (maxConnections == 0)) {
 server = listener.accept();
 handleConnection(server);
 }
 } catch (IOException ioe) {
 System.out.println("IOException: " + ioe);
 ioe.printStackTrace();
 }
 }
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

430 Chapter 16 Using HTML Forms

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 /** This is the method that provides the behavior
 * to the server, since it determines what is
 * done with the resulting socket. Override this
 * method in servers you write.
 * <P>
 * This generic version simply reports the host
 * that made the connection, shows the first line
 * the client sent, and sends a single line
 * in response.
 */

 protected void handleConnection(Socket server)
 throws IOException{
 BufferedReader in = SocketUtil.getReader(server);
 PrintWriter out = SocketUtil.getWriter(server);
 System.out.println
 ("Generic Network Server: got connection from " +
 server.getInetAddress().getHostName() + "\n" +
 "with first line ’" + in.readLine() + "’");
 out.println("Generic Network Server");
 server.close();
 }

 /** Gets the max connections server will handle before
 * exiting. A value of 0 indicates that server
 * should run until explicitly killed.
 */

 public int getMaxConnections() {
 return(maxConnections);
 }

 /** Sets max connections. A value of 0 indicates that
 * server should run indefinitely (until explicitly
 * killed).
 */

 public void setMaxConnections(int maxConnections) {
 this.maxConnections = maxConnections;
 }

 /** Gets port on which server is listening. */

 public int getPort() {
 return(port);
 }

Listing 16.11 NetworkServer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

16.12 A Debugging Web Server 431

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 /** Sets port. You can only do before "connect"
 * is called. That usually happens in the constructor.
 */

 protected void setPort(int port) {
 this.port = port;
 }
}

Listing 16.12 SocketUtil.java

import java.net.*;
import java.io.*;

/** A shorthand way to create BufferedReaders and
 * PrintWriters associated with a Socket.
*/

public class SocketUtil {
 /** Make a BufferedReader to get incoming data. */

 public static BufferedReader getReader(Socket s)
 throws IOException {
 return(new BufferedReader(
 new InputStreamReader(s.getInputStream())));
 }

 /** Make a PrintWriter to send outgoing data.
 * This PrintWriter will automatically flush stream
 * when println is called.
 */

 public static PrintWriter getWriter(Socket s)
 throws IOException {
 // 2nd argument of true means autoflush
 return(new PrintWriter(s.getOutputStream(), true));
 }
}

Listing 16.11 NetworkServer.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Using Applets As
Servlet Front

Ends
Topics in This Chapter

• Sending GET data and having the browser display the
results

• Sending GET data and processing the results within the
applet (HTTP tunneling)

• Using object serialization to exchange high-level data
structures between applets and servlets

• Sending POST data and processing the results within the
applet

• Bypassing the HTTP server altogether
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 17

TML forms, discussed in Chapter 16, provide a simple but limited
way of collecting user input and transmitting it to a servlet or CGI
program. Occasionally, however, a more sophisticated user interface

is required. Applets give you more control over the size, color, and font of the
GUI controls; provide more built-in capability (sliders, line drawing, pop-up
windows, and the like); let you track mouse and keyboard events; support the
development of custom input forms (dials, thermometers, draggable icons,
and so forth); and let you send a single user submission to multiple
server-side programs. This extra capability comes at a cost, however, as it
tends to require much more effort to design an interface in the Java program-
ming language than it does using HTML forms, particularly if the interface
contains a lot of formatted text. So, the choice between HTML forms and
applets will depend upon the application.

With HTML forms, GET and POST requests are handled almost exactly
the same way. All the input elements are identical; only the METHOD
attribute of the FORM element needs to change. With applets, however,
there are three distinct approaches. In the first approach, covered in Sec-
tion 17.1, the applet imitates a GET-based HTML form, with GET data being
transmitted and the resultant page being displayed by the browser. Section
17.2 (A Multisystem Search Engine Front End) gives an example. In the
second approach, covered in Section 17.3, the applet sends GET data to a
servlet and then processes the results itself. Section 17.4 (A Query Viewer

H

433

434 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
That Uses Object Serialization and HTTP Tunneling) gives an example. In
the third approach, covered in Section 17.6, the applet sends POST data to a
servlet and then processes the results itself. Section 17.6 (An Applet That
Sends POST Data) gives an example. Finally, Section 17.7 serves as a
reminder that an applet can bypass the HTTP server altogether and talk
directly to a custom server program running on the applet’s home machine.

This chapter assumes that you already have some familiarity with basic
applets and focuses on the techniques to allow them to communicate with
server-side programs. Readers who are unfamiliar with applets should consult
a general introduction to the Java programming language. Core Web Pro-
gramming or Core Java (both from Prentice Hall) are two good choices.

17.1 Sending Data with GET and
Displaying the Resultant Page

The showDocument method instructs the browser to display a particular
URL. Recall that you can transmit GET data to a servlet or CGI program by
appending it to the program’s URL after a question mark (?). Thus, to send
GET data from an applet, you simply need to append the data to the string
from which the URL is built, then create the URL object and call showDocu-
ment in the normal manner. A basic template for doing this in applets follows,
assuming that baseURL is a string representing the URL of the server-side
program and that someData is the information to be sent with the request.

try {

URL programURL = new URL(baseURL + "?" + someData);

getAppletContext().showDocument(programURL);

} catch(MalformedURLException mue) { ... }

However, when data is sent by a browser, it is URL encoded, which means
that spaces are converted to plus signs (+) and nonalphanumeric characters
into a percent sign (%) followed by the two hex digits representing that charac-
ter, as discussed in Section 16.2 (The FORM Element). The preceding exam-
ple assumes that someData has already been encoded properly and fails if it
has not been. JDK 1.1 has a URLEncoder class with a static encode method
that can perform this encoding. So, if an applet is contacting a server-side pro-
gram that normally receives GET data from HTML forms, the applet needs to
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.2 A Multisystem Search Engine Front End 435

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

encode the value of each entry, but not the equal sign (=) between each entry
name and its value or the ampersand (&) between each name/value pair. So,
you cannot necessarily simply call URLEncoder.encode(someData) but
instead need to selectively encode the value parts of each name/value pair. This
could be accomplished as follows:

String someData =
name1 + "=" + URLEncoder.encode(val1) + "&" +
name2 + "=" + URLEncoder.encode(val2) + "&" +
...
nameN + "=" + URLEncoder.encode(valN);

try {
URL programURL = new URL(baseURL + "?" + someData);
getAppletContext().showDocument(programURL);

} catch(MalformedURLException mue) { ... }

The following section gives a full-fledged example.

17.2 A Multisystem Search Engine
Front End

In Section 6.3 (A Front End to Various Search Engines), the SearchSpec
class (Listing 6.2) was used by a servlet to generate the specific URLs
needed to redirect requests to various different search engines. The
SearchSpec class can be used by applets as well. Listing 17.1 shows an
applet that creates a textfield to gather user input. When the user submits
the data, the applet URL-encodes the textfield value and generates three
distinct URLs with embedded GET data: one each for the Google, Infoseek,
and Lycos search engines. The applet then uses showDocument to instruct
the browser to display the results of those URLs in three different frame
cells. The results are shown in Figures 17–1 and 17–2. HTML forms cannot
be used for this application since a form can submit its data to only a single
URL.

Listing 17.2 shows the top-level HTML document used and Listing 17.3
shows the HTML used for the frame cell actually containing the applet.
Please refer to this book’s Web site (http://www.coreservlets.com/) for
the three tiny HTML files used for the initial contents of the bottom three
frame cells shown in Figure 17–1.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

436 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 17.1 SearchApplet.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import coreservlets.SearchSpec;

/** An applet that reads a value from a TextField,
 * then uses it to build three distinct URLs with embedded
 * GET data: one each for Google, Infoseek, and Lycos.
 * The browser is directed to retrieve each of these
 * URLs, displaying them in side-by-side frame cells.
 * Note that standard HTML forms cannot automatically
 * perform multiple submissions in this manner.
 */

public class SearchApplet extends Applet
 implements ActionListener {
 private TextField queryField;
 private Button submitButton;

 public void init() {
 setFont(new Font("Serif", Font.BOLD, 18));
 add(new Label("Search String:"));
 queryField = new TextField(40);
 queryField.addActionListener(this);
 add(queryField);
 submitButton = new Button("Send to Search Engines");
 submitButton.addActionListener(this);
 add(submitButton);
 }

 /** Submit data when button is pressed or
 * user presses Return in the TextField.
 */

 public void actionPerformed(ActionEvent event) {
 String query = URLEncoder.encode(queryField.getText());
 SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs();
 // Omitting HotBot (last entry), as they use JavaScript to
 // pop result to top-level frame. Thus the length-1 below.
 for(int i=0; i<commonSpecs.length-1; i++) {
 try {
 SearchSpec spec = commonSpecs[i];
 // The SearchSpec class builds URLs of the
 // form needed by some common search engines.
 URL searchURL = new URL(spec.makeURL(query, "10"));
 String frameName = "results" + i;
 getAppletContext().showDocument(searchURL, frameName);
 } catch(MalformedURLException mue) {}
 }
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.2 A Multisystem Search Engine Front End 437

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Figure 17–1 SearchApplet allows the user to enter a search string.

Figure 17–2 Submitting the query yields side-by-side results from three different search
engines.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

438 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
17.3 Sending Data with GET and
Processing the Results Directly
(HTTP Tunneling)

In the previous example, an applet instructs the browser to display the output
of a server-side program in a particular frame. Using the browser to display
results is a reasonable approach when working with existing services, since

Listing 17.2 ParallelSearches.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
<HEAD>
 <TITLE>Parallel Search Engine Results</TITLE>
</HEAD>

<FRAMESET ROWS="120,*">
 <FRAME SRC="SearchAppletFrame.html" SCROLLING="NO">
 <FRAMESET COLS="*,*,*">
 <FRAME SRC="GoogleResultsFrame.html" NAME="results0">
 <FRAME SRC="InfoseekResultsFrame.html" NAME="results1">
 <FRAME SRC="LycosResultsFrame.html" NAME="results2">
 </FRAMESET>
</FRAMESET>

Listing 17.3 SearchAppletFrame.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Search Applet Frame</TITLE>
</HEAD>

<BODY BGCOLOR="WHITE">
<CENTER>
<APPLET CODE="SearchApplet.class" WIDTH=600 HEIGHT=100>
 This example requires a Java-enabled browser.
</APPLET>
</CENTER>
</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.3 Sending Data with GET and Processing the Results Directly 439

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

most CGI programs are already set up to return HTML documents. How-
ever, if you are developing both the client and the server sides of the process,
it seems a bit wasteful to always send back an entire HTML document; in
some cases, it would be nice to simply return data to an applet that is already
running. The applet could then present the data in a graph or some other
custom display. This approach is sometimes known as HTTP tunneling since a
custom communication protocol is embedded within HTTP: proxies, encryp-
tion, server redirection, connections through firewalls, and all.

There are two main variations to this approach. Both make use of the URL-
Connection class to open an input stream from a URL. The difference lies in
the type of stream they use. The first option is to use a BufferedInput-
Stream or some other low-level stream that lets you read binary or ASCII
data from an arbitrary server-side program. That approach is covered in the
first subsection. The second option is to use an ObjectInputStream to
directly read high-level data structures. That approach, covered in the second
subsection, is available only when the server-side program is also written in
the Java programming language.

Reading Binary or ASCII Data

An applet can read the content sent by the server by first creating a URLCon-
nection derived from the URL of the server-side program and then attach-
ing a BufferedInputStream to it. Seven main steps are required to
implement this approach on the client, as described below. I’m omitting the
server-side code since the client code described here works with arbitrary
server-side programs or static Web pages.

Note that many of the stream operations throw an IOException, so the
following statements need to be enclosed in a try/catch block.

1. Create a URL object referring to applet’s home host. You
can pass an absolute URL string to the URL constructor (e.g.,
"http://host/path"), but since browser security restrictions
prohibit connections from applets to machines other than the
home server, it makes more sense to build a URL based upon
the hostname from which the applet was loaded.

URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL = new URL(protocol, host, port, urlSuffix);
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

440 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
2. Create a URLConnection object. The openConnection
method of URL returns a URLConnection object. This object
will be used to obtain streams with which to communicate.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the URL data. The first
thing you do with the URLConnection object is to specify that
the browser not cache it. This guarantees that you get a fresh
result each time.
connection.setUseCaches(false);

4. Set any desired HTTP headers. If you want to set HTTP
request headers (see Chapter 4), you can use setRequest-
Property to do so.
connection.setRequestProperty("header", "value");

5. Create an input stream. There are a variety of appropriate
streams, but a common one is BufferedReader. It is at the
point where you create the input stream that the connection to
the Web server is actually established behind the scenes.
BufferedReader in =
new BufferedReader(new InputStreamReader(

connection.getInputStream()));

6. Read each line of the document. The HTTP specification
stipulates that the server closes the connection when it is done.
When the connection is closed, readLine returns null. So,
simply read until you get null.
String line;
while ((line = in.readLine()) != null) {
doSomethingWith(line);

}

7. Close the input stream.
in.close();
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.3 Sending Data with GET and Processing the Results Directly 441

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Reading Serialized Data Structures

The approach shown in the previous subsection makes good sense when
your applet is talking to an arbitrary server-side program or reading the
content of static Web pages. However, when an applet talks to a servlet,
you can do even better. Rather than sending binary or ASCII data, the
servlet can transmit arbitrary data structures by using the Java serialization
mechanism. The applet can read this data in a single step by using readOb-
ject; no long and tedious parsing is required. The steps required to imple-
ment HTTP tunneling are summarized below. Again, note that the
statements need to be enclosed within a try/catch block in your actual
applet.

The Client Side

An applet needs to perform the following seven steps to read serialized data
structures sent by a servlet. Only Steps 5 and 6 differ from what is required to
read ASCII data. These steps are slightly simplified by the omission of the
try/catch blocks.

1. Create a URL object referring to the applet’s home host.
As before, since the URL must refer to the host from which the
applet was loaded, it makes the most sense to specify a URL
suffix and construct the rest of the URL automatically.

URL currentPage = getCodeBase();

String protocol = currentPage.getProtocol();

String host = currentPage.getHost();

int port = currentPage.getPort();

String urlSuffix = "/servlet/SomeServlet";

URL dataURL = new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object. The openConnection
method of URL returns a URLConnection object. This object
will be used to obtain streams with which to communicate.

URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the URL data. The first
thing you do with the URLConnection object is to specify that
the browser not cache it. This guarantees that you get a fresh
result each time.

connection.setUseCaches(false);
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

442 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
4. Set any desired HTTP headers. If you want to set HTTP
request headers (see Chapter 4), you can use setRequest-
Property to do so.
connection.setRequestProperty("header", "value");

5. Create an ObjectInputStream. The constructor for this class
simply takes the raw input stream from the URLConnection. It
is at the point where you create the input stream that the con-
nection to the Web server is actually established.
ObjectInputStream in =

new ObjectInputStream(connection.getInputStream());

6. Read the data structure with readObject. The return type
of readObject is Object, so you need to make a typecast to
whatever more specific type the server actually sent.
SomeClass value = (SomeClass)in.readObject();
doSomethingWith(value);

7. Close the input stream.
in.close();

The Server Side
A servlet needs to perform the following four steps to send serialized data
structures to an applet. Assume that request and response are the Http-
ServletRequest and HttpServletResponse objects supplied to the doGet
and doPost methods. Again, these steps are simplified slightly by the omis-
sion of the required try/catch blocks.

1. Specify that binary content is being sent. This task is
accomplished by designating

application/x-java-serialized-object

as the MIME type of the response. This is the standard MIME
type for objects encoded with an ObjectOutputStream,
although in practice, since the applet (not the browser) is read-
ing the result, the MIME type is not very important. See the
discussion of Content-Type in Section 7.2 (HTTP 1.1
Response Headers and Their Meaning) for more information
on MIME types.
String contentType =
"application/x-java-serialized-object";

response.setContentType(contentType);
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.4 A Query Viewer That Uses Object Serialization and HTTP Tunneling 443

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

2. Create an ObjectOutputStream.
ObjectOutputStream out =
new ObjectOutputStream(response.getOutputStream());

3. Write the data structure by using writeObject. Most
built-in data structures can be sent this way. Classes you write,
however, must implement the Serializable interface. This is
a simple requirement, however, since Serializable defines no
methods. Simply declare that your class implements it.
SomeClass value = new SomeClass(...);
out.writeObject(value);

4. Flush the stream to be sure all content has been sent to
the client.
out.flush();

The following section gives an example of this approach.

17.4 A Query Viewer That Uses
Object Serialization and
HTTP Tunneling

Many people are curious about what types of queries are sent to the major
search engines. This is partly idle curiosity (“Is it really true that 64 percent of
the queries at AltaVista are from employers looking for programmers that
know Java technology?”) and partly so that HTML authors can arrange their
page content to fit the types of queries normally submitted, hoping to
improve their site’s ranking with the search engines.

This section presents an applet/servlet combination that displays the ficti-
tious super-search-engine.com “live,” continually updating sample que-
ries to visitors that load their query viewer page. Listing 17.4 shows the main
applet, which makes use of an auxiliary class (Listing 17.5) to retrieve the
queries in a background thread. Once the user initiates the process, the
applet places a sample query in a scrolling text area every half-second, as
shown in Figure 17–3. Finally, Listing 17.6 shows the servlet that generates
the queries on the server. It generates a random sampling of actual recent
user queries and sends 50 of them to the client for each request.

If you download the applet and servlet source code from
http://www.coreservlets.com/ and try this application yourself, be
aware that it will only work when you load the top-level HTML page by using
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

444 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
HTTP (i.e., by using a URL of the form http://... to request the page
from a Web server). Loading it directly off your disk through a file: URL
fails since the applet connects back to its home site to contact the servlet.
Besides, URLConnection fails for non-HTTP applets in general.

Listing 17.4 ShowQueries.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.net.*;

/** Applet reads arrays of strings packaged inside
 * a QueryCollection and places them in a scrolling
 * TextArea. The QueryCollection obtains the strings
 * by means of a serialized object input stream
 * connected to the QueryGenerator servlet.
 */

public class ShowQueries extends Applet
 implements ActionListener, Runnable {
 private TextArea queryArea;
 private Button startButton, stopButton, clearButton;
 private QueryCollection currentQueries;
 private QueryCollection nextQueries;
 private boolean isRunning = false;
 private String address =
 "/servlet/coreservlets.QueryGenerator";
 private URL currentPage;

 public void init() {
 setBackground(Color.white);
 setLayout(new BorderLayout());
 queryArea = new TextArea();
 queryArea.setFont(new Font("Serif", Font.PLAIN, 14));
 add(queryArea, BorderLayout.CENTER);
 Panel buttonPanel = new Panel();
 Font buttonFont = new Font("SansSerif", Font.BOLD, 16);
 startButton = new Button("Start");
 startButton.setFont(buttonFont);
 startButton.addActionListener(this);
 buttonPanel.add(startButton);
 stopButton = new Button("Stop");
 stopButton.setFont(buttonFont);
 stopButton.addActionListener(this);
 buttonPanel.add(stopButton);
 clearButton = new Button("Clear TextArea");
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.4 A Query Viewer That Uses Object Serialization and HTTP Tunneling 445

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 clearButton.setFont(buttonFont);
 clearButton.addActionListener(this);
 buttonPanel.add(clearButton);
 add(buttonPanel, BorderLayout.SOUTH);
 currentPage = getCodeBase();
 // Request a set of sample queries. They
 // are loaded in a background thread, and
 // the applet checks to see if they have finished
 // loading before trying to extract the strings.
 currentQueries = new QueryCollection(address, currentPage);
 nextQueries = new QueryCollection(address, currentPage);
 }

 /** If you press the "Start" button, the system
 * starts a background thread that displays
 * the queries in the TextArea. Pressing "Stop"
 * halts the process, and "Clear" empties the
 * TextArea.
 */

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == startButton) {
 if (!isRunning) {
 Thread queryDisplayer = new Thread(this);
 isRunning = true;
 queryArea.setText("");
 queryDisplayer.start();
 showStatus("Started display thread...");
 } else {
 showStatus("Display thread already running...");
 }
 } else if (event.getSource() == stopButton) {
 isRunning = false;
 showStatus("Stopped display thread...");
 } else if (event.getSource() == clearButton) {
 queryArea.setText("");
 }
 }

 /** The background thread takes the currentQueries
 * object and every half-second places one of the queries
 * the object holds into the bottom of the TextArea. When
 * all of the queries have been shown, the thread copies
 * the value of the nextQueries object into
 * currentQueries, sends a new request to the server
 * in order to repopulate nextQueries, and repeats
 * the process.
 */

Listing 17.4 ShowQueries.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

446 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 public void run() {
 while(isRunning) {
 showQueries(currentQueries);
 currentQueries = nextQueries;
 nextQueries = new QueryCollection(address, currentPage);
 }
 }

 private void showQueries(QueryCollection queryEntry) {
 // If request has been sent to server but the result
 // isn’t back yet, poll every second. This should
 // happen rarely but is possible with a slow network
 // connection or an overloaded server.
 while(!queryEntry.isDone()) {
 showStatus("Waiting for data from server...");
 pause(1);
 }
 showStatus("Received data from server...");
 String[] queries = queryEntry.getQueries();
 String linefeed = "\n";
 // Put a string into TextArea every half-second.
 for(int i=0; i<queries.length; i++) {
 if (!isRunning) {
 return;
 }
 queryArea.append(queries[i]);
 queryArea.append(linefeed);
 pause(0.5);
 }
 }

 public void pause(double seconds) {
 try {
 Thread.sleep((long)(seconds*1000));
 } catch(InterruptedException ie) {}
 }
}

Listing 17.4 ShowQueries.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.4 A Query Viewer That Uses Object Serialization and HTTP Tunneling 447

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 17.5 QueryCollection.java

import java.net.*;
import java.io.*;

/** When this class is built, it returns a value
 * immediately, but this value returns false for isDone
 * and null for getQueries. Meanwhile, it starts a Thread
 * to request an array of query strings from the server,
 * reading them in one fell swoop by means of an
 * ObjectInputStream. Once they’ve all arrived, they
 * are placed in the location getQueries returns,
 * and the isDone flag is switched to true.
 * Used by the ShowQueries applet.
 */

public class QueryCollection implements Runnable {
 private String[] queries;
 private String[] tempQueries;
 private boolean isDone = false;
 private URL dataURL;

 public QueryCollection(String urlSuffix, URL currentPage) {
 try {
 // Only the URL suffix need be supplied, since
 // the rest of the URL is derived from the current page.
 String protocol = currentPage.getProtocol();
 String host = currentPage.getHost();
 int port = currentPage.getPort();
 dataURL = new URL(protocol, host, port, urlSuffix);
 Thread queryRetriever = new Thread(this);
 queryRetriever.start();
 } catch(MalformedURLException mfe) {
 isDone = true;
 }
 }

 public void run() {
 try {
 tempQueries = retrieveQueries();
 queries = tempQueries;
 } catch(IOException ioe) {
 tempQueries = null;
 queries = null;
 }
 isDone = true;
 }

 public String[] getQueries() {
 return(queries);
 }

 public boolean isDone() {
 return(isDone);
 }
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

448 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 private String[] retrieveQueries() throws IOException {
 URLConnection connection = dataURL.openConnection();
 // Make sure browser doesn’t cache this URL, since
 // I want different queries for each request.
 connection.setUseCaches(false);
 // Use ObjectInputStream so I can read a String[]
 // all at once.
 ObjectInputStream in =
 new ObjectInputStream(connection.getInputStream());
 try {
 // The return type of readObject is Object, so
 // I need a typecast to the actual type.
 String[] queryStrings = (String[])in.readObject();
 return(queryStrings);
 } catch(ClassNotFoundException cnfe) {
 return(null);
 }
 }
}

Listing 17.5 QueryCollection.java (continued)

Figure 17–3 The ShowQueries applet in action.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.4 A Query Viewer That Uses Object Serialization and HTTP Tunneling 449

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Listing 17.6 QueryGenerator.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that generates an array of strings and
 * sends them via an ObjectOutputStream to applet
 * or other Java client.
 */

public class QueryGenerator extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 boolean useNumbering = true;
 String useNumberingFlag =
 request.getParameter("useNumbering");
 if ((useNumberingFlag == null) ||
 useNumberingFlag.equals("false")) {
 useNumbering = false;
 }
 String contentType =
 "application/x-java-serialized-object";
 response.setContentType(contentType);
 ObjectOutputStream out =
 new ObjectOutputStream(response.getOutputStream());
 String[] queries = getQueries(useNumbering);
 // If you send a nonstandard data structure, be
 // sure it is defined with "implements Serializable".
 out.writeObject(queries);
 out.flush();
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }

 private String[] getQueries(boolean useNumbering) {
 String[] queries = new String[50];
 for(int i=0; i<queries.length; i++) {
 queries[i] = randomQuery();
 if (useNumbering) {
 queries[i] = "" + (i+1) + ": " + queries[i];
 }
 }
 return(queries);
 }
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

450 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
17.5 Sending Data by POST and
Processing the Results Directly
(HTTP Tunneling)

With GET data, an applet has two options for the results of a submission: tell
the browser to display the results (construct a URL object and call getAp-
pletContext().showDocument) or process the results itself (construct a
URL object, get a URLConnection, open an input stream, and read the

 // The real, honest-to-goodness queries people have sent :-)

 private String randomQuery() {
 String[] locations = { "Where ", "How " };
 String[] actions =
 { "can I look for ", "can I find ", "can I get " };
 String[] sources =
 { "information ", "resources ", "data ", "references " };
 String[] prepositions = { "on ", "about ", "concerning " };
 String[] subjects =
 { "the book Core Servlets and JavaServer Pages",
 "the text Core Servlets and JavaServer Pages",
 "Core Servlets and JavaServer Pages",
 "Core Servlets and JSP",
 "the book Core Web Programming (Java 2 Edition)",
 "Core Web Programming (Java 2 Edition)",
 "servlet programming", "JavaServer Pages", "JSP",
 "Java alternatives to CGI", "server-side Java" };
 String[] endings = { "?", "?", "?", "?!", "?!!!?" };
 String[][] sentenceTemplates =
 { locations, actions, sources,
 prepositions, subjects, endings };
 String query = "";
 for(int i=0; i<sentenceTemplates.length; i++) {
 query = query + randomEntry(sentenceTemplates[i]);
 }
 return(query);
 }

 private String randomEntry(String[] strings) {
 int index = (int)(Math.random()*strings.length);
 return(strings[index]);
 }
}

Listing 17.6 QueryGenerator.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.5 Sending Data by POST and Processing the Results Directly 451

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

results). These two options are discussed in Sections 17.1 and 17.3, respec-
tively. With POST data, however, only the second option is available since the
URL constructor has no method to let you associate POST data with it. Sending
POST data has some of the same advantages and disadvantages as when
applets send GET data. The two main disadvantages are that the server-side
program must be on the host from which the applet was loaded, and that the
applet is required to display all the results itself: it cannot pass HTML to the
browser in a portable manner. On the plus side, the server-side program can
be simpler (not needing to wrap the results in HTML) and the applet can
update its display without requiring the page to be reloaded. Furthermore,
applets that communicate using POST can use serialized data streams to send
data to a servlet, in addition to reading serialized data from servlets. This is
quite an advantage, since serialized data simplifies communication and
HTTP tunneling lets you piggyback on existing connections through firewalls
even when direct socket connections are prohibited. Applets using GET can
read serialized data (see Section 17.4) but are unable to send it since it is not
legal to append arbitrary binary data to URLs.

Thirteen steps are required for the applet to send POST data to the server
and read the results, as shown below. Although there are many required
steps, each step is relatively simple. The code is slightly simplified by the
omission of try/catch blocks around the statements.

1. Create a URL object referring to the applet’s home host.
As before, since the URL must refer to the host the applet came
from, it makes the most sense to specify a URL suffix and con-
struct the rest of the URL automatically.

URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL =
new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object. This object will be used to
obtain input and output streams that connect to the server.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the results.
connection.setUseCaches(false);

4. Tell the system to permit you to send data, not just read it.
connection.setDoOutput(true);
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

452 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
5. Create a ByteArrayOutputStream to buffer the data that
will be sent to the server. The purpose of the ByteArray-
OutputStream here is the same as it is with the persistent
(keep-alive) HTTP connections shown in Section 7.4 — to
determine the size of the output so that the Content-Length
header can be set. The ByteArrayOutputStream constructor
specifies an initial buffer size, but this value is not critical
since the buffer will grow automatically if necessary.
ByteArrayOutputStream byteStream =
new ByteArrayOutputStream(512);

6. Attach an output stream to the ByteArrayOutputStream.
Use a PrintWriter to send normal form data. To send serial-
ized data structures, use an ObjectOutputStream instead.
PrintWriter out = new PrintWriter(byteStream, true);

7. Put the data into the buffer. For form data, use print. For
high-level serialized objects, use writeObject.
String val1 = URLEncoder.encode(someVal1);
String val2 = URLEncoder.encode(someVal2);
String data = "param1=" + val1 +

"¶m2=" + val2; // Note ’&’
out.print(data); // Note print, not println
out.flush(); // Necessary since no println used

8. Set the Content-Length header. This header is required for
POST data, even though it is unused with GET requests.
connection.setRequestProperty
("Content-Length", String.valueOf(byteStream.size()));

9. Set the Content-Type header. Netscape uses multi-
part/form-data by default, but regular form data requires a
setting of application/x-www-form-urlencoded, which is
the default with Internet Explorer. So, for portability you should
set this value explicitly when sending regular form data. The
value is irrelevant when sending serialized data.
connection.setRequestProperty
("Content-Type", "application/x-www-form-urlencoded");
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.6 An Applet That Sends POST Data 453

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

10. Send the real data.
byteStream.writeTo(connection.getOutputStream());

11. Open an input stream. You typically use a BufferedReader
for ASCII or binary data and an ObjectInputStream for serial-
ized Java objects.
BufferedReader in =

new BufferedReader(new InputStreamReader

(connection.getInputStream()));

12. Read the result.
The specific details will depend on what type of data the server
sends. Here is an example that does something with each line
sent by the server:
String line;
while((line = in.readLine()) != null) {

doSomethingWith(line);

}

13. Pat yourself on the back. Yes, the procedure for handling
POST is long and tedious. Fortunately, it is a relatively rote pro-
cess. Besides, you can always download an example from
www.coreservlets.com and use it as a starting point.

The next section gives an example of an applet that performs these steps.

17.6 An Applet That Sends POST
Data

Listing 17.7 presents an applet that follows the approach outlined in the pre-
vious section. The applet uses a URLConnection and an attached Byte-
ArrayOutputStream to send POST data to a URL the user specifies. The
applet also makes use of the LabeledTextField class, shown previously in
Listing 2.2 and available for download from http://www.coreserv-

lets.com/.
Figures 17–4 and 17–5 show the results of submitting the data to the

ShowParameters servlet and EchoServer HTTP server, respectively.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

454 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 17.7 SendPost.java

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

/** Applet that reads firstName, lastName, and
 * emailAddress parameters and sends them via
 * POST to the host, port, and URI specified.
 */

public class SendPost extends Applet
 implements ActionListener {
 private LabeledTextField firstNameField, lastNameField,
 emailAddressField, hostField,
 portField, uriField;
 private Button sendButton;
 private TextArea resultsArea;
 URL currentPage;

 public void init() {
 setBackground(Color.white);
 setLayout(new BorderLayout());
 Panel inputPanel = new Panel();
 inputPanel.setLayout(new GridLayout(9, 1));
 inputPanel.setFont(new Font("Serif", Font.BOLD, 14));
 firstNameField =
 new LabeledTextField("First Name:", 15);
 inputPanel.add(firstNameField);
 lastNameField =
 new LabeledTextField("Last Name:", 15);
 inputPanel.add(lastNameField);
 emailAddressField =
 new LabeledTextField("Email Address:", 25);
 inputPanel.add(emailAddressField);
 Canvas separator1 = new Canvas();
 inputPanel.add(separator1);
 hostField =
 new LabeledTextField("Host:", 15);

 // Applets loaded over the network can only connect
 // to the server from which they were loaded.
 hostField.getTextField().setEditable(false);

 currentPage = getCodeBase();
 // getHost returns empty string for applets from local disk.
 String host = currentPage.getHost();
 String resultsMessage = "Results will be shown here...";
 if (host.length() == 0) {
 resultsMessage = "Error: you must load this applet\n" +
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.6 An Applet That Sends POST Data 455

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 "from a real Web server via HTTP,\n" +
 "not from the local disk using\n" +
 "a ’file:’ URL. It is fine,\n" +
 "however, if the Web server is\n" +
 "running on your local system.";
 setEnabled(false);
 }
 hostField.getTextField().setText(host);
 inputPanel.add(hostField);
 portField =
 new LabeledTextField("Port (-1 means default):", 4);
 String portString = String.valueOf(currentPage.getPort());
 portField.getTextField().setText(portString);
 inputPanel.add(portField);
 uriField =
 new LabeledTextField("URI:", 40);
 String defaultURI = "/servlet/coreservlets.ShowParameters";
 uriField.getTextField().setText(defaultURI);
 inputPanel.add(uriField);
 Canvas separator2 = new Canvas();
 inputPanel.add(separator2);
 sendButton = new Button("Submit Data");
 sendButton.addActionListener(this);
 Panel buttonPanel = new Panel();
 buttonPanel.add(sendButton);
 inputPanel.add(buttonPanel);
 add(inputPanel, BorderLayout.NORTH);
 resultsArea = new TextArea();
 resultsArea.setFont(new Font("Monospaced", Font.PLAIN, 14));
 resultsArea.setText(resultsMessage);
 add(resultsArea, BorderLayout.CENTER);
 }

 public void actionPerformed(ActionEvent event) {
 try {
 String protocol = currentPage.getProtocol();
 String host = hostField.getTextField().getText();
 String portString = portField.getTextField().getText();
 int port;
 try {
 port = Integer.parseInt(portString);
 } catch(NumberFormatException nfe) {
 port = -1; // I.e., default port of 80
 }
 String uri = uriField.getTextField().getText();
 URL dataURL = new URL(protocol, host, port, uri);
 URLConnection connection = dataURL.openConnection();

 // Make sure browser doesn’t cache this URL.
 connection.setUseCaches(false);

Listing 17.7 SendPost.java (continued)
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

456 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

 // Tell browser to allow me to send data to server.
 connection.setDoOutput(true);

 ByteArrayOutputStream byteStream =
 new ByteArrayOutputStream(512); // Grows if necessary
 // Stream that writes into buffer
 PrintWriter out = new PrintWriter(byteStream, true);
 String postData =
 "firstName=" + encodedValue(firstNameField) +
 "&lastName=" + encodedValue(lastNameField) +
 "&emailAddress=" + encodedValue(emailAddressField);

 // Write POST data into local buffer
 out.print(postData);
 out.flush(); // Flush since above used print, not println

 // POST requests are required to have Content-Length
 String lengthString =
 String.valueOf(byteStream.size());
 connection.setRequestProperty
 ("Content-Length", lengthString);

 // Netscape sets the Content-Type to multipart/form-data
 // by default. So, if you want to send regular form data,
 // you need to set it to
 // application/x-www-form-urlencoded, which is the
 // default for Internet Explorer. If you send
 // serialized POST data with an ObjectOutputStream,
 // the Content-Type is irrelevant, so you could
 // omit this step.
 connection.setRequestProperty
 ("Content-Type", "application/x-www-form-urlencoded");

 // Write POST data to real output stream
 byteStream.writeTo(connection.getOutputStream());

 BufferedReader in =
 new BufferedReader(new InputStreamReader
 (connection.getInputStream()));
 String line;
 String linefeed = "\n";
 resultsArea.setText("");
 while((line = in.readLine()) != null) {
 resultsArea.append(line);
 resultsArea.append(linefeed);
 }
 } catch(IOException ioe) {
 // Print debug info in Java Console
 System.out.println("IOException: " + ioe);
 }
 }

Listing 17.7 SendPost.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.6 An Applet That Sends POST Data 457

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 // LabeledTextField is really a Panel with a Label and
 // TextField inside it. This extracts the TextField part,
 // gets the text inside it, URL-encodes it, and
 // returns the result.

 private String encodedValue(LabeledTextField field) {
 String rawValue = field.getTextField().getText();
 return(URLEncoder.encode(rawValue));
 }
}

Listing 17.7 SendPost.java (continued)

Figure 17–4 Result of using SendPost to send POST data to the ShowParameters
servlet, which is presented in Section 3.4 (Example: Reading All Parameters).
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

458 Chapter 17 Using Applets As Servlet Front Ends

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 17–5 Result of using SendPost to send POST data to the EchoServer HTTP
server, which is presented in Section 16.12 (A Debugging Web Server).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

17.7 Bypassing the HTTP Server 459

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

17.7 Bypassing the HTTP Server

Although applets can only open network connections to the same machine
they were loaded from, they need not necessarily connect on the same port
(e.g., 80, the HTTP port). So, applets are permitted to use raw sockets,
JDBC, or RMI to communicate with custom clients running on the server
host.

Applets do these operations in exactly the same manner as do normal Java
programs, so you can use whatever approaches to socket, JDBC, and RMI
programming that you are already familiar with, provided that the network
server is on the same host as the Web server that delivered the applet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

JDBC and
Database

Connection
Pooling
Topics in This Chapter

• The seven basic steps in connecting to databases

• Simple database retrieval example

• Some utilities that simplify JDBC usage

• Formatting a database result as plain text or HTML

• An interactive graphical query viewer

• Precompiled queries

• A connection pool library

• A comparison of servlet performance with and without
connection pooling

• Sharing connection pools
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 18

DBC provides a standard library for accessing relational databases.
Using the JDBC API, you can access a wide variety of different SQL
databases with exactly the same Java syntax. It is important to note that
although JDBC standardizes the mechanism for connecting to data-

bases, the syntax for sending queries and committing transactions, and the
data structure representing the result, it does not attempt to standardize
the SQL syntax. So, you can use any SQL extensions your database vendor
supports. However, since most queries follow standard SQL syntax, using
JDBC lets you change database hosts, ports, and even database vendors
with minimal changes in your code.

Officially, JDBC is not an acronym and thus does not stand for anything.
Unofficially, “Java Database Connectivity” is commonly used as the long form
of the name.

J

DILBERT reprinted by permission of United Syndicate, Inc.
461

462 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Core Note

JDBC is not an acronym.

Although a complete tutorial on database programming is beyond the
scope of this chapter, I’ll cover the basics of using JDBC here, assuming
you are already familiar with SQL. For more details on JDBC, see
http://java.sun.com/products/jdbc/, the on-line API for java.sql,
or the JDBC tutorial at http://java.sun.com/docs/books/tutorial/
jdbc/. If you don’t already have access to a database, you might find
mySQL a good choice for practice. It is free for non-Microsoft operating
systems as well as for educational or research use on Windows. For details,
see http://www.mysql.com/.

18.1 Basic Steps in Using JDBC

There are seven standard steps in querying databases:

1. Load the JDBC driver.
2. Define the connection URL.
3. Establish the connection.
4. Create a statement object.
5. Execute a query or update.
6. Process the results.
7. Close the connection.

Here are some details of the process.

Load the Driver

The driver is the piece of software that knows how to talk to the actual data-
base server. To load the driver, all you need to do is to load the appropriate
class; a static block in the class itself automatically makes a driver instance
and registers it with the JDBC driver manager. To make your code as flexible
as possible, it is best to avoid hard-coding the reference to the class name.

These requirements bring up two interesting questions. First, how do you
load a class without making an instance of it? Second, how can you refer to a
class whose name isn’t known when the code is compiled? The answer to
both questions is: use Class.forName. This method takes a string represent-
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.1 Basic Steps in Using JDBC 463

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
ing a fully qualified class name (i.e., one that includes package names) and
loads the corresponding class. This call could throw a ClassNotFound-
Exception, so should be inside a try/catch block. Here is an example:

try {

Class.forName("connect.microsoft.MicrosoftDriver");

Class.forName("oracle.jdbc.driver.OracleDriver");

Class.forName("com.sybase.jdbc.SybDriver");

} catch(ClassNotFoundException cnfe) {

System.err.println("Error loading driver: " + cnfe);

}

One of the beauties of the JDBC approach is that the database server
requires no changes whatsoever. Instead, the JDBC driver (which is on the
client) translates calls written in the Java programming language into the spe-
cific format required by the server. This approach means that you have to
obtain a JDBC driver specific to the database you are using; you will need to
check its documentation for the fully qualified class name to use. Most data-
base vendors supply free JDBC drivers for their databases, but there are
many third-party vendors of drivers for older databases. For an up-to-date
list, see http://java.sun.com/products/jdbc/drivers.html. Many of
these driver vendors supply free trial versions (usually with an expiration date
or with some limitations on the number of simultaneous connections), so it is
easy to learn JDBC without paying for a driver.

In principle, you can use Class.forName for any class in your CLASSPATH.
In practice, however, most JDBC driver vendors distribute their drivers
inside JAR files. So, be sure to include the path to the JAR file in your
CLASSPATH setting.

Define the Connection URL

Once you have loaded the JDBC driver, you need to specify the location of
the database server. URLs referring to databases use the jdbc: protocol and
have the server host, port, and database name (or reference) embedded
within the URL. The exact format will be defined in the documentation that
comes with the particular driver, but here are two representative examples:

String host = "dbhost.yourcompany.com";

String dbName = "someName";

int port = 1234;

String oracleURL = "jdbc:oracle:thin:@" + host +

":" + port + ":" + dbName;

String sybaseURL = "jdbc:sybase:Tds:" + host +

":" + port + ":" + "?SERVICENAME=" + dbName;
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

464 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
JDBC is most often used from servlets or regular desktop applications but
is also sometimes employed from applets. If you use JDBC from an applet,
remember that, to prevent hostile applets from browsing behind corporate
firewalls, browsers prevent applets from making network connections any-
where except to the server from which they were loaded. Consequently, to
use JDBC from applets, either the database server needs to reside on the
same machine as the HTTP server or you need to use a proxy server that
reroutes database requests to the actual server.

Establish the Connection

To make the actual network connection, pass the URL, the database user-
name, and the password to the getConnection method of the Driver-
Manager class, as illustrated in the following example. Note that
getConnection throws an SQLException, so you need to use a try/catch
block. I’m omitting this block from the following example since the methods
in the following steps throw the same exception, and thus you typically use a
single try/catch block for all of them.

String username = "jay_debesee";
String password = "secret";
Connection connection =
DriverManager.getConnection(oracleURL, username, password);

An optional part of this step is to look up information about the database
by using the getMetaData method of Connection. This method returns a
DatabaseMetaData object which has methods to let you discover the name
and version of the database itself (getDatabaseProductName, getData-
baseProductVersion) or of the JDBC driver (getDriverName, get-
DriverVersion). Here is an example:

DatabaseMetaData dbMetaData = connection.getMetaData();
String productName =
dbMetaData.getDatabaseProductName();

System.out.println("Database: " + productName);
String productVersion =
dbMetaData.getDatabaseProductVersion();

System.out.println("Version: " + productVersion);

Other useful methods in the Connection class include prepareState-
ment (create a PreparedStatement; discussed in Section 18.6), prepare-
Call (create a CallableStatement), rollback (undo statements since last
commit), commit (finalize operations since last commit), close (terminate
connection), and isClosed (has the connection either timed out or been
explicitly closed?).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.1 Basic Steps in Using JDBC 465

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Create a Statement

A Statement object is used to send queries and commands to the database
and is created from the Connection as follows:

Statement statement = connection.createStatement();

Execute a Query

Once you have a Statement object, you can use it to send SQL queries by
using the executeQuery method, which returns an object of type Result-
Set. Here is an example:

String query = "SELECT col1, col2, col3 FROM sometable";
ResultSet resultSet = statement.executeQuery(query);

To modify the database, use executeUpdate instead of executeQuery,
and supply a string that uses UPDATE, INSERT, or DELETE. Other useful meth-
ods in the Statement class include execute (execute an arbitrary command)
and setQueryTimeout (set a maximum delay to wait for results). You can
also create parameterized queries where values are supplied to a precom-
piled fixed-format query. See Section 18.6 for details.

Process the Results

The simplest way to handle the results is to process them one row at a time,
using the ResultSet’s next method to move through the table a row at a
time. Within a row, ResultSet provides various getXxx methods that take a
column index or column name as an argument and return the result as a vari-
ety of different Java types. For instance, use getInt if the value should be an
integer, getString for a String, and so on for most other data types. If you
just want to display the results, you can use getString regardless of the
actual column type. However, if you use the version that takes a column
index, note that columns are indexed starting at 1 (following the SQL conven-
tion), not at 0 as with arrays, vectors, and most other data structures in the
Java programming language.

Core Warning

The first column in a ResultSet row has index 1, not 0.

Here is an example that prints the values of the first three columns in all
rows of a ResultSet.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

466 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
while(resultSet.next()) {

 System.out.println(results.getString(1) + " " +

 results.getString(2) + " " +

 results.getString(3));

}

In addition to the getXxx and next methods, other useful methods in the
ResultSet class include findColumn (get the index of the named column),
wasNull (was the last getXxx result SQL NULL? Alternatively, for strings you
can simply compare the return value to null), and getMetaData (retrieve
information about the ResultSet in a ResultSetMetaData object).

The getMetaData method is particularly useful. Given only a ResultSet,
you have to know about the name, number, and type of the columns to be
able to process the table properly. For most fixed-format queries, this is a rea-
sonable expectation. For ad hoc queries, however, it is useful to be able to
dynamically discover high-level information about the result. That is the role
of the ResultSetMetaData class: it lets you determine the number, names,
and types of the columns in the ResultSet. Useful ResultSetMetaData
methods include getColumnCount (the number of columns), getColumn-
Name(colNumber) (a column name, indexed starting at 1), getColumnType
(an int to compare against entries in java.sql.Types), isReadOnly (is
entry a read-only value?), isSearchable (can it be used in a WHERE clause?),
isNullable (is a null value permitted?), and several others that give details
on the type and precision of the column. ResultSetMetaData does not
include the number of rows, however; the only way to determine that is to
repeatedly call next on the ResultSet until it returns false.

Close the Connection

To close the connection explicitly, you would do:

connection.close();

You should postpone this step if you expect to perform additional database
operations, since the overhead of opening a connection is usually large. In
fact, reusing existing connections is such an important optimization that Sec-
tion 18.7 develops a library just for that purpose and Section 18.8 shows some
typical timing results.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.2 Basic JDBC Example 467

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
18.2 Basic JDBC Example

Listing 18.3 presents a simple class called FruitTest that follows the seven
steps outlined in the previous section to show a simple table called fruits. It
uses the command-line arguments to determine the host, port, database
name, and driver type to use, as shown in Listings 18.1 and 18.2. Rather than
putting the driver name and the logic for generating an appropriately format-
ted database URL directly in this class, these two tasks are spun off to a sepa-
rate class called DriverUtilities, shown in Listing 18.4. This separation
minimizes the places that changes have to be made when different drivers
are used.

This example does not depend on the way in which the database table was
actually created, only on its resultant format. So, for example, an interactive
database tool could have been used. In fact, however, JDBC was also used to
create the tables, as shown in Listing 18.5. For now, just skim quickly over
this listing, as it makes use of utilities not discussed until the next section.

Also, a quick reminder to those who are not familiar with packages. Since
FruitTest is in the coreservlets package, it resides in a subdirectory
called coreservlets. Before compiling the file, I set my CLASSPATH to
include the directory containing the coreservlets directory (the JAR file
containing the JDBC drivers should be in the CLASSPATH also, of course).
With this setup, I compile simply by doing “javac FruitTest.java” from
within the coreservlets subdirectory. But to run FruitTest, I need to
refer to the full package name with “java coreservlets.FruitTest ...”.

Listing 18.1 FruitTest result (connecting to Oracle on Solaris)

Prompt> java coreservlets.FruitTest dbhost1.apl.jhu.edu PTE
 hall xxxx oracle
Database: Oracle
Version: Oracle7 Server Release 7.2.3.0.0 - Production Release
PL/SQL Release 2.2.3.0.0 - Production

Comparing Apples and Oranges
============================
QUARTER APPLES APPLESALES ORANGES ORANGESALES TOPSELLER
 1 32248 $3547.28 18459 $3138.03 Maria
 2 35009 $3850.99 18722 $3182.74 Bob
 3 39393 $4333.23 18999 $3229.83 Joe
 4 42001 $4620.11 19333 $3286.61 Maria
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

468 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 18.2 FruitTest result (connecting to Sybase on NT)

Prompt> java coreservlets.FruitTest dbhost2.apl.jhu.edu 605741
 hall xxxx sybase
Database: Adaptive Server Anywhere
Version: 6.0.2.2188

Comparing Apples and Oranges
============================
quarter apples applesales oranges orangesales topseller
 1 32248 $3547.28 18459 $3138.03 Maria
 2 35009 $3850.99 18722 $3182.74 Bob
 3 39393 $4333.23 18999 $3229.83 Joe
 4 42001 $4620.11 19333 $3286.61 Maria

Listing 18.3 FruitTest.java

package coreservlets;

import java.sql.*;

/** A JDBC example that connects to either an Oracle or
 * a Sybase database and prints out the values of
 * predetermined columns in the "fruits" table.
*/

public class FruitTest {

 /** Reads the hostname, database name, username, password,
 * and vendor identifier from the command line. It
 * uses the vendor identifier to determine which
 * driver to load and how to format the URL. The
 * driver, URL, username, host, and password are then
 * passed to the showFruitTable method.
 */

 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendorName = args[4];
 int vendor = DriverUtilities.getVendor(vendorName);
 if (vendor == DriverUtilities.UNKNOWN) {
 printUsage();
 return;
 }
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.2 Basic JDBC Example 469

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url = DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 showFruitTable(driver, url, username, password);
 }

 /** Get the table and print all the values. */

 public static void showFruitTable(String driver,
 String url,
 String username,
 String password) {
 try {
 // Load database driver if not already loaded.
 Class.forName(driver);
 // Establish network connection to database.
 Connection connection =
 DriverManager.getConnection(url, username, password);
 // Look up info about the database as a whole.
 DatabaseMetaData dbMetaData = connection.getMetaData();
 String productName =
 dbMetaData.getDatabaseProductName();
 System.out.println("Database: " + productName);
 String productVersion =
 dbMetaData.getDatabaseProductVersion();
 System.out.println("Version: " + productVersion + "\n");
 System.out.println("Comparing Apples and Oranges\n" +
 "============================");
 Statement statement = connection.createStatement();
 String query = "SELECT * FROM fruits";
 // Send query to database and store results.
 ResultSet resultSet = statement.executeQuery(query);
 // Look up information about a particular table.
 ResultSetMetaData resultsMetaData =
 resultSet.getMetaData();
 int columnCount = resultsMetaData.getColumnCount();
 // Column index starts at 1 (a la SQL) not 0 (a la Java).
 for(int i=1; i<columnCount+1; i++) {
 System.out.print(resultsMetaData.getColumnName(i) +
 " ");
 }
 System.out.println();
 // Print results.
 while(resultSet.next()) {

Listing 18.3 FruitTest.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

470 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 // Quarter
 System.out.print(" " + resultSet.getInt(1));
 // Number of Apples
 System.out.print(" " + resultSet.getInt(2));
 // Apple Sales
 System.out.print(" $" + resultSet.getFloat(3));
 // Number of Oranges
 System.out.print(" " + resultSet.getInt(4));
 // Orange Sales
 System.out.print(" $" + resultSet.getFloat(5));
 // Top Salesman
 System.out.println(" " + resultSet.getString(6));
 }
 } catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
 } catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
 }
 }

 private static void printUsage() {
 System.out.println("Usage: FruitTest host dbName " +
 "username password oracle|sybase.");
 }
}

Listing 18.4 DriverUtilities.java

package coreservlets;

/** Some simple utilities for building Oracle and Sybase
 * JDBC connections. This is <I>not</I> general-purpose
 * code -- it is specific to my local setup.
*/

public class DriverUtilities {
 public static final int ORACLE = 1;
 public static final int SYBASE = 2;
 public static final int UNKNOWN = -1;

Listing 18.3 FruitTest.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.2 Basic JDBC Example 471

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 /** Build a URL in the format needed by the
 * Oracle and Sybase drivers I am using.
 */

 public static String makeURL(String host, String dbName,
 int vendor) {
 if (vendor == ORACLE) {
 return("jdbc:oracle:thin:@" + host + ":1521:" + dbName);
 } else if (vendor == SYBASE) {
 return("jdbc:sybase:Tds:" + host + ":1521" +
 "?SERVICENAME=" + dbName);
 } else {
 return(null);
 }
 }

 /** Get the fully qualified name of a driver. */

 public static String getDriver(int vendor) {
 if (vendor == ORACLE) {
 return("oracle.jdbc.driver.OracleDriver");
 } else if (vendor == SYBASE) {
 return("com.sybase.jdbc.SybDriver");
 } else {
 return(null);
 }
 }

 /** Map name to int value. */

 public static int getVendor(String vendorName) {
 if (vendorName.equalsIgnoreCase("oracle")) {
 return(ORACLE);
 } else if (vendorName.equalsIgnoreCase("sybase")) {
 return(SYBASE);
 } else {
 return(UNKNOWN);
 }
 }
}

Listing 18.4 DriverUtilities.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

472 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 18.5 FruitCreation.java

package coreservlets;

import java.sql.*;

/** Creates a simple table named "fruits" in either
 * an Oracle or a Sybase database.
*/

public class FruitCreation {
 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendorName = args[4];
 int vendor = DriverUtilities.getVendor(vendorName);
 if (vendor == DriverUtilities.UNKNOWN) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 String format =
 "(quarter int, " +
 "apples int, applesales float, " +
 "oranges int, orangesales float, " +
 "topseller varchar(16))";
 String[] rows =
 { "(1, 32248, 3547.28, 18459, 3138.03, ’Maria’)",
 "(2, 35009, 3850.99, 18722, 3182.74, ’Bob’)",
 "(3, 39393, 4333.23, 18999, 3229.83, ’Joe’)",
 "(4, 42001, 4620.11, 19333, 3286.61, ’Maria’)" };
 Connection connection =
 DatabaseUtilities.createTable(driver, url,
 username, password,
 "fruits", format, rows,
 false);
 // Test to verify table was created properly. Reuse
 // old connection for efficiency.
 DatabaseUtilities.printTable(connection, "fruits",
 11, true);
 }

 private static void printUsage() {
 System.out.println("Usage: FruitCreation host dbName " +
 "username password oracle|sybase.");
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.3 Some JDBC Utilities 473

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
18.3 Some JDBC Utilities

In many applications, you don’t need to process query results a row at a time.
For example, in servlets and JSP pages, it is common to simply format the
database results (treating all values as strings) and present them to the user in
an HTML table (see Sections 18.4 and 18.8), in an Excel spreadsheet (see
Section 11.2), or distributed throughout the page. In such a case, it simplifies
processing to have methods that retrieve and store an entire ResultSet for
later display.

This section presents two classes that provide this basic functionality along
with a few formatting, display, and table creation utilities. The core class is
DatabaseUtilities, which implements static methods for four common
tasks:

1. getQueryResults
This method connects to a database, executes a query, retrieves
all the rows as arrays of strings, and puts them inside a
DBResults object (see Listing 18.7). This method also places
the database product name, database version, the names of all
the columns and the Connection object into the DBResults
object. There are two versions of getQueryResults: one that
makes a new connection and another that uses an existing con-
nection.

2. createTable
Given a table name, a string denoting the column formats, and
an array of strings denoting the row values, this method con-
nects to a database, removes any existing versions of the desig-
nated table, issues a CREATE TABLE command with the
designated format, then sends a series of INSERT INTO com-
mands for each of the rows. Again, there are two versions: one
that makes a new connection and another that uses an existing
connection.

3. printTable

Given a table name, this method connects to the specified data-
base, retrieves all the rows, and prints them on the standard
output. It retrieves the results by turning the table name into a
query of the form “SELECT * FROM tableName” and passing it
to getQueryResults.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

474 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
4. printTableData

Given a DBResults object from a previous query, this method
prints it on the standard output. This is the underlying method
used by printTable, but it is also useful for debugging arbi-
trary database results.

Listing 18.6 gives the main code, and Listing 18.7 presents the auxiliary
DBResults class that stores the accumulated results and returns them as
arrays of strings (getRow) or wrapped up inside an HTML table (toHTML-
Table). For example, the following two statements perform a database query,
retrieve the results, and format them inside an HTML table that uses the col-
umn names as headings with a cyan background color.

DBResults results =
DatabaseUtilities.getQueryResults(driver, url,

 username, password,
 query, true);
out.println(results.toHTMLTable("CYAN"));

Since an HTML table can do double duty as an Excel spreadsheet (see
Section 11.2), the toHTMLTable method provides an extremely simple
method for building tables or spreadsheets from database results.

 Remember that the source code for DatabaseUtilities and DBResults,
like all the source code in the book, can be downloaded from www.core-
servlets.com and used or adapted without restriction.

Listing 18.6 DatabaseUtilities.java

package coreservlets;

import java.sql.*;

public class DatabaseUtilities {

 /** Connect to database, execute specified query,
 * and accumulate results into DBRresults object.
 * If the database connection is left open (use the
 * close argument to specify), you can retrieve the
 * connection with DBResults.getConnection.
 */

 public static DBResults getQueryResults(String driver,
 String url,
 String username,
 String password,
 String query,
 boolean close) {
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.3 Some JDBC Utilities 475

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 try {
 Class.forName(driver);
 Connection connection =
 DriverManager.getConnection(url, username, password);
 return(getQueryResults(connection, query, close));
 } catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
 return(null);
 } catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
 return(null);
 }
 }

 /** Retrieves results as in previous method but uses
 * an existing connection instead of opening a new one.
 */

 public static DBResults getQueryResults(Connection connection,
 String query,
 boolean close) {
 try {
 DatabaseMetaData dbMetaData = connection.getMetaData();
 String productName =
 dbMetaData.getDatabaseProductName();
 String productVersion =
 dbMetaData.getDatabaseProductVersion();
 Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery(query);
 ResultSetMetaData resultsMetaData =
 resultSet.getMetaData();
 int columnCount = resultsMetaData.getColumnCount();
 String[] columnNames = new String[columnCount];
 // Column index starts at 1 (a la SQL) not 0 (a la Java).
 for(int i=1; i<columnCount+1; i++) {
 columnNames[i-1] =
 resultsMetaData.getColumnName(i).trim();
 }
 DBResults dbResults =
 new DBResults(connection, productName, productVersion,
 columnCount, columnNames);
 while(resultSet.next()) {
 String[] row = new String[columnCount];
 // Again, ResultSet index starts at 1, not 0.
 for(int i=1; i<columnCount+1; i++) {
 String entry = resultSet.getString(i);
 if (entry != null) {
 entry = entry.trim();
 }

Listing 18.6 DatabaseUtilities.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

476 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 row[i-1] = entry;
 }
 dbResults.addRow(row);
 }
 if (close) {
 connection.close();
 }
 return(dbResults);
 } catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
 return(null);
 }
 }

 /** Build a table with the specified format and rows. */

 public static Connection createTable(String driver,
 String url,
 String username,
 String password,
 String tableName,
 String tableFormat,
 String[] tableRows,
 boolean close) {
 try {
 Class.forName(driver);
 Connection connection =
 DriverManager.getConnection(url, username, password);
 return(createTable(connection, username, password,
 tableName, tableFormat,
 tableRows, close));
 } catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
 return(null);
 } catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
 return(null);
 }
 }

 /** Like the previous method, but uses existing connection. */

 public static Connection createTable(Connection connection,
 String username,
 String password,
 String tableName,
 String tableFormat,
 String[] tableRows,
 boolean close) {

Listing 18.6 DatabaseUtilities.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.3 Some JDBC Utilities 477

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 try {

 Statement statement = connection.createStatement();
 // Drop previous table if it exists, but don’t get
 // error if it doesn’t. Thus the separate try/catch here.
 try {
 statement.execute("DROP TABLE " + tableName);
 } catch(SQLException sqle) {}
 String createCommand =
 "CREATE TABLE " + tableName + " " + tableFormat;
 statement.execute(createCommand);
 String insertPrefix =
 "INSERT INTO " + tableName + " VALUES";
 for(int i=0; i<tableRows.length; i++) {
 statement.execute(insertPrefix + tableRows[i]);
 }
 if (close) {
 connection.close();
 return(null);
 } else {
 return(connection);
 }
 } catch(SQLException sqle) {
 System.err.println("Error creating table: " + sqle);
 return(null);
 }
 }

 public static void printTable(String driver,
 String url,
 String username,
 String password,
 String tableName,
 int entryWidth,
 boolean close) {
 String query = "SELECT * FROM " + tableName;
 DBResults results =
 getQueryResults(driver, url, username,
 password, query, close);
 printTableData(tableName, results, entryWidth, true);
 }

 /** Prints out all entries in a table. Each entry will
 * be printed in a column that is entryWidth characters
 * wide, so be sure to provide a value at least as big
 * as the widest result.
 */

Listing 18.6 DatabaseUtilities.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

478 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 public static void printTable(Connection connection,
 String tableName,
 int entryWidth,
 boolean close) {
 String query = "SELECT * FROM " + tableName;
 DBResults results =
 getQueryResults(connection, query, close);
 printTableData(tableName, results, entryWidth, true);
 }

 public static void printTableData(String tableName,
 DBResults results,
 int entryWidth,
 boolean printMetaData) {
 if (results == null) {
 return;
 }
 if (printMetaData) {
 System.out.println("Database: " +
 results.getProductName());
 System.out.println("Version: " +
 results.getProductVersion());
 System.out.println();
 }
 System.out.println(tableName + ":");
 String underline =
 padString("", tableName.length()+1, "=");
 System.out.println(underline);
 int columnCount = results.getColumnCount();
 String separator =
 makeSeparator(entryWidth, columnCount);
 System.out.println(separator);
 String row = makeRow(results.getColumnNames(), entryWidth);
 System.out.println(row);
 System.out.println(separator);
 int rowCount = results.getRowCount();
 for(int i=0; i<rowCount; i++) {
 row = makeRow(results.getRow(i), entryWidth);
 System.out.println(row);
 }
 System.out.println(separator);
 }

Listing 18.6 DatabaseUtilities.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.3 Some JDBC Utilities 479

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 // A String of the form "| xxx | xxx | xxx |"

 private static String makeRow(String[] entries,
 int entryWidth) {

 String row = "|";
 for(int i=0; i<entries.length; i++) {
 row = row + padString(entries[i], entryWidth, " ");
 row = row + " |";
 }
 return(row);
 }

 // A String of the form "+------+------+------+"

 private static String makeSeparator(int entryWidth,
 int columnCount) {
 String entry = padString("", entryWidth+1, "-");
 String separator = "+";
 for(int i=0; i<columnCount; i++) {
 separator = separator + entry + "+";
 }
 return(separator);
 }

 private static String padString(String orig, int size,
 String padChar) {
 if (orig == null) {
 orig = "<null>";
 }
 // Use StringBuffer, not just repeated String concatenation
 // to avoid creating too many temporary Strings.
 StringBuffer buffer = new StringBuffer("");
 int extraChars = size - orig.length();
 for(int i=0; i<extraChars; i++) {
 buffer.append(padChar);
 }
 buffer.append(orig);
 return(buffer.toString());
 }
}

Listing 18.6 DatabaseUtilities.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

480 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 18.7 DBResults.java

package coreservlets;

import java.sql.*;
import java.util.*;

/** Class to store completed results of a JDBC Query.
 * Differs from a ResultSet in several ways:
 *
 * ResultSet doesn’t necessarily have all the data;
 * reconnection to database occurs as you ask for
 * later rows.
 * This class stores results as strings, in arrays.
 * This class includes DatabaseMetaData (database product
 * name and version) and ResultSetMetaData
 * (the column names).
 * This class has a toHTMLTable method that turns
 * the results into a long string corresponding to
 * an HTML table.
 *
*/

public class DBResults {
 private Connection connection;
 private String productName;
 private String productVersion;
 private int columnCount;
 private String[] columnNames;
 private Vector queryResults;
 String[] rowData;

 public DBResults(Connection connection,
 String productName,
 String productVersion,
 int columnCount,
 String[] columnNames) {
 this.connection = connection;
 this.productName = productName;
 this.productVersion = productVersion;
 this.columnCount = columnCount;
 this.columnNames = columnNames;
 rowData = new String[columnCount];
 queryResults = new Vector();
 }

 public Connection getConnection() {
 return(connection);
 }
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.3 Some JDBC Utilities 481

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 public String getProductName() {
 return(productName);
 }

 public String getProductVersion() {
 return(productVersion);
 }

 public int getColumnCount() {
 return(columnCount);
 }

 public String[] getColumnNames() {
 return(columnNames);
 }

 public int getRowCount() {
 return(queryResults.size());
 }

 public String[] getRow(int index) {
 return((String[])queryResults.elementAt(index));
 }

 public void addRow(String[] row) {
 queryResults.addElement(row);
 }

 /** Output the results as an HTML table, with
 * the column names as headings and the rest of
 * the results filling regular data cells.
 */

 public String toHTMLTable(String headingColor) {
 StringBuffer buffer =
 new StringBuffer("<TABLE BORDER=1>\n");
 if (headingColor != null) {
 buffer.append(" <TR BGCOLOR=\"" + headingColor +
 "\">\n ");
 } else {
 buffer.append(" <TR>\n ");
 }
 for(int col=0; col<getColumnCount(); col++) {
 buffer.append("<TH>" + columnNames[col]);

Listing 18.7 DBResults.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

482 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
18.4 Applying the Database
Utilities

Now, let’s see how the database utilities of Section 18.3 can simplify the
retrieval and display of database results. Listing 18.8 presents a class that con-
nects to the database specified on the command line and prints out all entries
in the employees table. Listings 18.9 and 18.10 show the results when con-
necting to Oracle and Sybase databases, respectively. Listing 18.11 shows a
similar class that performs the same database lookup but formats the results
in an HTML table. Listing 18.12 shows the raw HTML result. I’ll put an
HTML table like this in a real Web page in Section 18.8 (Connection Pool-
ing: A Case Study).

Listing 18.13 shows the JDBC code used to create the employees table.

 }
 for(int row=0; row<getRowCount(); row++) {
 buffer.append("\n <TR>\n ");
 String[] rowData = getRow(row);
 for(int col=0; col<getColumnCount(); col++) {
 buffer.append("<TD>" + rowData[col]);
 }
 }
 buffer.append("\n</TABLE>");
 return(buffer.toString());
 }
}

Listing 18.7 DBResults.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.4 Applying the Database Utilities 483

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Listing 18.8 EmployeeTest.java

package coreservlets;

import java.sql.*;

/** Connect to Oracle or Sybase and print "employees" table. */

public class EmployeeTest {
 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendorName = args[4];
 int vendor = DriverUtilities.getVendor(vendorName);
 if (vendor == DriverUtilities.UNKNOWN) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 DatabaseUtilities.printTable(driver, url,
 username, password,
 "employees", 12, true);
 }

 private static void printUsage() {
 System.out.println("Usage: EmployeeTest host dbName " +
 "username password oracle|sybase.");
 }
}

me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

484 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 18.9 EmployeeTest result (connecting to Oracle on
Solaris)

Prompt> java coreservlets.EmployeeTest dbhost1.apl.jhu.edu PTE
 hall xxxx oracle
Database: Oracle
Version: Oracle7 Server Release 7.2.3.0.0 - Production Release
PL/SQL Release 2.2.3.0.0 - Production

employees:
==========
+-------------+-------------+-------------+-------------+-------------+
| ID | FIRSTNAME | LASTNAME | LANGUAGE | SALARY |
+-------------+-------------+-------------+-------------+-------------+
1	Wye	Tukay	COBOL	42500
2	Britt	Tell	C++	62000
3	Max	Manager	none	15500
4	Polly	Morphic	Smalltalk	51500
5	Frank	Function	Common Lisp	51500
6	Justin	Timecompiler	Java	98000
7	Sir	Vlet	Java	114750
8	Jay	Espy	Java	128500
+-------------+-------------+-------------+-------------+-------------+

Listing 18.10 EmployeeTest result (connecting to Sybase on NT)

Prompt> java coreservlets.EmployeeTest dbhost2.apl.jhu.edu 605741
 hall xxxx sybase
Database: Adaptive Server Anywhere
Version: 6.0.2.2188

employees:
==========
+-------------+-------------+-------------+-------------+-------------+
| id | firstname | lastname | language | salary |
+-------------+-------------+-------------+-------------+-------------+
1	Wye	Tukay	COBOL	42500.0
2	Britt	Tell	C++	62000.0
3	Max	Manager	none	15500.0
4	Polly	Morphic	Smalltalk	51500.0
5	Frank	Function	Common Lisp	51500.0
6	Justin	Timecompiler	Java	98000.0
7	Sir	Vlet	Java	114750.0
8	Jay	Espy	Java	128500.0
+-------------+-------------+-------------+-------------+-------------+
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.4 Applying the Database Utilities 485

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Listing 18.11 EmployeeTest2.java

package coreservlets;

import java.sql.*;

/** Connect to Oracle or Sybase and print "employees" table
 * as an HTML table.
*/

public class EmployeeTest2 {
 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendorName = args[4];
 int vendor = DriverUtilities.getVendor(vendorName);
 if (vendor == DriverUtilities.UNKNOWN) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 String query = "SELECT * FROM employees";
 DBResults results =
 DatabaseUtilities.getQueryResults(driver, url,
 username, password,
 query, true);
 System.out.println(results.toHTMLTable("CYAN"));
 }

 private static void printUsage() {
 System.out.println("Usage: EmployeeTest2 host dbName " +
 "username password oracle|sybase.");
 }
}

me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

486 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 18.12 EmployeeTest2 result (connecting to Sybase on NT)

Prompt> java coreservlets.EmployeeTest2 dbhost2 605741
 hall xxxx sybase
<TABLE BORDER=1>
 <TR BGCOLOR="CYAN">
 <TH>id<TH>firstname<TH>lastname<TH>language<TH>salary
 <TR>
 <TD>1<TD>Wye<TD>Tukay<TD>COBOL<TD>42500.0
 <TR>
 <TD>2<TD>Britt<TD>Tell<TD>C++<TD>62000.0
 <TR>
 <TD>3<TD>Max<TD>Manager<TD>none<TD>15500.0
 <TR>
 <TD>4<TD>Polly<TD>Morphic<TD>Smalltalk<TD>51500.0
 <TR>
 <TD>5<TD>Frank<TD>Function<TD>Common Lisp<TD>51500.0
 <TR>
 <TD>6<TD>Justin<TD>Timecompiler<TD>Java<TD>98000.0
 <TR>
 <TD>7<TD>Sir<TD>Vlet<TD>Java<TD>114750.0
 <TR>
 <TD>8<TD>Jay<TD>Espy<TD>Java<TD>128500.0
</TABLE>

Listing 18.13 EmployeeCreation.java

package coreservlets;

import java.sql.*;

/** Make a simple "employees" table using DatabaseUtilities. */

public class EmployeeCreation {
 public static Connection createEmployees(String driver,
 String url,
 String username,
 String password,
 boolean close) {
 String format =
 "(id int, firstname varchar(32), lastname varchar(32), " +
 "language varchar(16), salary float)";
 String[] employees =
 {"(1, ’Wye’, ’Tukay’, ’COBOL’, 42500)",
 "(2, ’Britt’, ’Tell’, ’C++’, 62000)",
 "(3, ’Max’, ’Manager’, ’none’, 15500)",
 "(4, ’Polly’, ’Morphic’, ’Smalltalk’, 51500)",
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.5 An Interactive Query Viewer 487

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
18.5 An Interactive Query Viewer

Up to this point, all the database results have been based upon queries that
were known at the time the program was written. In many real applications,
however, queries are derived from user input that is not known until runtime.

 "(5, ’Frank’, ’Function’, ’Common Lisp’, 51500)",
 "(6, ’Justin’, ’Timecompiler’, ’Java’, 98000)",
 "(7, ’Sir’, ’Vlet’, ’Java’, 114750)",
 "(8, ’Jay’, ’Espy’, ’Java’, 128500)" };
 return(DatabaseUtilities.createTable(driver, url,
 username, password,
 "employees",
 format, employees,
 close));
 }

 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendorName = args[4];
 int vendor = DriverUtilities.getVendor(vendorName);
 if (vendor == DriverUtilities.UNKNOWN) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 createEmployees(driver, url, username, password, true);
 }

 private static void printUsage() {
 System.out.println("Usage: EmployeeCreation host dbName " +
 "username password oracle|sybase.");
 }
}

Listing 18.13 EmployeeCreation.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

488 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Sometimes the queries follow a fixed format even though certain values
change. You should make use of prepared statements in such a case; see Sec-
tion 18.6 for details. Other times, however, even the query format is variable.
Fortunately, this situation presents no problem, since ResultSetMetaData
can be used to determine the number, names, and types of columns in a
ResultSet, as was discussed in Section 18.1 (Basic Steps in Using JDBC). In
fact, the database utilities of Listing 18.6 store that metadata in the
DBResults object that is returned from the showQueryData method. Access
to this metadata makes it straightforward to implement an interactive graphi-
cal query viewer as shown in Figures 18–1 through 18–5. The code to accom-
plish this result is presented in the following subsection.

Figure 18–1 Initial appearance of the query viewer.

Figure 18–2 Query viewer after a request for the complete employees table from an
Oracle database.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.5 An Interactive Query Viewer 489

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Query Viewer Code

Building the display shown in Figures 18–1 through 18–5 is relatively
straightforward. In fact, given the database utilities shown earlier, it takes
substantially more code to build the user interface than it does to communi-
cate with the database. The full code is shown in Listing 18.14, but I’ll give a

Figure 18–3 Query viewer after a request for part of the employees table from an
Oracle database.

Figure 18–4 Query viewer after a request for the complete fruits table from a
Sybase database.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

490 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
quick summary of the process that takes place when the user presses the
“Show Results” button.

First, the system reads the host, port, database name, username, password,
and driver type from the user interface elements shown. Next, it submits the
query and stores the result, as below:

DBResults results =
DatabaseUtilities.getQueryResults(driver, url,

username, password,
query, true);

Next, the system passes these results to a custom table model (see Listing
18.15). If you are not familiar with the Swing GUI library, a table model
acts as the glue between a JTable and the actual data.

DBResultsTableModel model = new DBResultsTableModel(results);
JTable table = new JTable(model);

Finally, the system places this JTable in the bottom region of the JFrame
and calls pack to tell the JFrame to resize itself to fit the table.

Figure 18–5 Query viewer after a request for part of the fruits table from a Sybase
database.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.5 An Interactive Query Viewer 491

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Listing 18.14 QueryViewer.java

package coreservlets;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;

/** An interactive database query viewer. Connects to
 * the specified Oracle or Sybase database, executes a query,
 * and presents the results in a JTable.
*/

public class QueryViewer extends JFrame
 implements ActionListener{
 public static void main(String[] args) {
 new QueryViewer();
 }

 private JTextField hostField, dbNameField,
 queryField, usernameField;
 private JRadioButton oracleButton, sybaseButton;
 private JPasswordField passwordField;
 private JButton showResultsButton;
 private Container contentPane;
 private JPanel tablePanel;

 public QueryViewer () {
 super("Database Query Viewer");
 WindowUtilities.setNativeLookAndFeel();
 addWindowListener(new ExitListener());
 contentPane = getContentPane();
 contentPane.add(makeControlPanel(), BorderLayout.NORTH);
 pack();
 setVisible(true);
 }

 /** When the "Show Results" button is pressed or
 * RETURN is hit while the query textfield has the
 * keyboard focus, a database lookup is performed,
 * the results are placed in a JTable, and the window
 * is resized to accommodate the table.
 */

 public void actionPerformed(ActionEvent event) {
 String host = hostField.getText();
 String dbName = dbNameField.getText();
 String username = usernameField.getText();
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

492 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 String password =
 String.valueOf(passwordField.getPassword());
 String query = queryField.getText();
 int vendor;
 if (oracleButton.isSelected()) {
 vendor = DriverUtilities.ORACLE;
 } else {
 vendor = DriverUtilities.SYBASE;
 }
 if (tablePanel != null) {
 contentPane.remove(tablePanel);
 }
 tablePanel = makeTablePanel(host, dbName, vendor,
 username, password,
 query);
 contentPane.add(tablePanel, BorderLayout.CENTER);
 pack();
 }

 // Executes a query and places the result in a
 // JTable that is, in turn, inside a JPanel.

 private JPanel makeTablePanel(String host,
 String dbName,
 int vendor,
 String username,
 String password,
 String query) {
 String driver = DriverUtilities.getDriver(vendor);
 String url = DriverUtilities.makeURL(host, dbName, vendor);
 DBResults results =
 DatabaseUtilities.getQueryResults(driver, url,
 username, password,
 query, true);
 JPanel panel = new JPanel(new BorderLayout());
 if (results == null) {
 panel.add(makeErrorLabel());
 return(panel);
 }
 DBResultsTableModel model =
 new DBResultsTableModel(results);
 JTable table = new JTable(model);
 table.setFont(new Font("Serif", Font.PLAIN, 17));
 table.setRowHeight(28);
 JTableHeader header = table.getTableHeader();
 header.setFont(new Font("SansSerif", Font.BOLD, 13));
 panel.add(table, BorderLayout.CENTER);
 panel.add(header, BorderLayout.NORTH);

Listing 18.14 QueryViewer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.5 An Interactive Query Viewer 493

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 panel.setBorder
 (BorderFactory.createTitledBorder("Query Results"));
 return(panel);
 }

 // The panel that contains the textfields, check boxes,
 // and button.

 private JPanel makeControlPanel() {
 JPanel panel = new JPanel(new GridLayout(0, 1));
 panel.add(makeHostPanel());
 panel.add(makeUsernamePanel());
 panel.add(makeQueryPanel());
 panel.add(makeButtonPanel());
 panel.setBorder
 (BorderFactory.createTitledBorder("Query Data"));
 return(panel);
 }

 // The panel that has the host and db name textfield and
 // the driver radio buttons. Placed in control panel.

 private JPanel makeHostPanel() {
 JPanel panel = new JPanel();
 panel.add(new JLabel("Host:"));
 hostField = new JTextField(15);
 panel.add(hostField);
 panel.add(new JLabel(" DB Name:"));
 dbNameField = new JTextField(15);
 panel.add(dbNameField);
 panel.add(new JLabel(" Driver:"));
 ButtonGroup vendorGroup = new ButtonGroup();
 oracleButton = new JRadioButton("Oracle", true);
 vendorGroup.add(oracleButton);
 panel.add(oracleButton);
 sybaseButton = new JRadioButton("Sybase");
 vendorGroup.add(sybaseButton);
 panel.add(sybaseButton);
 return(panel);
 }

 // The panel that has the username and password textfields.
 // Placed in control panel.

 private JPanel makeUsernamePanel() {
 JPanel panel = new JPanel();
 usernameField = new JTextField(10);

Listing 18.14 QueryViewer.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

494 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 passwordField = new JPasswordField(10);
 panel.add(new JLabel("Username: "));
 panel.add(usernameField);
 panel.add(new JLabel(" Password:"));
 panel.add(passwordField);
 return(panel);
 }

 // The panel that has textfield for entering queries.
 // Placed in control panel.

 private JPanel makeQueryPanel() {
 JPanel panel = new JPanel();
 queryField = new JTextField(40);
 queryField.addActionListener(this);
 panel.add(new JLabel("Query:"));
 panel.add(queryField);
 return(panel);
 }

 // The panel that has the "Show Results" button.
 // Placed in control panel.

 private JPanel makeButtonPanel() {
 JPanel panel = new JPanel();
 showResultsButton = new JButton("Show Results");
 showResultsButton.addActionListener(this);
 panel.add(showResultsButton);
 return(panel);
 }

 // Shows warning when bad query sent.

 private JLabel makeErrorLabel() {
 JLabel label = new JLabel("No Results", JLabel.CENTER);
 label.setFont(new Font("Serif", Font.BOLD, 36));
 return(label);
 }
}

Listing 18.14 QueryViewer.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.5 An Interactive Query Viewer 495

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Listing 18.15 DBResultsTableModel.java

package coreservlets;

import javax.swing.table.*;

/** Simple class that tells a JTable how to extract
 * relevant data from a DBResults object (which is
 * used to store the results from a database query).
*/

public class DBResultsTableModel extends AbstractTableModel {
 private DBResults results;

 public DBResultsTableModel(DBResults results) {
 this.results = results;
 }

 public int getRowCount() {
 return(results.getRowCount());
 }

 public int getColumnCount() {
 return(results.getColumnCount());
 }

 public String getColumnName(int column) {
 return(results.getColumnNames()[column]);
 }

 public Object getValueAt(int row, int column) {
 return(results.getRow(row)[column]);
 }
}

me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

496 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 18.16 WindowUtilities.java

package coreservlets;

import javax.swing.*;
import java.awt.*;

/** A few utilities that simplify using windows in Swing. */

public class WindowUtilities {

 /** Tell system to use native look and feel, as in previous
 * releases. Metal (Java) LAF is the default otherwise.
 */

 public static void setNativeLookAndFeel() {
 try {
 UIManager.setLookAndFeel
 (UIManager.getSystemLookAndFeelClassName());
 } catch(Exception e) {
 System.out.println("Error setting native LAF: " + e);
 }
 }

 public static void setJavaLookAndFeel() {
 try {
 UIManager.setLookAndFeel
 (UIManager.getCrossPlatformLookAndFeelClassName());
 } catch(Exception e) {
 System.out.println("Error setting Java LAF: " + e);
 }
 }

 public static void setMotifLookAndFeel() {
 try {
 UIManager.setLookAndFeel
 ("com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 } catch(Exception e) {
 System.out.println("Error setting Motif LAF: " + e);
 }
 }
}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.6 Prepared Statements (Precompiled Queries) 497

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
18.6 Prepared Statements
(Precompiled Queries)

If you are going to execute similar SQL statements multiple times, using
“prepared” statements can be more efficient than executing a raw query each
time. The idea is to create a parameterized statement in a standard form that
is sent to the database for compilation before actually being used. You use a
question mark to indicate the places where a value will be substituted into
the statement. Each time you use the prepared statement, you simply replace
some of the marked parameters, using a setXxx call corresponding to the
entry you want to set (using 1-based indexing) and the type of the parameter
(e.g., setInt, setString, and so forth). You then use executeQuery (if you
want a ResultSet back) or execute/executeUpdate (for side effects) as
with normal statements. For instance, if you were going to give raises to all
the personnel in the employees database, you might do something like the
following:

Connection connection =

DriverManager.getConnection(url, user, password);

String template =

"UPDATE employees SET salary = ? WHERE id = ?";

PreparedStatement statement =

connection.prepareStatement(template);

float[] newSalaries = getNewSalaries();

Listing 18.17 ExitListener.java

package coreservlets;

import java.awt.*;
import java.awt.event.*;

/** A listener that you attach to the top-level Frame
 * or JFrame of your application, so quitting the
 * frame exits the application.
*/

public class ExitListener extends WindowAdapter {
 public void windowClosing(WindowEvent event) {
 System.exit(0);
 }
}

me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

498 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
int[] employeeIDs = getIDs();

for(int i=0; i<employeeIDs.length; i++) {

statement.setFloat(1, newSalaries[i]);

statement.setInt(2, employeeIDs[i]);

statement.execute();

}

The performance advantages of prepared statements can vary significantly,
depending on how well the server supports precompiled queries and how effi-
ciently the driver handles raw queries. For example, Listing 18.18 presents a
class that sends 40 different queries to a database using prepared statements,
then repeats the same 40 queries using regular statements. With a PC and a
28.8K modem connection to the Internet to talk to an Oracle database, pre-
pared statements took only half the time of raw queries, averaging 17.5 seconds
for the 40 queries as compared with an average of 35 seconds for the raw que-
ries. Using a fast LAN connection to the same Oracle database, prepared state-
ments took only about 70 percent of the time required by raw queries,
averaging 0.22 seconds for the 40 queries as compared with an average of 0.31
seconds for the regular statements. With Sybase, prepared statement times
were virtually identical to times for raw queries both with the modem connec-
tion and with the fast LAN connection. To get performance numbers for your
setup, download DriverUtilities.java from http://www.coreserv-

lets.com/, add information about your drivers to it, then run the Prepared-
Statements program yourself.

Listing 18.18 PreparedStatements.java

package coreservlets;

import java.sql.*;

/** An example to test the timing differences resulting
 * from repeated raw queries vs. repeated calls to
 * prepared statements. These results will vary dramatically
 * among database servers and drivers.
*/

public class PreparedStatements {
 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendorName = args[4];
 int vendor = DriverUtilities.getVendor(vendorName);
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.6 Prepared Statements (Precompiled Queries) 499

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 if (vendor == DriverUtilities.UNKNOWN) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 // Use "print" only to confirm it works properly,
 // not when getting timing results.
 boolean print = false;
 if ((args.length > 5) && (args[5].equals("print"))) {
 print = true;
 }
 Connection connection =
 getConnection(driver, url, username, password);
 if (connection != null) {
 doPreparedStatements(connection, print);
 doRawQueries(connection, print);
 }
 }

 private static void doPreparedStatements(Connection conn,
 boolean print) {
 try {
 String queryFormat =
 "SELECT lastname FROM employees WHERE salary > ?";
 PreparedStatement statement =
 conn.prepareStatement(queryFormat);
 long startTime = System.currentTimeMillis();
 for(int i=0; i<40; i++) {
 statement.setFloat(1, i*5000);
 ResultSet results = statement.executeQuery();
 if (print) {
 showResults(results);
 }
 }
 long stopTime = System.currentTimeMillis();
 double elapsedTime = (stopTime - startTime)/1000.0;
 System.out.println("Executing prepared statement " +
 "40 times took " +
 elapsedTime + " seconds.");
 } catch(SQLException sqle) {
 System.out.println("Error executing statement: " + sqle);
 }
 }

Listing 18.18 PreparedStatements.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

500 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 public static void doRawQueries(Connection conn,
 boolean print) {
 try {
 String queryFormat =
 "SELECT lastname FROM employees WHERE salary > ";
 Statement statement = conn.createStatement();
 long startTime = System.currentTimeMillis();
 for(int i=0; i<40; i++) {
 ResultSet results =
 statement.executeQuery(queryFormat + (i*5000));
 if (print) {
 showResults(results);
 }
 }
 long stopTime = System.currentTimeMillis();
 double elapsedTime = (stopTime - startTime)/1000.0;
 System.out.println("Executing raw query " +
 "40 times took " +
 elapsedTime + " seconds.");
 } catch(SQLException sqle) {
 System.out.println("Error executing query: " + sqle);
 }
 }

 private static void showResults(ResultSet results)
 throws SQLException {
 while(results.next()) {
 System.out.print(results.getString(1) + " ");
 }
 System.out.println();
 }

 private static Connection getConnection(String driver,
 String url,
 String username,
 String password) {
 try {
 Class.forName(driver);
 Connection connection =
 DriverManager.getConnection(url, username, password);
 return(connection);
 } catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
 return(null);
 } catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
 return(null);
 }
 }

Listing 18.18 PreparedStatements.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.7 Connection Pooling 501

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
18.7 Connection Pooling

Opening a connection to a database is a time-consuming process. For short
queries, it can take much longer to open the connection than to perform the
actual database retrieval. Consequently, it makes sense to reuse Connection
objects in applications that connect repeatedly to the same database. This
section presents a class for connection pooling: preallocating database con-
nections and recycling them as clients connect. Servlets and JSP pages can
benefit significantly from this class since the database to which any given
servlet or JSP page connects is typically known in advance (e.g., specified in
the init method). For example, the servlet shown in Section 18.8 shows a
sevenfold performance gain by making use of this connection pool class.

A connection pool class should be able to perform the following tasks:

1. Preallocate the connections.
2. Manage available connections.
3. Allocate new connections.
4. Wait for a connection to become available.
5. Close connections when required.

I’ll sketch out the approach to each of these steps here. The full code for
the ConnectionPool class is shown in Listing 18.19. As with all classes in the
book, you can download the source code from http://www.coreserv-
lets.com/.

1. Preallocate the connections.
Perform this task in the class constructor. Allocating more con-
nections in advance speeds things up if there will be many con-
current requests later but causes an initial delay. As a result, a
servlet that preallocates very many connections should build the

 private static void printUsage() {
 System.out.println("Usage: PreparedStatements host " +
 "dbName username password " +
 "oracle|sybase [print].");
 }
}

Listing 18.18 PreparedStatements.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

502 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
connection pool from its init method, and you should be sure
that the servlet is initialized prior to a “real” client request. The
following code uses vectors to store available idle connections
and unavailable, busy connections. Assume that makeNew-
Connection uses a URL, username, and password stored previ-
ously, then simply calls the getConnection method of
DriverManager.

availableConnections = new Vector(initialConnections);
busyConnections = new Vector();
for(int i=0; i<initialConnections; i++) {
availableConnections.addElement(makeNewConnection());

}

2. Manage available connections.
If a connection is required and an idle connection is available,
put it in the list of busy connections and then return it. The busy
list is used to check limits on the total number of connections as
well as when the pool is instructed to explicitly close all connec-
tions. One caveat: connections can time out, so before returning
the connection, confirm that it is still open. If not, discard the
connection and repeat the process. Discarding a connection
opens up a slot that can be used by processes that needed a con-
nection when the connection limit had been reached, so use
notifyAll to tell all waiting threads to wake up and see if they
can proceed (e.g., by allocating a new connection).

public synchronized Connection getConnection()
throws SQLException {

if (!availableConnections.isEmpty()) {
Connection existingConnection =
(Connection)availableConnections.lastElement();

int lastIndex = availableConnections.size() - 1;
availableConnections.removeElementAt(lastIndex);
if (existingConnection.isClosed()) {
notifyAll(); // Freed up a spot for anybody waiting.
return(getConnection()); // Repeat process.

} else {
busyConnections.addElement(existingConnection);
return(existingConnection);

}
}

}

r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.7 Connection Pooling 503

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
3. Allocate new connections.
If a connection is required, there is no idle connection available,
and the connection limit has not been reached, then start a
background thread to allocate a new connection. Then, wait for
the first available connection, whether or not it is the newly allo-
cated one.

if ((totalConnections() < maxConnections) &&
!connectionPending) { // Pending = connecting in bg

makeBackgroundConnection();
}
try {

wait(); // Give up lock and suspend self.
} catch(InterruptedException ie) {}
return(getConnection()); // Try again.

4. Wait for a connection to become available.
This situation occurs when there is no idle connection and
you’ve reached the limit on the number of connections. This
waiting should be accomplished without continual polling. The
natural approach is to use the wait method, which gives up the
thread synchronization lock and suspends the thread until
notify or notifyAll is called. Since notifyAll could stem
from several possible sources, threads that wake up still need to
test to see if they can proceed. In this case, the simplest way to
accomplish this task is to recursively repeat the process of trying
to obtain a connection.

try {
wait();

} catch(InterruptedException ie) {}
return(getConnection());

It may be that you don’t want to let clients wait and would rather
throw an exception when no connections are available and the
connection limit has been reached. In such a case, do the follow-
ing instead:

throw new SQLException("Connection limit reached");

5. Close connections when required.
Note that connections are closed when they are garbage col-
lected, so you don’t always have to close them explicitly. But,
you sometimes want more explicit control over the process.
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

504 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
public synchronized void closeAllConnections() {
// The closeConnections method loops down Vector, calling
// close and ignoring any exceptions thrown.
closeConnections(availableConnections);
availableConnections = new Vector();
closeConnections(busyConnections);
busyConnections = new Vector();

}

The full class follows.

Listing 18.19 ConnectionPool.java

package coreservlets;

import java.sql.*;
import java.util.*;

/** A class for preallocating, recycling, and managing
 * JDBC connections.
*/

public class ConnectionPool implements Runnable {
 private String driver, url, username, password;
 private int maxConnections;
 private boolean waitIfBusy;
 private Vector availableConnections, busyConnections;
 private boolean connectionPending = false;

 public ConnectionPool(String driver, String url,
 String username, String password,
 int initialConnections,
 int maxConnections,
 boolean waitIfBusy)
 throws SQLException {
 this.driver = driver;
 this.url = url;
 this.username = username;
 this.password = password;
 this.maxConnections = maxConnections;
 this.waitIfBusy = waitIfBusy;
 if (initialConnections > maxConnections) {
 initialConnections = maxConnections;
 }
 availableConnections = new Vector(initialConnections);
 busyConnections = new Vector();
 for(int i=0; i<initialConnections; i++) {
 availableConnections.addElement(makeNewConnection());
 }
 }
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.7 Connection Pooling 505

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 public synchronized Connection getConnection()
 throws SQLException {
 if (!availableConnections.isEmpty()) {
 Connection existingConnection =
 (Connection)availableConnections.lastElement();
 int lastIndex = availableConnections.size() - 1;
 availableConnections.removeElementAt(lastIndex);
 // If connection on available list is closed (e.g.,
 // it timed out), then remove it from available list
 // and repeat the process of obtaining a connection.
 // Also wake up threads that were waiting for a
 // connection because maxConnection limit was reached.
 if (existingConnection.isClosed()) {
 notifyAll(); // Freed up a spot for anybody waiting
 return(getConnection());
 } else {
 busyConnections.addElement(existingConnection);
 return(existingConnection);
 }
 } else {

 // Three possible cases:
 // 1) You haven’t reached maxConnections limit. So
 // establish one in the background if there isn’t
 // already one pending, then wait for
 // the next available connection (whether or not
 // it was the newly established one).
 // 2) You reached maxConnections limit and waitIfBusy
 // flag is false. Throw SQLException in such a case.
 // 3) You reached maxConnections limit and waitIfBusy
 // flag is true. Then do the same thing as in second
 // part of step 1: wait for next available connection.

 if ((totalConnections() < maxConnections) &&
 !connectionPending) {
 makeBackgroundConnection();
 } else if (!waitIfBusy) {
 throw new SQLException("Connection limit reached");
 }
 // Wait for either a new connection to be established
 // (if you called makeBackgroundConnection) or for
 // an existing connection to be freed up.
 try {
 wait();
 } catch(InterruptedException ie) {}
 // Someone freed up a connection, so try again.
 return(getConnection());
 }
 }

Listing 18.19 ConnectionPool.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

506 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 // You can’t just make a new connection in the foreground
 // when none are available, since this can take several
 // seconds with a slow network connection. Instead,
 // start a thread that establishes a new connection,
 // then wait. You get woken up either when the new connection
 // is established or if someone finishes with an existing
 // connection.

 private void makeBackgroundConnection() {
 connectionPending = true;
 try {
 Thread connectThread = new Thread(this);
 connectThread.start();
 } catch(OutOfMemoryError oome) {
 // Give up on new connection
 }
 }

 public void run() {
 try {
 Connection connection = makeNewConnection();
 synchronized(this) {
 availableConnections.addElement(connection);
 connectionPending = false;
 notifyAll();
 }
 } catch(Exception e) { // SQLException or OutOfMemory
 // Give up on new connection and wait for existing one
 // to free up.
 }
 }

 // This explicitly makes a new connection. Called in
 // the foreground when initializing the ConnectionPool,
 // and called in the background when running.

 private Connection makeNewConnection()
 throws SQLException {
 try {
 // Load database driver if not already loaded
 Class.forName(driver);
 // Establish network connection to database
 Connection connection =
 DriverManager.getConnection(url, username, password);
 return(connection);
 } catch(ClassNotFoundException cnfe) {
 // Simplify try/catch blocks of people using this by
 // throwing only one exception type.
 throw new SQLException("Can’t find class for driver: " +
 driver);
 }
 }

Listing 18.19 ConnectionPool.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.7 Connection Pooling 507

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 public synchronized void free(Connection connection) {
 busyConnections.removeElement(connection);
 availableConnections.addElement(connection);
 // Wake up threads that are waiting for a connection
 notifyAll();
 }

 public synchronized int totalConnections() {
 return(availableConnections.size() +
 busyConnections.size());
 }

 /** Close all the connections. Use with caution:
 * be sure no connections are in use before
 * calling. Note that you are not <I>required</I> to
 * call this when done with a ConnectionPool, since
 * connections are guaranteed to be closed when
 * garbage collected. But this method gives more control
 * regarding when the connections are closed.
 */

 public synchronized void closeAllConnections() {
 closeConnections(availableConnections);
 availableConnections = new Vector();
 closeConnections(busyConnections);
 busyConnections = new Vector();
 }

 private void closeConnections(Vector connections) {
 try {
 for(int i=0; i<connections.size(); i++) {
 Connection connection =
 (Connection)connections.elementAt(i);
 if (!connection.isClosed()) {
 connection.close();
 }
 }
 } catch(SQLException sqle) {
 // Ignore errors; garbage collect anyhow
 }
 }

 public synchronized String toString() {
 String info =
 "ConnectionPool(" + url + "," + username + ")" +
 ", available=" + availableConnections.size() +
 ", busy=" + busyConnections.size() +
 ", max=" + maxConnections;
 return(info);
 }
}

Listing 18.19 ConnectionPool.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

508 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
18.8 Connection Pooling: A Case
Study

OK, so we have a ConnectionPool class: what good does it do us? Let’s find
out. Listing 18.20 presents a simple servlet that allocates a ConnectionPool
in its init method, then, for each request, performs a simple database
lookup and places the results in an HTML table. Listing 18.21 and Figure
18–6 show an HTML document that places a copy of this servlet in each of
25 frame cells. Since the servlet stipulates that it not be cached by the
browser, this document results in 25 near simultaneous HTTP requests and
thus 25 near simultaneous database lookups using connection pooling. This
request pattern is similar to what would occur on high-traffic sites even when
only a single servlet is used for each page.

Listing 18.22 shows a variation of the servlet that uses a “pool” of only a
single connection, and Listing 18.23 shows a third variation that doesn’t use
connection pooling at all. Each of these two servlets is also placed in a framed
document nearly identical to that of Listing 18.21. Timing results are shown
in Table 18.1.

One small reminder: since these servlets load a JDBC driver, the driver
needs to be made accessible to the Web server. With most servers, you can
make the driver accessible by placing the JAR file containing the driver into
the server’s lib directory or by unpacking the JAR file in the classes direc-
tory. See your server’s documentation for definitive instructions.

Table 18.1 Connection pool timing results

Condition Average Time

Slow modem connection to database,
10 initial connections, 50 max connections
(ConnectionPoolServlet)

11 seconds

Slow modem connection to database,
recycling a single connection
(ConnectionPoolServlet2)

22 seconds

Slow modem connection to database,
no connection pooling
(ConnectionPoolServlet3)

82 seconds
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.8 Connection Pooling: A Case Study 509

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Fast LAN connection to database,
10 initial connections, 50 max connections
(ConnectionPoolServlet)

1.8 seconds

Fast LAN connection to database,
recycling a single connection
(ConnectionPoolServlet2)

2.0 seconds

Fast LAN connection to database, no
connection pooling
(ConnectionPoolServlet3)

2.8 seconds

Listing 18.20 ConnectionPoolServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

/** A servlet that reads information from a database and
 * presents it in an HTML table. It uses connection
 * pooling to optimize the database retrieval. A good
 * test case is ConnectionPool.html, which loads many
 * copies of this servlet into different frame cells.
*/

public class ConnectionPoolServlet extends HttpServlet {
 private ConnectionPool connectionPool;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String table;
 try {
 String query =
 "SELECT firstname, lastname " +
 " FROM employees WHERE salary > 70000";
 Connection connection = connectionPool.getConnection();
 DBResults results =
 DatabaseUtilities.getQueryResults(connection,
 query, false);
 connectionPool.free(connection);

Table 18.1 Connection pool timing results

Condition Average Time
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

510 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 table = results.toHTMLTable("#FFAD00");
 } catch(Exception e) {
 table = "Error: " + e;
 }
 response.setContentType("text/html");
 // Prevent the browser from caching the response. See
 // Section 7.2 of Core Servlets and JSP for details.
 response.setHeader("Pragma", "no-cache"); // HTTP 1.0
 response.setHeader("Cache-Control", "no-cache"); // HTTP 1.1
 PrintWriter out = response.getWriter();
 String title = "Connection Pool Test";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER>\n" +
 table + "\n" +
 "</CENTER>\n</BODY></HTML>");
 }

 /** Initialize the connection pool when servlet is
 * initialized. To avoid a delay on first access, load
 * the servlet ahead of time yourself or have the
 * server automatically load it after reboot.
 */

 public void init() {
 int vendor = DriverUtilities.SYBASE;
 String driver = DriverUtilities.getDriver(vendor);
 String host = "dbhost2.apl.jhu.edu";
 String dbName = "605741";
 String url = DriverUtilities.makeURL(host, dbName, vendor);
 String username = "hall";
 String password = "xxxx"; // Changed :-)
 try {
 connectionPool =
 new ConnectionPool(driver, url, username, password,
 initialConnections(),
 maxConnections(),
 true);
 } catch(SQLException sqle) {
 System.err.println("Error making pool: " + sqle);
 getServletContext().log("Error making pool: " + sqle);
 connectionPool = null;
 }
 }

 public void destroy() {
 connectionPool.closeAllConnections();
 }

Listing 18.20 ConnectionPoolServlet.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.8 Connection Pooling: A Case Study 511

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
 /** Override this in subclass to change number of initial
 * connections.
 */

 protected int initialConnections() {
 return(10);
 }

 /** Override this in subclass to change maximum number of
 * connections.
 */

 protected int maxConnections() {
 return(50);
 }
}

Listing 18.21 ConnectionPool.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
<HEAD><TITLE>Servlet Connection Pooling: A Test</TITLE></HEAD>

<!-- Causes 25 near simultaneous requests for same servlet. -->

<FRAMESET ROWS="*,*,*,*,*" BORDER=0 FRAMEBORDER=0 FRAMESPACING=0>
 <FRAMESET COLS="*,*,*,*,*">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 </FRAMESET>
 <FRAMESET COLS="*,*,*,*,*">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 </FRAMESET>
 <FRAMESET COLS="*,*,*,*,*">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">

Listing 18.20 ConnectionPoolServlet.java (continued)
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

512 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 </FRAMESET>
 <FRAMESET COLS="*,*,*,*,*">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 </FRAMESET>
 <FRAMESET COLS="*,*,*,*,*">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 <FRAME SRC="/servlet/coreservlets.ConnectionPoolServlet">
 </FRAMESET>
</FRAMESET>

</HTML>

Listing 18.21 ConnectionPool.html (continued)

Figure 18–6 A framed document that forces 25 nearly simultaneous requests for the
same servlet.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.8 Connection Pooling: A Case Study 513

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
Listing 18.22 ConnectionPoolServlet2.java

package coreservlets;

/** A variation of ConnectionPoolServlet that uses only
 * a single connection, queueing up all requests to it.
 * Used to compare timing results.
*/

public class ConnectionPoolServlet2
 extends ConnectionPoolServlet {

 protected int initialConnections() {
 return(1);
 }

 protected int maxConnections() {
 return(1);
 }
}

Listing 18.23 ConnectionPoolServlet3.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

/** A variation of ConnectionPoolServlet that does NOT
 * use connection pooling. Used to compare timing
 * benefits of connection pooling.
*/

public class ConnectionPoolServlet3 extends HttpServlet {
 private String url, username, password;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String table;
 String query =
 "SELECT firstname, lastname " +
 " FROM employees WHERE salary > 70000";
 try {
 Connection connection =
 DriverManager.getConnection(url, username, password);
me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

514 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 DBResults results =
 DatabaseUtilities.getQueryResults(connection,
 query, true);
 table = results.toHTMLTable("#FFAD00");
 } catch(Exception e) {
 table = "Exception: " + e;
 }
 response.setContentType("text/html");
 // Prevent the browser from caching the response. See
 // Section 7.2 of Core Servlets and JSP for details.
 response.setHeader("Pragma", "no-cache"); // HTTP 1.0
 response.setHeader("Cache-Control", "no-cache"); // HTTP 1.1
 PrintWriter out = response.getWriter();
 String title = "Connection Pool Test (*No* Pooling)";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER>\n" +
 table + "\n" +
 "</CENTER>\n</BODY></HTML>");
 }

 public void init() {
 try {
 int vendor = DriverUtilities.SYBASE;
 String driver = DriverUtilities.getDriver(vendor);
 Class.forName(driver);
 String host = "dbhost2.apl.jhu.edu";
 String dbName = "605741";
 url = DriverUtilities.makeURL(host, dbName, vendor);
 username = "hall";
 password = "xxxx"; // Changed :-)
 } catch(ClassNotFoundException e) {
 System.err.println("Error initializing: " + e);
 getServletContext().log("Error initializing: " + e);
 }
 }
}

Listing 18.23 ConnectionPoolServlet3.java (continued)
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.9 Sharing Connection Pools 515

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
18.9 Sharing Connection Pools

In the previous example, each servlet had its own connection pool. This
approach makes sense when different servlets perform substantially different
tasks and thus talk to different databases. However, it is also quite common
for some or all of the servlets on a server to talk to the same database and thus
to share a connection pool. There are two main approaches to sharing pools:
using the servlet context (a servlet-specific technique) and using static meth-
ods or singleton classes (a general Java technique).

Using the Servlet Context to Share Connection
Pools

You can call the servlet getServletContext method to get an object of type
ServletContext that is shared by all servlets on the server (or within a Web
application if your server supports Web applications). This ServletContext
object has a setAttribute method that takes a String and an Object and
stores the Object in a table with the String as a key. You can obtain the
Object at a later time by calling getAttribute with the String (this
method returns null if there is no value associated with the key).

So, for example, a group of servlets that all use the books database could
share pools by having each servlet perform the following steps:

ServletContext context = getServletContext();
ConnectionPool bookPool =
(ConnectionPool)context.getAttribute("book-pool");

if (bookPool == null) {
bookPool = new ConnectionPool(...);
context.setAttribute("book-pool", bookPool);

}

me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

516 Chapter 18 JDBC and Database Connection Pooling

Home page fo
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Using Singleton Classes to Share Connection
Pools

Rather than using the ServletContext to share connection pools, you can
use normal static methods. For example, you could write a BookPool class
with static getPool and setPool methods and have each servlet check
BookPool.getPool to see if the value is non-null, instantiating a new Con-
nectionPool if necessary. However, each servlet has to repeat similar code,
and a servlet could accidentally overwrite the shared pool that Book-
Pool.getPool returns.

A better approach is to use a singleton class to encapsulate the desired
behavior. A singleton class is simply a class for which only a single instance
can be created, enforced through use of a private constructor. The instance is
retrieved through a static method that checks if there is already an object
allocated, returning it if so and allocating and returning a new one if not. For
example, here is the outline of a singleton BookPool class. Each servlet that
used it would obtain the connection pool by simply calling BookPool.getIn-
stance().
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

18.9 Sharing Connection Pools 517

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Ho
Se
public class BookPool extends ConnectionPool {
private static BookPool pool = null;

private BookPool(...) {
super(...); // Call parent constructor
...

}

public static synchronized BookPool getInstance() {
if (pool == null) {
pool = new BookPool(...);

}
return(pool);

}
}

me page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Servlet and JSP
Quick

Reference
Home page for this book: http://www.coreservlets.com.
Home page for sequel: http://www.moreservlets.com.
Servlet and JSP training courses: http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
A.1 Overview of Servlets and
JavaServer Pages

Advantages of Servlets
• Efficient: threads instead of OS processes, one servlet copy,

persistence
• Convenient: lots of high-level utilities
• Powerful: talking to server, sharing data, pooling, persistence
• Portable: run on virtually all operating systems and servers
• Secure: no shell escapes, no buffer overflows
• Inexpensive: inexpensive plug-ins if servlet support not bundled

Advantages of JSP
• Versus ASP: better language for dynamic part, portable
• Versus PHP: better language for dynamic part
• Versus pure servlets: more convenient to create HTML
• Versus SSI: much more flexible and powerful
• Versus JavaScript: server-side, richer language
• Versus static HTML: dynamic features

Free Servlet and JSP Software
• Tomcat: http://jakarta.apache.org/
519

520 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

No
te

:i
fy

ou
us

e
To

m
ca

t3
.2

or
4.

x,
se

e
up

da
te

d
in

fo
rm

at
io

n
at

ht
tp

://
ar

ch
iv

e.
co

re
se

rv
le

ts
.c

om
/U

si
ng

-T
om

ca
t.h

tm
l

• JSWDK: http://java.sun.com/products/servlet/download.html
• JRun: http://www.allaire.com/products/jrun/
• ServletExec: http://newatlanta.com/
• LiteWebServer: http://www.gefionsoftware.com/
• Java Web Server: http://www.sun.com/software/jwebserver/try/

Documentation
• http://java.sun.com/products/jsp/download.html
• http://java.sun.com/products/servlet/2.2/javadoc/
• http://www.java.sun.com/j2ee/j2sdkee/techdocs/api/

Servlet Compilation: CLASSPATH Entries
• The servlet classes (usually in install_dir/lib/servlet.jar)
• The JSP classes (usually in install_dir/lib/jsp.jar, ...jspengine.jar, or

...jasper.jar)
• The top-level directory of servlet installation directory (e.g.,

install_dir/webpages/WEB-INF/classes)

Tomcat 3.0 Standard Directories
• install_dir/webpages/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

Tomcat 3.1 Standard Directories
• install_dir/webapps/ROOT/WEB-INF/classes

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.

JSWDK 1.0.1 Standard Directories
• install_dir/webpages/WEB-INF/servlets

Standard location for servlet classes.
• install_dir/classes

Alternate location for servlet classes.
• install_dir/lib

Location for JAR files containing classes.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.2 First Servlets 521

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Java Web Server 2.0 Standard Directories
• install_dir/servlets

Location for frequently changing servlet classes. Auto-reloading.
• install_dir/classes

Location for infrequently changing servlet classes.
• install_dir/lib

Location for JAR files containing classes.

A.2 First Servlets
Simple Servlet

Installing Servlets
• Put in servlet directories shown in Section A.1.
• Put in subdirectories corresponding to their package.

Invoking Servlets
• http://host/servlet/ServletName
• http://host/servlet/package.ServletName
• Arbitrary location defined by server-specific customization.

HelloWWW.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWWW extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +
 "<BODY>\n" +
 "<H1>Hello WWW</H1>\n" +
 "</BODY></HTML>");
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

522 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Servlet Life Cycle
• public void init() throws ServletException,

public void init(ServletConfig config) throws ServletException
Executed once when the servlet is first loaded. Not called for each
request. Use getInitParameter to read initialization parameters.

• public void service(HttpServletRequest request,
public void service(HttpServletResponse response)

throws ServletException, IOException
Called in a new thread by server for each request. Dispatches to doGet,
doPost, etc. Do not override this method!

• public void doGet(HttpServletRequest request,
public void doGet(HttpServletResponse response)

throws ServletException, IOException
Handles GET requests. Override to provide your behavior.

• public void doPost(HttpServletRequest request,
public void doPost(HttpServletResponse response)

throws ServletException, IOException
Handles POST requests. Override to provide your behavior. If you want
GET and POST to act identically, call doGet here.

• doPut, doTrace, doDelete, etc.
Handles the uncommon HTTP requests of PUT, TRACE, etc.

• public void destroy()
Called when server deletes servlet instance. Not called after each
request.

• public long getLastModified(HttpServletRequest request)
Called by server when client sends conditional GET due to cached copy.
See Section 2.8.

• SingleThreadModel
If this interface implemented, causes server to avoid concurrent
invocations.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.3 Handling the Client Request: Form Data 523

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

A.3 Handling the Client Request: Form Data
Reading Parameters
• request.getParameter: returns first value
• request.getParameterValues: returns array of all values

Example Servlet

ThreeParams.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ThreeParams extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading Three Request Parameters";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "\n" +
 " param1: "
 + request.getParameter("param1") + "\n" +
 " param2: "
 + request.getParameter("param2") + "\n" +
 " param3: "
 + request.getParameter("param3") + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

524 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Example Form

Filtering HTML-Specific Characters
• Must replace <, >, ", & with <, >, ", and &. Use

ServletUtilities.filter(htmlString) for this substitution.
See Section 3.6.

A.4 Handling the Client Request:
HTTP Request Headers

Methods That Read Request Headers
These are all methods in HttpServletRequest.

• public String getHeader(String headerName)
Returns value of an arbitrary header. Returns null if header not in
request.

• public Enumeration getHeaders(String headerName)
Returns values of all occurrences of header in request. 2.2 only.

• public Enumeration getHeaderNames()
Returns names of all headers in current request.

• public long getDateHeader(String headerName)
Reads header that represents a date and converts it to Java date format
(milliseconds since 1970).

ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Collecting Three Parameters</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/coreservlets.ThreeParams">
 First Parameter: <INPUT TYPE="TEXT" NAME="param1">

 Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

 Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

 <CENTER>
 <INPUT TYPE="SUBMIT">
 </CENTER>
</FORM>

</BODY>
</HTML>
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.4 Handling the Client Request: HTTP Request Headers 525

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• public int getIntHeader(String headerName)
Reads header that represents an integer and converts it to an int.
Returns -1 if header not in request. Throws NumberFormatException
for non-ints.

• public Cookie[] getCookies()
Returns array of Cookie objects. Array is zero-length if no cookies. See
Chapter 8.

• public int getContentLength()
Returns value of Content-Length header as int. Returns -1 if
unknown.

• public String getContentType()
Returns value of Content-Type header if it exists in request (i.e., for
attached files) or null if not.

• public String getAuthType()
Returns "BASIC", "DIGEST", "SSL", or null.

• public String getRemoteUser()
Returns username if authentication used; null otherwise.

Other Request Information
• public String getMethod()

Returns HTTP request method ("GET", "POST", "HEAD", etc.)
• public String getRequestURI()

Returns part of the URL that came after host and port.
• public String getProtocol()

Returns HTTP version ("HTTP/1.0" or "HTTP/1.1", usually).

Common HTTP 1.1 Request Headers
See RFC 2616. Get RFCs on-line starting at http://www.rfc-editor.org/.

• Accept: MIME types browser can handle.
• Accept-Encoding: encodings (e.g., gzip or compress) browser can

handle. See compression example in Section 4.4.
• Authorization: user identification for password-protected pages. See

example in Section 4.5. Normal approach is to not use HTTP
authorization but instead use HTML forms to send username/password
and then for servlet to store info in session object.

• Connection: In HTTP 1.0, keep-alive means browser can handle
persistent connection. In HTTP 1.1, persistent connection is default.
Servlets should set Content-Length with setContentLength (using
ByteArrayOutputStream to determine length of output) to support
persistent connections. See example in Section 7.4.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

526 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• Cookie: cookies sent to client by server sometime earlier. Use
getCookies, not getHeader. See Chapter 8.

• Host: host given in original URL. This is a required header in HTTP
1.1.

• If-Modified-Since: indicates client wants page only if it has been
changed after specified date. Don’t handle this situation directly;
implement getLastModified instead. See example in Section 2.8.

• Referer: URL of referring Web page.
• User-Agent: string identifying the browser making the request.

A.5 Accessing the Standard CGI Variables
You should usually think in terms of request info, response info, and server
info, not CGI variables.

Capabilities Not Discussed Elsewhere
• getServletContext().getRealPath("uri"): maps URI to real path
• request.getRemoteHost(): name of host making request
• request.getRemoteAddress(): IP address of host making request

Servlet Equivalent of CGI Variables
• AUTH_TYPE: request.getAuthType()
• CONTENT_LENGTH: request.getContentLength()
• CONTENT_TYPE: request.getContentType()
• DOCUMENT_ROOT: getServletContext().getRealPath("/")
• HTTP_XXX_YYY: request.getHeader("Xxx-Yyy")
• PATH_INFO: request.getPathInfo()
• PATH_TRANSLATED: request.getPathTranslated()
• QUERY_STRING: request.getQueryString()
• REMOTE_ADDR: request.getRemoteAddr()
• REMOTE_HOST: request.getRemoteHost()
• REMOTE_USER: request.getRemoteUser()
• REQUEST_METHOD: request.getMethod()
• SCRIPT_NAME: request.getServletPath()
• SERVER_NAME: request.getServerName()
• SERVER_PORT: request.getServerPort()
• SERVER_PROTOCOL: request.getProtocol()
• SERVER_SOFTWARE: getServletContext().getServerInfo()
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.6 Generating the Server Response: HTTP Status Codes 527

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

A.6 Generating the Server Response:
HTTP Status Codes

Format of an HTTP Response
Status line (HTTP version, status code, message), response headers, blank
line, document, in that order. For example:

HTTP/1.1 200 OK

Content-Type: text/plain

Hello World

Methods That Set Status Codes
These are methods in HttpServletResponse. Set status codes before you
send any document content to browser.

• public void setStatus(int statusCode)
Use a constant for the code, not an explicit int.

• public void sendError(int code, String message)
Wraps message inside small HTML document.

• public void sendRedirect(String url)
Relative URLs permitted in 2.2.

Status Code Categories
• 100-199: informational; client should respond with some other action.
• 200-299: request was successful.
• 300-399: file has moved. Usually includes a Location header indicating

new address.
• 400-499: error by client.
• 500-599: error by server.

Common HTTP 1.1 Status Codes
• 200 (OK): Everything is fine; document follows. Default for servlets.
• 204 (No Content): Browser should keep displaying previous

document.
• 301 (Moved Permanently): Requested document permanently

moved elsewhere (indicated in Location header). Browsers go to new
location automatically.

• 302 (Found): Requested document temporarily moved elsewhere
(indicated in Location header). Browsers go to new location
automatically. Servlets should use sendRedirect, not setStatus,
when setting this header. See example in Section 6.3.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

528 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• 401 (Unauthorized): Browser tried to access password-protected page
without proper Authorization header. See example in Section 4.5.

• 404 (Not Found): No such page. Servlets should use sendError to set
this header. See example in Section 6.3.

A.7 Generating the Server Response: HTTP
Response Headers

Setting Arbitrary Headers
These are methods in HttpServletResponse. Set response headers before
you send any document content to browser.

• public void setHeader(String headerName, String headerValue)
Sets an arbitrary header.

• public void setDateHeader(String headerName,
long milliseconds)

Converts milliseconds since 1970 to a date string in GMT format.
• public void setIntHeader(String headerName, int headerValue)

Prevents need to convert int to String before calling setHeader.
• addHeader, addDateHeader, addIntHeader

Adds new occurrence of header instead of replacing. 2.2 only.

Setting Common Headers
• setContentType: Sets the Content-Type header. Servlets almost

always use this. See Table 7.1 for the most common MIME types.
• setContentLength: Sets the Content-Length header. Used for

persistent HTTP connections. Use ByteArrayOutputStream to buffer
document before sending it, to determine size. See Section 7.4 for an
example.

• addCookie: Adds a value to the Set-Cookie header. See Chapter 8.
• sendRedirect: Sets the Location header (plus changes status code).

See example in Section 6.3.

Common HTTP 1.1 Response Headers
• Allow: the request methods server supports. Automatically set by the

default service method when servlet receives OPTIONS requests.
• Cache-Control: A no-cache value prevents browsers from caching

results. Send Pragma header with same value in case browser only
understands HTTP 1.0.

• Content-Encoding: the way document is encoded. Browser reverses
this encoding before handling document. Servlets must confirm that
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.7 Generating the Server Response: HTTP Response Headers 529

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

browser supports a given encoding (by checking the Accept-Encoding
request header) before using it. See compression example in
Section 4.4.

• Content-Length: the number of bytes in the response. See
setContentLength above.

• Content-Type: the MIME type of the document being returned. See
setContentType above.

• Expires: the time at which document should be considered out-of-date
and thus should no longer be cached. Use setDateHeader to set this
header.

• Last-Modified: the time document was last changed. Don’t set this
header explicitly; provide a getLastModified method instead. See
example in Section 2.8.

• Location: the URL to which browser should reconnect. Use
sendRedirect instead of setting this header directly. For an example,
see Section 6.3.

• Pragma: a value of no-cache instructs HTTP 1.0 clients not to cache
document. See the Cache-Control response header (Section 7.2).

• Refresh: the number of seconds until browser should reload page. Can
also include URL to connect to. For an example, see Section 7.3.

• Set-Cookie: the cookies that browser should remember. Don’t set this
header directly; use addCookie instead. See Chapter 8 for details.

• WWW-Authenticate: the authorization type and realm client should
supply in its Authorization header in the next request. For an
example, see Section 4.5.

Generating GIF Images from Servlets
• Create an Image.

Use the createImage method of Component.

• Draw into the Image.
Call getGraphics on the Image, then do normal drawing operations.

• Set the Content-Type response header.
Use response.setContentType("image/gif").

• Get an output stream.
Use response.getOutputStream().

• Send the Image down output stream in GIF format.
Use Jef Poskanzer’s GifEncoder. See http://www.acme.com/java/.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

530 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
A.8 Handling Cookies
Typical Uses of Cookies
• Identifying a user during an e-commerce session
• Avoiding username and password
• Customizing a site
• Focusing advertising

Problems with Cookies
• It’s a privacy problem, not a security problem.
• Privacy problems include: servers can remember what you did in

previous sessions; if you give out personal information, servers can link
that information to your previous actions; servers can share cookie
information through use of a cooperating third party like
doubleclick.net (by each loading image off the third-party site); poorly
designed sites could store sensitive information like credit card
numbers directly in the cookie.

General Usage
• Sending cookie to browser (standard approach):

Cookie c = new Cookie("name", "value");
c.setMaxAge(...);
// Set other attributes.
response.addCookie(c);

• Sending cookie to browser (simplified approach):
Use LongLivedCookie class (Section 8.5).

• Reading cookies from browser (standard approach):
Cookie[] cookies = response.getCookies();
for(int i=0; i<cookies.length; i++) {
Cookie c = cookies[i];
if (c.getName().equals("someName")) {

doSomethingWith(c);
break;

}
}

• Reading cookies from browser (simplified approach):
Extract cookie or cookie value from cookie array by using
ServletUtilities.getCookie or
ServletUtilities.getCookieValue.

Cookie Methods
• getComment/setComment: gets/sets comment. Not supported in

version 0 cookies (which is what most browsers now support).
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.9 Session Tracking 531

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

• getDomain/setDomain: lets you specify domain to which cookie
applies. Current host must be part of domain specified.

• getMaxAge/setMaxAge: gets/sets the cookie expiration time (in
seconds). If you fail to set this, cookie applies to current browsing
session only. See LongLivedCookie helper class (Section 8.5).

• getName/setName: gets/sets the cookie name. For new cookies, you
supply name to constructor, not to setName. For incoming cookie array,
you use getName to find the cookie of interest.

• getPath/setPath: gets/sets the path to which cookie applies. If
unspecified, cookie applies to URLs that are within or below directory
containing current page.

• getSecure/setSecure: gets/sets flag indicating whether cookie should
apply only to SSL connections or to all connections.

• getValue/setValue: gets/sets value associated with cookie. For new
cookies, you supply value to constructor, not to setValue. For incoming
cookie array, you use getName to find the cookie of interest, then call
getValue on the result.

• getVersion/setVersion: gets/sets the cookie protocol version. Version 0
is the default; stick with that until browsers start supporting version 1.

A.9 Session Tracking
Looking Up Session Information: getValue
HttpSession session = request.getSession(true);
ShoppingCart cart =
(ShoppingCart)session.getValue("shoppingCart");

if (cart == null) { // No cart already in session
cart = new ShoppingCart();
session.putValue("shoppingCart", cart);

}
doSomethingWith(cart);

Associating Information with a Session: putValue
HttpSession session = request.getSession(true);
session.putValue("referringPage", request.getHeader("Referer"));
ShoppingCart cart =
(ShoppingCart)session.getValue("previousItems");

if (cart == null) { // No cart already in session
cart = new ShoppingCart();
session.putValue("previousItems", cart);

}
String itemID = request.getParameter("itemID");
if (itemID != null) {
cart.addItem(Catalog.getItem(itemID));

}

ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

532 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
HttpSession Methods
• public Object getValue(String name) [2.1]

public Object getAttribute(String name) [2.2]
Extracts a previously stored value from a session object. Returns null if
no value is associated with given name.

• public void putValue(String name, Object value) [2.1]
public void setAttribute(String name, Object value) [2.2]
Associates a value with a name. If value implements
HttpSessionBindingListener, its valueBound method is called. If
previous value implements HttpSessionBindingListener, its
valueUnbound method is called.

• public void removeValue(String name) [2.1]
public void removeAttribute(String name) [2.2]
Removes any values associated with designated name. If value being
removed implements HttpSessionBindingListener, its
valueUnbound method is called.

• public String[] getValueNames() [2.1]
public Enumeration getAttributeNames() [2.2]
Returns the names of all attributes in the session.

• public String getId()
Returns the unique identifier generated for each session.

• public boolean isNew()
Returns true if the client (browser) has never seen the session; false
otherwise.

• public long getCreationTime()
Returns time at which session was first created (in milliseconds since
1970). To get a value useful for printing, pass value to Date constructor
or the setTimeInMillis method of GregorianCalendar.

• public long getLastAccessedTime()
Returns time at which the session was last sent from the client.

• public int getMaxInactiveInterval()
public void setMaxInactiveInterval(int seconds)
Gets or sets the amount of time, in seconds, that a session should go
without access before being automatically invalidated. A negative value
indicates that session should never time out. Not the same as cookie
expiration date.

• public void invalidate()
Invalidates the session and unbinds all objects associated with it.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.10 JSP Scripting Elements 533

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Encoding URLs
In case servlet is using URL rewriting to implement session tracking, you
should give the system a chance to encode the URLs.

• Regular URLs
String originalURL = someRelativeOrAbsoluteURL;
String encodedURL = response.encodeURL(originalURL);
out.println("...");

• Redirect URLs
String originalURL = someURL; // Relative URL OK in 2.2
String encodedURL = response.encodeRedirectURL(originalURL);
response.sendRedirect(encodedURL);

A.10 JSP Scripting Elements
Types of Scripting Elements
• Expressions: <%= expression %>

Evaluated and inserted into servlet’s output. You can also use
<jsp:expression>
expression
</jsp:expression>

• Scriptlets: <% code %>
Inserted into servlet's _jspService method (called by service). You
can also use

<jsp:scriptlet>
code
</jsp:scriptlet>

• Declarations: <%! code %>
Inserted into body of servlet class, outside of any existing methods. You
can also use

<jsp:declaration>
code
</jsp:declaration>

Template Text
• Use <\% to get <% in output.
• <%-- JSP Comment --%>
• <!-- HTML Comment -->
• All other non-JSP-specific text passed through to output page.

Predefined Variables
Implicit objects automatically available in expressions and scriptlets (not dec-
larations).

• request: the HttpServletRequest associated with request.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

534 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• response: the HttpServletResponse associated with response to
client.

• out: the JspWriter (PrintWriter subclass) used to send output to the
client.

• session: the HttpSession object associated with request. See Chapter
9.

• application: the ServletContext as obtained by
getServletConfig().getContext(). Shared by all servlets and JSP
pages on server or in Web application. See Section 15.1.

• config: the ServletConfig object for this page.

• pageContext: the PageContext object associated with current page.
See Section 13.4 for a discussion of its use.

• page: synonym for this (current servlet instance); not very useful now.
Placeholder for future.

A.11 The JSP page Directive: Structuring
Generated Servlets

The import Attribute
• <%@ page import="package.class" %>

• <%@ page import="package.class1,...,package.classN" %>

The contentType Attribute
• <%@ page contentType="MIME-Type" %>

• <%@ page contentType="MIME-Type; charset=Character-Set" %>

• Cannot be invoked conditionally. Use
<% response.setContentType("..."); %> for that.

Example of Using contentType

Excel.jsp

<%@ page contentType="application/vnd.ms-excel" %>
<%-- Note that there are tabs, not spaces, between columns. --%>
1997 1998 1999 2000 2001 (Anticipated)
12.3 13.4 14.5 15.6 16.7
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.11 The JSP page Directive: Structuring Generated Servlets 535

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Example of Using setContentType

The isThreadSafe Attribute
• <%@ page isThreadSafe="true" %> <%!-- Default --%>
• <%@ page isThreadSafe="false" %>
• A value of true means that you have made your code threadsafe and

that the system can send multiple concurrent requests. A value of
false means that the servlet resulting from JSP document will
implement SingleThreadModel (see Section 2.6).

• Non-threadsafe code:
<%! private int idNum = 0; %>

<% String userID = "userID" + idNum;

out.println("Your ID is " + userID + ".");

idNum = idNum + 1; %>

• Threadsafe code:
<%! private int idNum = 0; %>

<% synchronized(this) {

String userID = "userID" + idNum;

out.println("Your ID is " + userID + ".");

idNum = idNum + 1;

} %>

ApplesAndOranges.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- HEAD part removed. -->
<BODY><CENTER><H2>Comparing Apples and Oranges</H2>

<%
String format = request.getParameter("format");
if ((format != null) && (format.equals("excel"))) {
 response.setContentType("application/vnd.ms-excel");
}
%>
<TABLE BORDER=1>
 <TR><TH></TH><TH>Apples<TH>Oranges
 <TR><TH>First Quarter<TD>2307<TD>4706
 <TR><TH>Second Quarter<TD>2982<TD>5104
 <TR><TH>Third Quarter<TD>3011<TD>5220
 <TR><TH>Fourth Quarter<TD>3055<TD>5287
</TABLE>

</CENTER></BODY></HTML>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

536 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The session Attribute
• <%@ page session="true" %> <%!-- Default --%>
• <%@ page session="false" %>

The buffer Attribute
• <%@ page buffer="sizekb" %>
• <%@ page buffer="none" %>
• Servers can use a larger buffer than you specify, but not a smaller one.

For example, <%@ page buffer="32kb" %> means the document
content should be buffered and not sent to the client until at least 32
kilobytes have been accumulated or the page is completed.

The autoflush Attribute
• <%@ page autoflush="true" %> <%!-- Default --%>
• <%@ page autoflush="false" %>
• A value of false is illegal when buffer="none" is also used.

The extends Attribute
• <%@ page extends="package.class" %>

The info Attribute
• <%@ page info="Some Message" %>

The errorPage Attribute
• <%@ page errorPage="Relative URL" %>
• The exception thrown will be automatically available to the designated

error page by means of the exception variable. See Listings 11.5 and
11.6 for examples.

The isErrorPage Attribute
• <%@ page isErrorPage="true" %>
• <%@ page isErrorPage="false" %> <%!-- Default --%>
• See Listings 11.5 and 11.6 for examples.

The language Attribute
• <%@ page language="cobol" %>
• For now, don't bother with this attribute since java is both the default

and the only legal choice.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.12 Including Files and Applets in JSP Documents 537

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

XML Syntax
• Usual syntax:

<%@ page attribute="value" %>

<%@ page import="java.util.*" %>
• XML equivalent:

<jsp:directive.page attribute="value" />

<jsp:directive.page import="java.util.*" />

A.12Including Files and Applets in JSP
Documents

Including Files at Page Translation Time
• <%@ include file="Relative URL" %>
• Changing included file does not necessarily cause retranslation of JSP

document. You have to manually change JSP document or update its
modification date. Convenient way:
<%-- Navbar.jsp modified 3/1/00 --%>
<%@ include file="Navbar.jsp" %>

Including Files at Request Time
• <jsp:include page="Relative URL" flush="true" />
• Servlets can use include method of RequestDispatcher to

accomplish similar result. See Section 15.3.
• Because of a bug, you must use .html or .htm extensions for included

files used with the Java Web Server.

Applets for the Java Plug-In: Simple Case
• Regular form:

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
</APPLET>

• JSP form for Java Plug-in:
<jsp:plugin type="applet"
 code="MyApplet.class"
 width="475" height="350">
</jsp:plugin>

Attributes of jsp:plugin
All attribute names are case sensitive; all attribute values require single or
double quotes.

• type: for applets, this attribute should have a value of applet.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

538 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• code: used identically to the CODE attribute of APPLET.
• width: used identically to the WIDTH attribute of APPLET.
• height: used identically to the HEIGHT attribute of APPLET.
• codebase: used identically to the CODEBASE attribute of APPLET.
• align: used identically to the ALIGN attribute of APPLET and IMG.
• hspace: used identically to the HSPACE attribute of APPLET.
• vspace: used identically to the VSPACE attribute of APPLET.
• archive: used identically to the ARCHIVE attribute of APPLET.
• name: used identically to the NAME attribute of APPLET.
• title: used identically to the rare TITLE attribute of APPLET (and

virtually all other HTML elements in HTML 4.0), specifying a title that
could be used for a tool-tip or for indexing.

• jreversion: identifies the version of the Java Runtime Environment
(JRE) that is required. The default is 1.1.

• iepluginurl: designates a URL from which the plug-in for Internet
Explorer can be downloaded.

• nspluginurl: designates a URL from which the plug-in for Netscape
can be downloaded.

Parameters in HTML: jsp:param
• Regular form:

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
<PARAM NAME="PARAM1" VALUE="VALUE1">
<PARAM NAME="PARAM2" VALUE="VALUE2">

</APPLET>

• JSP form for Java Plug-In:
<jsp:plugin type="applet"
 code="MyApplet.class"
 width="475" height="350">
<jsp:params>

<jsp:param name="PARAM1" value="VALUE1" />
<jsp:param name="PARAM2" value="VALUE2" />

</jsp:params>
</jsp:plugin>

Alternative Text
• Regular form:

<APPLET CODE="MyApplet.class"
 WIDTH=475 HEIGHT=350>
Error: this example requires Java.

</APPLET>

• JSP form for Java Plug-In:
<jsp:plugin type="applet"
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.13 Using JavaBeans with JSP 539

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

 code="MyApplet.class"

 width="475" height="350">

<jsp:fallback>

Error: this example requires Java.

</jsp:fallback>

</jsp:plugin>

• The Java Web Server does not properly handle jsp:fallback.

A.13 Using JavaBeans with JSP
Basic Requirements for Class to be a Bean

1. Have a zero-argument (empty) constructor.

2. Have no public instance variables (fields).
3. Access persistent values through methods called getXxx (or

isXxx) and setXxx.

Basic Bean Use
• <jsp:useBean id="name" class="package.Class" />
• <jsp:getProperty name="name" property="property" />
• <jsp:setProperty name="name" property="property"

value="value" />
The value attribute can take a JSP expression.

Associating Properties with Request Parameters
• Individual properties:

<jsp:setProperty

 name="entry"

 property="numItems"

 param="numItems" />

• Automatic type conversion: for primitive types, performed according
to valueOf method of wrapper class.

• All properties:
<jsp:setProperty name="entry" property="*" />

Sharing Beans: The scope Attribute of
jsp:useBean

Examples of sharing beans given in Chapter 15.
• page

Default value. Indicates that, in addition to being bound to a local
variable, bean object should be placed in PageContext object for
duration of current request.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

540 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• application
Means that, in addition to being bound to a local variable, bean will be
stored in shared ServletContext available through predefined
application variable or by a call to getServletContext().

• session
Means that, in addition to being bound to a local variable, bean will be
stored in HttpSession object associated with current request, where it
can be retrieved with getValue.

• request
Signifies that, in addition to being bound to a local variable, bean object
should be placed in ServletRequest object for duration of current
request, where it is available by means of the getAttribute method.

Conditional Bean Creation
• A jsp:useBean element results in a new bean being instantiated only if

no bean with the same id and scope can be found. If a bean with the
same id and scope is found, the preexisting bean is simply bound to the
variable referenced by id.

• You can make jsp:setProperty statements conditional on new bean
creation:

<jsp:useBean ...>
statements

</jsp:useBean>

A.14 Creating Custom JSP Tag Libraries
The Tag Handler Class
• Implement Tag interface by extending TagSupport (no tag body or tag

body included verbatim) or BodyTagSupport (tag body is
manipulated).

• doStartTag: code to run at beginning of tag
• doEndTag: code to run at end of tag
• doAfterBody: code to process tag body
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.14 Creating Custom JSP Tag Libraries 541

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

The Tag Library Descriptor File
• Within taglib element, contains tag element for each tag handler.

E.g.:
<tag>

<name>prime</name>

<tagclass>coreservlets.tags.PrimeTag</tagclass>

<info>Outputs a random N-digit prime.</info>

<bodycontent>EMPTY</bodycontent>

<attribute>

<name>length</name>

<required>false</required>

</attribute>

</tag>

The JSP File
• <%@ taglib uri="some-taglib.tld" prefix="prefix" %>
• <prefix:tagname />
• <prefix:tagname>body</prefix:tagname>

Assigning Attributes to Tags
• Tag handler:

Implements setXxx for each attribute xxx.
• Tag Library Descriptor:

<tag>

...

<attribute>

<name>length</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue> <%-- sometimes --%>

</attribute>

</tag>

Including the Tag Body
• Tag handler:

You should return EVAL_BODY_INCLUDE instead of SKIP_BODY from
doStartTag.

• Tag Library Descriptor:
<tag>

...

<bodycontent>JSP</bodycontent>

</tag>
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

542 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Optionally Including the Tag Body
• Tag handler:

Return EVAL_BODY_INCLUDE or SKIP_BODY at different times,
depending on value of request time parameter.

Manipulating the Tag Body
• Tag handler:

You should extend BodyTagSupport, implement doAfterBody. Call
getBodyContent to get BodyContent object describing tag body.
BodyContent has three key methods: getEnclosingWriter,
getReader, and getString. Return SKIP_BODY from doAfterBody.

Including or Manipulating the Tag Body
Multiple Times
• Tag handler:

To process body again, return EVAL_BODY_TAG from doAfterBody. To
finish, return SKIP_BODY.

Using Nested Tags
• Tag handler:

Nested tags can use findAncestorWithClass to find the tag in which
they are nested. Place data in field of enclosing tag.

• Tag Library Descriptor:
Declare all tags separately, regardless of nesting structure in real page.

A.15 Integrating Servlets and JSP

Big Picture
• Servlet handles initial request, reads parameters, cookies, session

information, etc.

• Servlet then does whatever computations and database lookups are
needed.

• Servlet then stores data in beans.

• Servlet forwards request to one of many possible JSP pages to present
final result.

• JSP page extracts needed values from beans.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.15 Integrating Servlets and JSP 543

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Request Forwarding Syntax
String url = "/path/presentation1.jsp";

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(url);

dispatcher.forward();

Forwarding to Regular HTML Pages
• If initial servlet handles GET requests only, no change is necessary.
• If initial servlet handles POST, then change destination page from

SomePage.html to SomePage.jsp so that it, too, can handle POST.

Setting Up Globally Shared Beans
• Initial servlet:

Type1 value1 = computeValueFromRequest(request);

getServletContext().setAttribute("key1", value1);

• Final JSP document:
<jsp:useBean id="key1" class="Type1" scope="application" />

Setting Up Session Beans
• Initial servlet:

Type1 value1 = computeValueFromRequest(request);

HttpSession session = request.getSession(true);

session.putValue("key1", value1);

• Final JSP document:
<jsp:useBean id="key1" class="Type1" scope="session" />

Interpreting Relative URLs in the Destination
Page
• URL of original servlet is used for forwarded requests. Browser does

not know real URL, so it will resolve relative URLs with respect to
original servlet’s URL.

Getting a RequestDispatcher by Alternative
Means (2.2 Only)
• By name: use getNamedDispatcher method of ServletContext.
• By path relative to initial servlet’s location: use the

getRequestDispatcher method of HttpServletRequest rather than
the one from ServletContext.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

544 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Including Static or Dynamic Content
• Basic usage:

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("...");

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/path/resource");

dispatcher.include(request, response);

out.println("...");

• JSP equivalent is jsp:include, not the JSP include directive.

Forwarding Requests from JSP Pages
• <jsp:forward page="Relative URL" />

A.16 Using HTML Forms

The FORM Element
• Usual form:

<FORM ACTION="URL" ...> ... </FORM>
• Attributes: ACTION (required), METHOD, ENCTYPE, TARGET, ONSUBMIT,

ONRESET, ACCEPT, ACCEPT-CHARSET

Textfields
• Usual form:

<INPUT TYPE="TEXT" NAME="..." ...> (no end tag)
• Attributes: NAME (required), VALUE, SIZE, MAXLENGTH,

ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN, ONKEYPRESS,
ONKEYUP

• Different browsers have different rules regarding the situations where
pressing Enter in a textfield submits the form. So, include a button or
image map that submits the form explicitly.

Password Fields
• Usual form:

<INPUT TYPE="PASSWORD" NAME="..." ...> (no end tag)
• Attributes: NAME (required), VALUE, SIZE, MAXLENGTH,

ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN, ONKEYPRESS,
ONKEYUP

• Always use POST with forms that contain password fields.
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.16 Using HTML Forms 545

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Text Areas
• Usual form:

<TEXTAREA NAME="..." ROWS=xxx COLS=yyy> ...

Some text

</TEXTAREA>
• Attributes: NAME (required), ROWS (required), COLS (required), WRAP

(nonstandard), ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN,
ONKEYPRESS, ONKEYUP

• White space in initial text is maintained and HTML markup between
start and end tags is taken literally, except for character entities such as
<, ©, and so forth.

Submit Buttons
• Usual form:

<INPUT TYPE="SUBMIT" ...> (no end tag)
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• When a submit button is clicked, the form is sent to the servlet or other

server-side program designated by the ACTION parameter of the FORM.

Alternative Push Buttons
• Usual form:

<BUTTON TYPE="SUBMIT" ...>

HTML Markup

</BUTTON>
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• Internet Explorer only.

Reset Buttons
• Usual form:

<INPUT TYPE="RESET" ...> (no end tag)
• Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

Except for VALUE, attributes are only for use with JavaScript.

Alternative Reset Buttons
• Usual form:

<BUTTON TYPE="RESET" ...>

HTML Markup

</BUTTON>
• Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• Internet Explorer only.
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

546 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
JavaScript Buttons
• Usual form:

<INPUT TYPE="BUTTON" ...> (no end tag)
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

Alternative JavaScript Buttons
• Usual form:

<BUTTON TYPE="BUTTON" ...>

HTML Markup

</BUTTON>
• Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
• Internet Explorer only.

Check Boxes
• Usual form:

<INPUT TYPE="CHECKBOX" NAME="..." ...> (no end tag)
• Attributes: NAME (required), VALUE, CHECKED, ONCLICK, ONFOCUS,

ONBLUR
• Name/value transmitted only if check box is checked.

Radio Buttons
• Usual form:

<INPUT TYPE="RADIO" NAME="..." VALUE="..." ...>
(no end tag)

• Attributes: NAME (required), VALUE (required), CHECKED, ONCLICK,
ONFOCUS, ONBLUR

• You indicate a group of radio buttons by providing all of them with the
same NAME.

Combo Boxes
• Usual form:

<SELECT NAME="Name" ...>

<OPTION VALUE="Value1">Choice 1 Text

<OPTION VALUE="Value2">Choice 2 Text

...

<OPTION VALUE="ValueN">Choice N Text

</SELECT>
• SELECT Attributes: NAME (required), SIZE, MULTIPLE, ONCLICK,

ONFOCUS, ONBLUR, ONCHANGE
• OPTION Attributes: SELECTED, VALUE
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.17 Using Applets As Servlet Front Ends 547

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

File Upload Controls
• Usual form:

<INPUT TYPE="FILE" ...> (no end tag)
• Attributes: NAME (required), VALUE (ignored), SIZE, MAXLENGTH,

ACCEPT, ONCHANGE, ONSELECT, ONFOCUS, ONBLUR (nonstandard)
• Use an ENCTYPE of multipart/form-data in the FORM declaration.

Server-Side Image Maps
• Usual form:

<INPUT TYPE="IMAGE" ...> (no end tag)
• Attributes: NAME (required), SRC, ALIGN
• You can also provide an ISMAP attribute to a standard IMG element that

is inside an <A HREF...> element.

Hidden Fields
• Usual form:

<INPUT TYPE="HIDDEN" NAME="..." VALUE="..."> (no end tag)
• Attributes: NAME (required), VALUE

Internet Explorer Features
• FIELDSET (with LEGEND): groups controls
• TABINDEX: controls tabbing order
• Both capabilities are part of HTML 4.0 spec; neither is supported by

Netscape 4.

A.17 Using Applets As Servlet Front Ends

Sending Data with GET and Displaying the
Resultant Page
String someData =

name1 + "=" + URLEncoder.encode(val1) + "&" +

name2 + "=" + URLEncoder.encode(val2) + "&" +

...

nameN + "=" + URLEncoder.encode(valN);

try {

URL programURL = new URL(baseURL + "?" + someData);

getAppletContext().showDocument(programURL);

} catch(MalformedURLException mue) { ... }
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

548 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Sending Data with GET and Processing the
Results Directly (HTTP Tunneling)

1. Create a URL object referring to applet’s home host. You usu-
ally build a URL based upon the hostname from which the applet
was loaded.
URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL = new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object. The openConnection
method of URL returns a URLConnection object. This object
will be used to obtain streams with which to communicate.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the URL data.
connection.setUseCaches(false);

4. Set any desired HTTP headers. If you want to set HTTP
request headers (see Chapter 4), you can use setRequest-
Property to do so.
connection.setRequestProperty("header", "value");

5. Create an input stream. There are several appropriate
streams, but a common one is BufferedReader. It is at the
point where you create the input stream that the connection to
the Web server is actually established behind the scenes.
BufferedReader in =
new BufferedReader(new InputStreamReader(

connection.getInputStream()));

6. Read each line of the document. Simply read until you get
null.
String line;
while ((line = in.readLine()) != null) {
doSomethingWith(line);

}

7. Close the input stream.
in.close();
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.17 Using Applets As Servlet Front Ends 549

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Sending Serialized Data: The Applet Code
1. Create a URL object referring to the applet’s home host. It is

best to specify a URL suffix and construct the rest of the URL
automatically.
URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL = new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object. The openConnection
method of URL returns a URLConnection object. This object
will be used to obtain streams with which to communicate.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the URL data.
connection.setUseCaches(false);

4. Set any desired HTTP headers.
connection.setRequestProperty("header", "value");

5. Create an ObjectInputStream. The constructor for this class
simply takes the raw input stream from the URLConnection.
ObjectInputStream in =
new ObjectInputStream(connection.getInputStream());

6. Read the data structure with readObject. The return type
of readObject is Object, so you need to make a typecast to
whatever more specific type the server actually sent.
SomeClass value = (SomeClass)in.readObject();
doSomethingWith(value);

7. Close the input stream.
in.close();

Sending Serialized Data: The Servlet Code
1. Specify that binary content is being sent. To do so, designate

application/x-java-serialized-object
as the MIME type of the response. This is the standard MIME
type for objects encoded with an ObjectOutputStream,
although in practice, since the applet (not the browser) is reading
the result, the MIME type is not very important. See the discus-
sion of Content-Type in Section 7.2 for more information on
MIME types.
String contentType =
"application/x-java-serialized-object";

response.setContentType(contentType);
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

550 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
2. Create an ObjectOutputStream.
ObjectOutputStream out =
new ObjectOutputStream(response.getOutputStream());

3. Write the data structure by using writeObject. Most
built-in data structures can be sent this way. Classes you write,
however, must implement the Serializable interface.
SomeClass value = new SomeClass(...);
out.writeObject(value);

4. Flush the stream to be sure all content has been sent to
the client.
out.flush();

Sending Data by POST and Processing the
Results Directly (HTTP Tunneling)

1. Create a URL object referring to the applet’s home host. It is
best to specify a URL suffix and construct the rest of the URL
automatically.
URL currentPage = getCodeBase();
String protocol = currentPage.getProtocol();
String host = currentPage.getHost();
int port = currentPage.getPort();
String urlSuffix = "/servlet/SomeServlet";
URL dataURL =
new URL(protocol, host, port, urlSuffix);

2. Create a URLConnection object.
URLConnection connection = dataURL.openConnection();

3. Instruct the browser not to cache the results.
connection.setUseCaches(false);

4. Tell the system to permit you to send data, not just read
it.
connection.setDoOutput(true);

5. Create a ByteArrayOutputStream to buffer the data that
will be sent to the server. The purpose of the ByteArray-
OutputStream here is the same as it is with the persistent
(keep-alive) HTTP connections shown in Section 7.4 — to
determine the size of the output so that the Content-Length
header can be set.
ByteArrayOutputStream byteStream =
new ByteArrayOutputStream(512);

6. Attach an output stream to the ByteArrayOutputStream.
Use a PrintWriter to send normal form data. To send serial-
ized data structures, use an ObjectOutputStream instead.
PrintWriter out = new PrintWriter(byteStream, true);
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.17 Using Applets As Servlet Front Ends 551

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

7. Put the data into the buffer. For form data, use print. For
high-level serialized objects, use writeObject.
String val1 = URLEncoder.encode(someVal1);
String val2 = URLEncoder.encode(someVal2);
String data = "param1=" + val1 +

"¶m2=" + val2; // Note ’&’
out.print(data); // Note print, not println
out.flush(); // Necessary since no println used

8. Set the Content-Length header. This header is required for
POST data, even though it is unused with GET requests.
connection.setRequestProperty
("Content-Length", String.valueOf(byteStream.size()));

9. Set the Content-Type header. Netscape uses multi-
part/form-data by default, but regular form data requires a
setting of application/x-www-form-urlencoded, which is
the default with Internet Explorer. So, for portability you should
set this value explicitly when sending regular form data. The
value is irrelevant when you are sending serialized data.
connection.setRequestProperty
("Content-Type", "application/x-www-form-urlencoded");

10. Send the real data.
byteStream.writeTo(connection.getOutputStream());

11. Open an input stream. You typically use a BufferedReader
for ASCII or binary data and an ObjectInputStream for serial-
ized Java objects.
BufferedReader in =
new BufferedReader(new InputStreamReader

(connection.getInputStream()));

12. Read the result.
The specific details will depend on what type of data the server
sends. Here is an example that does something with each line
sent by the server:
String line;
while((line = in.readLine()) != null) {
doSomethingWith(line);

}

Bypassing the HTTP Server
Applets can talk directly to servers on their home host, using any of:

• Raw sockets
• Sockets with object streams
• JDBC
• RMI
• Other network protocols
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

552 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
A.18 JDBC and Database Connection Pooling
Basic Steps in Using JDBC

1. Load the JDBC driver. See http://java.sun.com/prod-
ucts/jdbc/drivers.html for available drivers. Example:
Class.forName("package.DriverClass");
Class.forName("oracle.jdbc.driver.OracleDriver");

2. Define the connection URL. The exact format will be
defined in the documentation that comes with the particular
driver.
String host = "dbhost.yourcompany.com";
String dbName = "someName";
int port = 1234;
String oracleURL = "jdbc:oracle:thin:@" + host +

":" + port + ":" + dbName;
String sybaseURL = "jdbc:sybase:Tds:" + host +

":" + port + ":" + "?SERVICENAME=" +
dbName;

3. Establish the connection.
String username = "jay_debesee";
String password = "secret";
Connection connection =
DriverManager.getConnection(oracleURL, username, password)

An optional part of this step is to look up information about the
database by using the getMetaData method of Connection. This
method returns a DatabaseMetaData object which has methods
to let you discover the name and version of the database itself
(getDatabaseProductName, getDatabaseProductVersion)
or of the JDBC driver (getDriverName, getDriverVersion).

4. Create a statement object.
Statement statement = connection.createStatement();

5. Execute a query or update.
String query = "SELECT col1, col2, col3 FROM sometable";
ResultSet resultSet = statement.executeQuery(query);

6. Process the results. Use next to get a new row. Use
getXxx(index) or getXxx(columnName) to extract values
from a row. First column has index 1, not 0.
while(resultSet.next()) {
 System.out.println(results.getString(1) + " " +
 results.getString(2) + " " +
 results.getString(3));
}

7. Close the connection.
connection.close();
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.18 JDBC and Database Connection Pooling 553

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

Database Utilities
These are static methods in the DatabaseUtilities class (Listing 18.6).

• getQueryResults
Connects to a database, executes a query, retrieves all the rows as arrays
of strings, and puts them inside a DBResults object (see Listing 18.7).
Also places the database product name, database version, the names of
all the columns and the Connection object into the DBResults object.
There are two versions of getQueryResults: one makes a new
connection, the other uses an existing connection. DBResults has a
simple toHTMLTable method that outputs result in HTML, which can
be used as either a real HTML table or as an Excel spreadsheet (see
Section 11.2).

• createTable
Given a table name, a string denoting the column formats, and an array
of strings denoting the row values, this method connects to a database,
removes any existing versions of the designated table, issues a CREATE
TABLE command with the designated format, then sends a series of
INSERT INTO commands for each of the rows. Again, there are two
versions: one makes a new connection, and the other uses an existing
connection.

• printTable
Given a table name, this method connects to the specified database,
retrieves all the rows, and prints them on the standard output. It
retrieves the results by turning the table name into a query of the form
“SELECT * FROM tableName” and passing it to getQueryResults.

• printTableData
Given a DBResults object from a previous query, this method prints it
on the standard output. This is the underlying method used by
printTable, but it is also useful for debugging arbitrary database
results.

Prepared Statements (Precompiled Queries)
• Use connection.prepareStatement to make precompiled form.

Mark parameters with question marks.
String template =
"UPDATE employees SET salary = ? WHERE id = ?";

PreparedStatement statement =
connection.prepareStatement(template);

• Use statement.setXxx to specify parameters to query.
statement.setFloat(1, 1.234);

statement.setInt(2, 5);
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

554 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• Use execute to perform operation.
statement.execute();

Steps in Implementing Connection Pooling
If you don’t care about implementation details, just use the ConnectionPool
class developed in Chapter 18. Otherwise, follow these steps.

1. Preallocate the connections.
Perform this task in the class constructor. Call the constructor
from servlet’s init method. The following code uses vectors to
store available idle connections and unavailable, busy connec-
tions.
availableConnections = new Vector(initialConnections);
busyConnections = new Vector();
for(int i=0; i<initialConnections; i++) {
availableConnections.addElement(makeNewConnection());

}

2. Manage available connections.
If a connection is required and an idle connection is available,
put it in the list of busy connections and then return it. The busy
list is used to check limits on the total number of connections as
well as when the pool is instructed to explicitly close all connec-
tions. Discarding a connection opens up a slot that can be used
by processes that needed a connection when the connection
limit had been reached, so use notifyAll to tell all waiting
threads to wake up and see if they can proceed.
public synchronized Connection getConnection()

throws SQLException {
if (!availableConnections.isEmpty()) {

Connection existingConnection =
(Connection)availableConnections.lastElement();

int lastIndex = availableConnections.size() - 1;
availableConnections.removeElementAt(lastIndex);
if (existingConnection.isClosed()) {
notifyAll(); // Freed up a spot for anybody waiting.
return(getConnection()); // Repeat process.

} else {
busyConnections.addElement(existingConnection);
return(existingConnection);

}
}

}

3. Allocate new connections.
If a connection is required, there is no idle connection available,
and the connection limit has not been reached, then start a
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

A.18 JDBC and Database Connection Pooling 555

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

H
S

background thread to allocate a new connection. Then, wait for
the first available connection, whether or not it is the newly allo-
cated one.
if ((totalConnections() < maxConnections) &&

!connectionPending) { // Pending = connecting in bg
makeBackgroundConnection();
try {

wait(); // Give up lock and suspend self.

} catch(InterruptedException ie) {}
return(getConnection()); // Try again.

4. Wait for a connection to become available.
This situation occurs when there is no idle connection and
you’ve reached the limit on the number of connections. This
waiting should be accomplished without continual polling. It is
best to use the wait method, which gives up the thread syn-
chronization lock and suspends the thread until notify or
notifyAll is called.
try {
wait();

} catch(InterruptedException ie) {}
return(getConnection());

5. Close connections when required.
Note that connections are closed when they are garbage col-
lected, so you don’t always have to close them explicitly. But,
you sometimes want more explicit control over the process.
public synchronized void closeAllConnections() {
// The closeConnections method loops down Vector, calling
// close and ignoring any exceptions thrown.
closeConnections(availableConnections);
availableConnections = new Vector();
closeConnections(busyConnections);

busyConnections = new Vector();
}

Connection pool timing results

Condition Average Time

Slow modem connection to database, 10
initial connections, 50 max connections
(ConnectionPoolServlet)

11 seconds

Slow modem connection to database,
recycling a single connection
(ConnectionPoolServlet2)

22 seconds
ome page for this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

556 Appendix A Servlet and JSP Quick Reference

Home page fo
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Slow modem connection to database, no con-
nection pooling (ConnectionPoolServlet3)

82 seconds

Fast LAN connection to database, 10 initial
connections, 50 max connections
(ConnectionPoolServlet)

1.8 seconds

Fast LAN connection to database, recycling a
single connection
(ConnectionPoolServlet2)

2.0 seconds

Fast LAN connection to database, no connec-
tion pooling (ConnectionPoolServlet3)

2.8 seconds

Connection pool timing results

Condition Average Time
r this book: www.coreservlets.com; Home page for sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

Chapter
Index
INDEX

A
ACCEPT attribute:
 file upload controls, 412
 FORM element, 395
ACCEPT-CHARSET attribute,
FORM element, 395
Accept-Charset request header, 99
Accept-Encoding request header, 93,
99, 105
Accept-Language request header, 95,
99
Accept-Ranges response header, 146
Accept request header, 93, 98-99
accessCount attribute, 207, 242
AccessCountBean.java, 305
AccessCounts.jsp, 243
ACTION attribute, FORM element,
390-91
Active Server Pages (ASP), 231
 vs. JavaServer Pages (JSP), 10
addCookie method, 145, 153, 186
addDateHeader, 144
addIntHeader, 144
addItem method, 205
addNotify method, 168
Age response header, 146
ALIGN attribute:
 FIELDSET element, 421
 IMAGE element, 415
1

2 Index
 jsp:plugin, 276
Allaire:
 ColdFusion, 10, 231
 HomeSite, 234
 JRun, 13
Allow response header, 146
Alphanumeric characters, 66, 391
Apache Tomcat, 12-13, 16, 18, 24, 30,
51-52, 67, 232, 249, 271, 300, 385
 compiling/installing servlets, 18
 standard directories, 310
 starting the server, 17
 Tomcat 3.0 CR/LF settings, 17
 version 3.0, 41
 version 3.1, 18, 309-10
ApplesAndOranges.jsp, 256-57
Applets:
 bypassing the HTTP server, 459
 examples, 279-85
 including in JSP documents, 274-85
 jsp:fallback element, 278
 jsp:param and jsp:params elements,
277-78
 jsp:plugin, 275-77
 query viewer utilizing object serial-
ization/HTTP tunneling, 443-50
 QueryCollection.java, 447-48
 QueryGenerator.java, 449-50
 ShowQueries.java, 444-46
 SearchApplet.java, 436
 sending data by POST:
 and processing results directly, 450-
53
 SendPost.java, 454-58
 ShadowedTextApplet.java, 281-82
 ShadowedTextApplet.jsp, 279-80
 using as servlet front ends, 432-59
APPLET tag, 274
 ALIGN attribute, 276
 ARCHIVE attribute, 276
 CODE attribute, 275
 CODEBASE attribute, 276
 HEIGHT attribute, 275
 HSPACE attribute, 276
 NAME attribute, 276
 TITLE attribute, 277
 VSPACE attribute, 276
 WIDTH attribute, 275
application/msword, 149
application/octet-stream, 149
application/pdf, 149
application/postscript, 149
application variable, 245
application/vnd.lotus-notes, 149
application/vnd.ms-excel, 26, 149,
254-55
application/vnd.ms-powerpoint, 149
application/x-gzip, 149
application/x-java-archive, 149
application/x-java-serialized-object,
149
application/x-java-vm, 149
application/zip, 149
archive attribute, jsp:plugin, 276
attributeName, 319
audio/basic, 150
audio/midi, 150
audio/x-aiff, 150
audio/x-wav, 150
Authorization request header, 94, 100,
108, 116, 154
AUTH_TYPE CGI variable, 116
autoflush attribute, page directive, 238,
260

B
BadCodeServlet.java, 89-90, 91
BASE64Decoder class, 108

Index 3
Base64 encoding, 108
Basic authorization, 107-8
Basic tag, defining, 314-19
beanName attribute, 289
BEA WebLogic, 24
BGColor.jsp, 239-41
bgColor parameter, 75, 324
bodycontent element, 317, 326
bodyFont parameter, 75
bodySize parameter, 75
BodyTagSupport class, 310, 334, 342
BookFlights.jsp, 365
buffer attribute, page directive, 244,
259-60
BufferedInputStream, 439
ButtonElement.html, 403
ByteArrayOutputStream class, 453

C
Cache-Control request header, 100
Cache-Control response header, 146-
47
Catalog.java, 225-27
CatalogPage.java, 210-13
CGI programming, and form data, 65-
66
CGI variables, 114-21
 defined, 115
 servlet equivalent of, 116-19
 servlet showing, 119-21
Check boxes, HTML, 405, 406-7
 CHECKED attribute, 407
 NAME attribute, 405
 ONBLUR attribute, 407
 ONCLICK attribute, 407
 ONFOCUS attribute, 407
 VALUE attribute, 406
CHECKED attribute:
 check boxes, 407
 radio buttons, 408
ClassNotFoundException, 363
CLASSPATH environment variable,
14-15, 18, 24, 29-30
CloseableFrame.java, 60
close method, 464
code attribute, jsp:plugin, 275
codebase attribute, jsp:plugin, 276
ColdFusion, 10, 231
COLS attribute, TEXTAREA element,
399
Combo boxes, HTML, 409-11
 MULTIPLE attribute, 409
 NAME attribute, 409
 SELECTED attribute, 410-11
 SIZE attribute, 409
 VALUE attribute, 410
commit method, 464
Common Gateway Interface (CGI), 5
Compressed Web pages, sending, 104-7
ComputeSpeed.jsp, 261-62, 264
config variable, 245
Connection class, 464-65
 methods, 464
ConnectionPool.html, 511-12
Connection pooling, See Database con-
nection pooling
ConnectionPoolServlet2.java, 513
ConnectionPoolServlet3.java, 513-14
ConnectionPoolServlet.java, 509-11
Connection request header, 93, 100
Connection response header, 147
ContactSection.jsp, 269
containsHeader method, 144
Content-Encoding response header,
99, 105, 147
Content-Language response header,
147-48
CONTENT_LENGTH CGI variable,

4 Index
116
Content-Length request header, 94,
100
Content-Length response header, 147-
48, 164
Content-Location response header,
148
Content-MD5 response header, 148
Content-Range response header, 148
CONTENT_TYPE CGI variable, 116
contentType attribute, page directive,
251-57
ContentType.jsp, 252
Content-Type request header, 22, 95,
101, 123
Content-Type response header, 148-49,
168, 251
Cookie request header, 93-4, 101, 186
Cookies, 178-97, 200, 353
 attributes, 183-85
 basic cookie utilities, 190-91
 benefits of, 179-81
 creating, 183
 customized search engine interface,
191-97
 examples of setting/reading, 186-90
 and focused advertising, 181
 long-lived cookies, creating, 191
 placing in response headers, 186
 privacy problems, 181-82
 problems with, 181-82
 reading from client, 186
 ServletUtilities.java, 191
 servlet cookie API, 183-86
 and session tracking, 199-200
 SetCookies.java, 187-88
 setting/reading, 186-90
 ShowCookies.java, 188-89
 and site customization, 180
 with specified names, finding, 190-91
 user identification during e-commerce
session, 180
 and username/password, 180
coreservlets.tags.ExampleTag, 312
coreservlets.LongLivedCookie, 249
coreservlets package, 292
coreservlets.ServletUtilities, 249
coreservlets.tags package, 312
Core Web Programming, xxii, 215
createImage method, 168
Cross-site scripting attack, 87
csajsp:condition element, 350-1
csajsp:debug element, 332-34
csajsp:else element, 350-1
csajsp:example element, 314
csajsp:filter element, 336-7
csajsp:heading element, 328, 334
csajsp:if element, 350-1
csajsp:prime element, 323, 334, 341
csajsp:repeat element, 340-1
csajsp:simplePrime element, 318
csajsp-taglib.tld, 312, 317-18, 321-22,
327-28, 331, 336, 340, 349-50
csajsp:then element, 350-1
CustomizedSearchEngines.java, 193-
94
CustomizedSearchEngines servlet,
191-97
Custom JSP tag libraries, 308-51
 assigning attributes to tags, 319-23
 basic tag, defining, 314-19
 inclusion of tag body, 323-29
 optional, 329-33
 JSP file, 313-14, 318-19
 attribute support, 322-23
 inclusion of tag body, 328-29
 manipulating the tag body, 336-37
 multiple inclusion of tag body, 341

Index 5
 nested tags, 350-51
 optional inclusion of tag body, 332
 manipulating the tag body, 334-38
 multiple inclusion of tag body, 338-41
 nested tags, 341-51
 optionally including tag body, 329-33
 SimplePrimeExample.jsp, 318
 SimplePrimeTag.java, 316
 tag handler class, 310-11, 315-16
 attribute support, 319-20
 inclusion of tag body, 324-26
 manipulating the tag body, 334-35
 multiple inclusion of tag body, 338-
39
 nested tags, 342-48
 optional inclusion of tag body, 329-
30
 tag libraries:
 components of, 310-14
 csajsp-taglib.tld, 312, 317-18
 defined, 309
 ExampleTag.java, 311
 SimpleExample.jsp, 314
 tag library descriptor file, 311-12,
316-18
 attribute support, 321-22
 inclusion of tag body, 326-28
 manipulating the tag body, 335-36
 multiple inclusion of tag body, 340
 nested tags, 348-50
 optional inclusion of tag body, 331

D
Database connection pooling, 501-17
 allocating new connections, 503
 closing connections when required,
503-4
 waiting for connection to become
available, 503
 case study, 508-14
 ConnectionPool.html, 511-12
 ConnectionPool.java, 504-7
 ConnectionPoolServlet2.java, 513
 ConnectionPoolServlet3.java, 513-
14
 ConnectionPoolServlet.java, 509-11
 managing available connections, 502
 preallocating the connections, 501-2
 sharing connection pools, 515-17
 using servlet context, 515
 using singleton classes, 516-17
DatabaseUtilities.java, 473, 474-79
Date class, 249
Date response header, 150
DBResults.java, 480-82
DBResultsTableModel.java, 495
DebugExample.jsp, 332
Debugging Web server:
 EchoServer.java, 423-27
 NetworkServer.java, 428-31
 SocketUtil.java, 431
 ThreadedEchoServer.java, 427-28
DebugTag.java, 330
Declarations, JSP, 233, 242-44
 AccessCounts.jsp, 243
 purpose of, 242
 special syntax for, 244
destroy method, 38-39
Digest authorization, 107
Dilbert, 75, 105, 210, 461
Directives, 233, 247-65
 defined, 247
 include directive, 247
 page directive, 247, 248-64
 taglib directive, 247
 types of, 247
 XML syntax for, 265
doAfterBody method, 334, 338, 344

6 Index
DOCTYPE declaration, 31-32, 316
DOCUMENT_ROOT CGI variable,
116
doEndTag method, 324, 338
doGet method, 21, 22, 37, 70, 71, 116,
154, 168, 442
doPost method, 21, 22, 37, 70, 71, 116,
154, 168, 442
DOS memory setting, 17
doStartTag method, 315, 324, 329,
338, 344
Download times, reducing by com-
pressing pages, 104-7
DriverUtilities.java, 467, 470-71
Dynamic content, including, 375-77

E
EchoServer class, 51, 386
EchoServer.java, 423-27
email parameter, 75
EMBED element, HTML, 274
EmployeeCreation.java, 486-87
EmployeeTest2.java, 485-86
EmployeeTest.java, 483-84
EncodedPage.java, 106
encodeRedirectURL method, 206
encodeURL method, 129, 206
ENCTYPE attribute, FORM element,
391-93, 398
Enumeration, 70, 95
errorPage attribute, page directive,
261
ETag response header, 102, 150
EVAL_BODY_TAG, 338
EVAL_PAGE, 324
ExampleTag.java, 311
executeQuery method, 465
Expect request header, 101
Expires response header, 150-51
Expressions, JSP, 233, 234-38, 353
 example, 236-37
 predefined variables, 234-35
 using as attribute values, 235-36
 XML syntax for, 235
Expressions.jsp, 237
extends attribute, page directive, 260

F
fgColor parameter, 75
FIELDSET element, HTML, 420-21,
431
File upload controls, HTML, 412-13
 ACCEPT attribute, 412
 MAXLENGTH attribute, 412
 NAME attribute, 412
 ONBLUR attribute, 413
 ONCHANGE attribute, 413
 ONFOCUS attribute, 413
 SIZE attribute, 412
 VALUE attribute, 412
FilteredCodeServlet.java, 90, 91
FilterExample.jsp, 337
Filtering, 87-91
 code for, 88-89
 example, 89-91
FilterTag.java, 335
findPrimeList method, 155
findPrimeList method, 155
fontSize parameter, 324
Form data, 64-91
 defined, 65
 extracting information from, 65-66
 reading from servlets, 66-67
 resume posting service, 74-86
 role of, 65-66
FORM element, HTML, 390-95
 ACCEPT attribute, 395
 ACCEPT-CHARSET attribute, 395

Index 7
 ACTION attribute, 390-91
 ENCTYPE attribute, 391-93
 METHOD attribute, 391
 ONRESET attribute, 395
 ONSUBMIT attribute, 395
 TARGET attribute, 395
forward method, 357, 376
Forwarding requests, 354-58
 alternative means of getting a
RequestDispatcher, 358
 from JavaServer Pages (JSP), 380-81
 interpreting relative URLs in the des-
tination page, 357-58
 supplying information to the destina-
tion pages, 355-57
 using static resources, 354-55
Foxtrot, 182
FrequentFlyerInfo.java, 374
From request header, 101
FruitCreation.java, 472
FruitTest.java, 468-70

G
Gefion Software, 13
getAttribute method, 155, 203, 245,
303, 376
getAttributeName method, 320
getAuthType method, 94
getBodyContent method, 334, 344
getBufferSize method, 26, 124
getColumnCount method, 466
getColumnName method, 466
getColumnType method, 466
getComment method, 183-84
getContentLength method, 94
getContentType method, 95, 101
getCookie method, 190
getCookies method, 94
getCookieValue method, 190
getCreationTime method, 204
getDateHeader method, 95
getDomain method, 184
getEnclosingWriter method, 334
getFoo method, 290
GetForm.html, 387-88
getGraphics method, 169
getHeader method, 94-95
getHeaderNames method, 95
getHeaders method, 95
getId method, 204
getInputStream method, 68
getIntHeader method, 95
getItem method, 205
getLastAccessedTime method, 204
getLastModified method, 44-45, 102
getMaxAge method, 184
getMaxInactiveInterval method, 204,
206
getMessage method, 292
getMethod method, 95
getNamedDispatcher method, 358,
376
getName method, 184
getNumPassengers method, 288
getOutputStream method, 168, 169
getParameter method, 66-67, 69, 298
getParameterNames method, 66-68,
70
getParameterValues method, 66-67,
70, 357
getPath method, 185
getProtocol method, 95-96
getQueryResults method, 473
getReader method, 67, 334
getRemoteUser method, 94
getRequestDispatcher method, 355,
375, 376
getRequestProtocol method, 78

8 Index
GET requests, 21, 65-66, 71, 77, 78,
93, 95, 244, 390, 391, 450
 sending data with:
 and displaying resultant page, 434-
35
 and processing results directly, 438-
43
getRequestURI method, 95
getSecure method, 185
getServletContext().getRealPath,
115-17
getServletContext().getServerInfo,
119
getServletContext method, 155, 303
getServletInfo method, 260
getSession method, 202
getString method, 334
getValue method, 185, 186, 202, 203,
303
getValueNames method, 204
getVersion method, 185
getWriter method, 168
GifEncoder class, 169
GIF images, using servlets to generate,
168-77
Guthrie, John, xix
gzip compression, 104-7
GZIPOutputStream, 105

H
hasMoreElements method, 70
HEAD, 32, 118, 123
HeadingExample.jsp, 328
headingFont parameter, 75
headingSize parameter, 75
HeadingTag.java, 325-26
height attribute, jsp:plugin, 276
HelloWorld.java, 23
HelloWWW2.java, 29, 33
HelloWWW3.java, 33-34
HelloWWW.java, 27
Hidden fields, HTML, 419
 and session tracking, 201
Host request header, 93, 101
HotelInfo.java, 375
hspace attribute, jsp:plugin, 276
HTML, 6, 9, 274-75, 336, 353, 354-55,
377
HTML forms, 384-431
 check boxes, 405, 406-7
 combo boxes, 409-11
 and data transmission, 385-89
 debugging Web server, 423-31
 EchoServer.java, 423-27
 NetworkServer.java, 428-31
 SocketUtil.java, 431
 ThreadedEchoServer.java, 427-28
 FIELDSET element, 420-21
 file upload controls, 412-13
 FORM element, 390-95
 ACCEPT attribute, 395
 ACCEPT-CHARSET attribute,
395
 ACTION attribute, 390-91
 ENCTYPE attribute, 391-93
 METHOD attribute, 391
 ONRESET attribute, 395
 ONSUBMIT attribute, 395
 TARGET attribute, 395
 GetForm.html, 387-88
 grouping controls, 420-21
 hidden fields, 419
 MultipartForm.html, 393-94
 PostForm.html, 388-89
 push buttons, 400-408
 JavaScript buttons, 405
 reset buttons, 404
 submit buttons, 401-3

Index 9
 radio buttons, 407-8
 server-side image maps, 414-18
 alternative, 417
 IMAGE element, 414-16
 ISMAP element, 417-18
 tab order, controlling, 422-23
 text controls, 395-400
 password fields, 397-98
 text areas, 398-400
 textfields, 395-97
HTTP, 93
 request headers, 92-113
 response headers, 142-77
 as stateless protocol, 199
 status codes, 122-41, 353
 tunneling, 438-43
 See also Cookies; Session tracking
HttpClient.java, 55-57
httpd, 17
HTTP request headers, 92-113
 Accept-Charset header, 99
 Accept-Encoding header, 93, 99, 105
 Accept header, 98-99
 Accept-Language header, 95, 99
 Authorization header, 94, 100, 108,
116
 Cache-Control header, 100
 compressed Web pages, sending, 104-
7
 Connection header, 93, 100
 Content-Length header, 94, 100
 Content-Type header, 95, 101
 Cookie header, 93, 101
 Expect header, 101
 From header, 101
 Host header, 93, 101
 If-Match header, 102
 If-Modified-Since header, 45, 102
 If-None-Match header, 102
 If-Range header, 102
 If-Unmodified-Since header, 102
 keep-alive connections, 100
 Pragma header, 102
 printing, 96-98
 Proxy-Authorization header, 103
 Range header, 103
 reading, 76-93
 Referer header, 95, 103
 Upgrade header, 103
 User-Agent header, 93, 103-4
 Via header, 104
 Warning header, 87
 Web pages, restricting access to, 89-
93
HTTP response headers, 142-77
 HTTP 1.1, 145-54
 Accept-Ranges response header,
146
 Age response header, 146
 Allow response header, 146
 Cache-Control response header,
146-47
 Connection response header, 147
 Content-Encoding response header,
147
 Content-Language response
header, 147-48
 Content-Length response header,
148
 Content-Location response header,
148
 Content-MD5 response header, 148
 Content-Range response header,
148
 Content-Type response header,
148-49
 Date response header, 150
 ETag response header, 150

10 Index
 Expires response header, 150-51
 Last-Modified response header,
151
 Location response header, 151
 persistent servlet state and auto-
reloading pages, 154-63
 Pragma response header, 151
 Refresh response header, 152, 155
 Retry-After response header, 152
 Server response header, 152
 Set-Cookie response header, 153
 Trailer response header, 153
 Transfer-Encoding response
header, 153
 Upgrade response header, 153
 Vary response header, 153
 Via response header, 153
 Warning response header, 153
 WWW-Authenticate response
header, 154
 persistent HTTP connections, using,
163-67
 setting from servlets, 143-45
HttpServlet, 21-22, 51
HttpServletRequest, 22, 66-68, 70, 94,
101, 129, 186, 244, 354-56, 357, 376,
442
HttpServletResponse, 22, 26, 109,
124-25, 134, 144, 148, 151, 168, 169,
186, 354, 355, 375, 442
HttpSession, 235, 245, 303
HttpSessionBindingListener inter-
face, 206
HTTP status codes, 122-41, 353
 HTTP 1.1, 126-35
 categories of, 126
 status 100 (Continue), 127
 status 101 (Switching Protocols),
127, 153
 status 200 (OK), 127
 status 201 (Created), 127
 status 202 (Accepted), 127
 status 203 (Non-authoritative Infor-
mation), 127
 status 204 (No Content), 127-28
 status 205 (Reset Content), 128
 status 206 (Partial Content), 128
 status 300 (Multiple Choices), 128
 status 301 (Moved Permanently),
128-29
 status 302 (Found), 129-30
 status 303 (See Other), 130
 status 304 (Not Modified), 130
 status 305 (Use Proxy), 130
 status 307 (Temporary Redirect),
131
 status 400 (Bad Request), 131
 status 401 (Unauthorized), 131
 status 403 (Forbidden), 131
 status 404 (Not Found), 131-32
 status 405 (Method Not Allowed),
132
 status 406 (Not Acceptable), 132
 status 407 (Proxy Authentication
Required), 132
 status 408 (Request Timeout), 133
 status 409 (Conflict), 133
 status 410 (Gone), 133
 status 411 (Length Required), 133
 status 412 (Precondition Failed),
133
 status 413 (Request Entity Too
Large), 133
 status 414 (Request URI Too Long),
133
 status 415 (Unsupported Media
Type), 134
 status 416 (Requested Range Not

Index 11
Satisfiable), 134
 status 417 (Expectation Failed), 134
 status 500 (Internal Server Error),
134
 status 501 (Not Implemented), 134
 status 502 (Bad Gateway), 135
 status 503 (Service Unavailable),
135
 status 504 (Gateway Timeout), 135
 status 505 (HTTP Version Not Sup-
ported), 135
 specifying, 124-25
 status line, components of, 123
HTTP tunneling, 438-43
 defined, 439
 reading binary or ASCII data, 439-40
 reading serialized data structures,
441-43
 client side, 441-42
 server side, 442-43
HTTP_XXX_YYY CGI variables,
117, 119
HyperText Transfer Protocol (HTTP),
93

I
iepluginurl attribute, jsp:plugin, 277
IfConditionTag, 344
IfConditionTag.java, 346
IfElseTag.java, 348
IfExample.jsp, 350-51
If-Match request header, 102, 150\
If-Modified-Since request header, 45,
102, 151
If-None-Match request header, 102
If-Range request header, 102
IfTag, 344
IfTag.java, 345
IfThenTag.java, 347
If-Unmodified-Since request header,
102
IMAGE element, HTML, 414-16
image/gif, 26, 149-50
image/jpeg, 150
ImageMap.html, 415
image/png, 99, 150
ImageRetriever.java, 164, 166-67
image/tiff, 150
image/x-xbitmap, 150
Implicit objects, 244-45
import attribute, page directive, 248-51
ImportAttribute.jsp, 250-51
include directive, 247, 270, 375, 377
include method, RequestDispatcher
class, 271, 376
info, tag element, 317
info attribute, page directive, 260
Initialization parameters, servlets, 39-
44
init method, 34-36
install_dir/classes, 24, 291
install_dir/classes/coreservlets/, 359
install_dir/classes/lima/Ford-
hook.class, 291
install_dir/lib, 25, 291
install_dir/server.xml, 16, 232
install_dir/servlets, 24, 291
install_dir/servlets/coreservlets, 28,
359
install_dir/startup.bat, 17
install_dir/tmpdir/default/pagecom-
pile/jsp/_JSP, 232
install_dir/webapps/examples/WEB-
INF/jsp, 311
install_dir/webapps/ROOTWEB-
INF/classes, 312
install_dir/webapps/ROOTWEB-
INF/classes/coreservlets/tags, 312

12 Index
install_dir/webpages/forms/
ThreeParamsForm.html, 67
install_dir/webpages/path/file.html,
25, 385
install_dir/webpages/WEB-INF, 41
install_dir/webpages/WEB-INF/
classes, 24, 291
install_dir/webpages/WEB-INF/
classes/coreservlets, 28
install_dir/webpages/WEB-INF/serv-
lets, 291
install_dir/webpages/WEB-INF/serv-
lets/coreservlets, 28
install_dir/webpages/WEB-INF/serv-
lets/lima/Fordhook.class, 291
install_dir/webserver.xml, 232
install_dir/work/port-number, 232
instantiate method, java.beans.Bean,
289
Integer.parseInt, 76, 155
Interactive query viewer, 487-97
Interruptible.java, 63
invalidate method, 205-6
IOException, 354, 439
isClosed method, 464
isCommitted method, 26
isErrorPage attribute, page directive,
261-64
isLeased method, 288
ISMAP element, 417-18
isNew method, 204
isNullable method, 466
ISO-8859-1, 99
isReadOnly method, 466
isSearchable method, 466
isThreadSafe attribute, page directive,
258-59
isWorkDirPersistent attribute, 232
Item1.html, 272
Item2.html, 272
Item3.html, 273
Item4.html, 273
Item.java, 222-23
ItemOrder.java, 224-25

J
JAR file, 24-25, 30, 248
JavaBeans, 286-307
 AccessCountBean.java, 305
 associating all properties with input
parameters, 301-2
 associating individual properties with
input parameters, 298-99
 automatic type conversion, 300
 basic bean use, 288-91
 bean classes, installing, 291
 bean properties:
 accessing, 290
 setting, 290-91, 294-302
 beans, 287-88
 conditional bean creation, 304-7
 defined, 287
 jsp:useBean scope attribute, 302-7
 application value, 303
 page value, 303
 request value, 304
 session value, 303
 SaleEntry1.jsp, 296-97
 SaleEntry2.jsp, 299
 SaleEntry3.jsp, 301-2
 SaleEntry.java, 295-96
 SharedCounteds1.jsp, 306
 sharing beans, 302-7
 StringBean.java, 292
 StringBean.jsp, 293-94
java.beans.Bean, instantiate method,
289
javac, See Java compiler (javac)

Index 13
Java compiler (javac), identifying
classes to, 14-15
Java Development Kit (JDK), version,
30
JAVA_HOME environment variable,
16
java.io package, 22
Java Properties file, 109
Java Runtime Environment (JRE), 277
JavaScript, and User-Agent request
header, 93, 103-4
JavaScript buttons, 405
JavaScript vs. JavaServer Pages (JSP),
11
JavaServer Pages (JSP), 5, 9-19, 228-
381
 Active Server Pages (ASP) vs., 10
 advantages of, 10-12
 API documentation, 14
 applets:
 examples, 279-85
 including in JSP documents, 274-85
 jsp:fallback element, 278
 jsp:param and jsp:params ele-
ments, 277-78
 jsp:plugin, 275-77
 ShadowedTextApplet.java, 281-82
 ShadowedTextApplet.jsp, 279-80
 compiling/installing servlets, 18-19
 configuring the server, 16-17
 DOS memory setting, 17
 JAVA_HOME environment vari-
able, 16
 port number, 16
 Tomcat 3.0 CR/LF settings, 17
 custom JSP tag libraries, 308-51
 files:
 including at page translation time,
268-70
 including at request time, 270-73
 including in JSP documents, 266-73
 forwarding requests from, 380-81
 installation/setup, 12-19
 integrating servlets and, 352-81
 and JavaBeans, 286-307
 JavaScript vs., 11
 JSP directives, 247-65
 defined, 247
 include directive, 247
 page directive, 247, 248-64
 taglib directive, 247
 types of, 247
 XML syntax for, 265
 obtaining servlet and JSP software,
12-14
 packaging the classes, 15
 PHP vs., 10-11
 predefined variables (implicit
objects), 244-45
 pure servlets vs., 11
 purpose of, 231-32
 scripting elements, 230-45
 declarations, 233, 242-44
 expressions, 233, 234-38
 scriptlets, 233, 238-42
 template text, 234
 Server-Side Includes (SSI) vs., 11
 starting the server, 17
 static HTML vs., 12
 See also Custom JSP tag libraries; JSP
directives
JavaServer Web Development Kit
(JSWDK), 13
Java servlets, See Servlets
java.util.Date class, 249
java.util.zip package, 105
Java Web Server (Sun), 13-14, 24, 30,
51, 105, 164, 249, 278, 300, 301

14 Index
 compiling/installing servlets, 19
javax.servlet package, 22
javax.servlet.http package, 22
javax.servlet.jsp.tagext package, 315
javax.servlet.jsp.tagext.Tag interface,
310
JDBC, 254, 460-501
 basic JDBC example, 467-72
 connection:
 closing, 466
 establishing, 464
 connection URL, defining, 463-64
 creating a statement, 465
 DatabaseUtilities.java, 473, 474-79
 DBResults.java, 480-82
 defined, 461
 DriverUtilities.java, 470-71
 EmployeeCreation.java, 486-87
 EmployeeTest2.java, 485-86
 EmployeeTest.java, 483-84
 executing a query, 465
 FruitCreation.java, 472
 FruitTest.java, 468-70
 interactive query viewer, 487-97
 code, 489-96
 DBResultsTableModel.java, 495
 QueryViewer.java, 491-94
 WindowUtilities.java, 496-97
 loading the driver, 462-63
 prepared statements (precompiled
queries), 497-501
 processing results, 465-66
 utilities, 473-82
jreversion attribute, jsp:plugin, 277
JRun (Allaire), 13
jsp:expression, 235
jsp:fallback, 278
jsp:forward, 236, 381
jsp:getProperty, 290, 303, 359
jsp:include, 236, 267, 270, 377
jsp:param and jsp:params elements,
277-78
jsp:plugin, 267, 275-77
 align attribute, 276
 archive attribute, 276
 code attribute, 275
 codebase attribute, 276
 height attribute, 276
 hspace attribute, 276
 iepluginurl attribute, 277
 jreversion attribute, 277
 name attribute, 276
 nspluginurl attribute, 277
 title attribute, 277
 type attribute, 275
 vspace attribute, 276
 width attribute, 275
jsp:setProperty, 235-36, 290-91, 294,
301, 303
jsp:useBean, 288-90, 294, 302, 304,
356
JSP declarations, See Declarations
JSP directives, 247-65
 defined, 247
 include directive, 247
 page directive, 247, 248-64
 autoflush attribute, 260
 buffer attribute, 259-60
 contentType attribute, 251-57
 errorPage attribute, 261
 extends attribute, 260
 import attribute, 248-51
 info attribute, 260
 isErrorPage attribute, 261-64
 isThreadSafe attribute, 258-59
 language attribute, 264
 session attribute, 259
 taglib directive, 247

Index 15
 types of, 247
 XML syntax for, 265
JSP expressions, See Expressions
JSP file, 313-14, 318-19
 attribute support, 322-23
 inclusion of tag body, 328-29
 manipulating the tag body, 336-37
 multiple inclusion of tag body, 341
 nested tags, 350-51
 optional inclusion of tag body, 332
JSP scriptlets, See Scriptlets
_jspService method, 238, 241, 242,
302
JspWriter, 235, 238, 244, 259, 315,
334
JSWDK (Sun), 16-17, 24, 30, 51-52,
67, 109, 232, 248, 249, 271, 278, 300,
301, 385
 compiling/installing servlets, 18

K
Karlson, Amy, xix
keep-alive connections, 100
KidsBooksPage.java, 213, 214

L
LabeledTextField.java, 61-62, 453
LabelPanel.java, 283
language attribute, page directive, 264
languages parameter, 75-76
Last-Modified response header, 45,
151
LiteWebServer (LWS) (Gefion Soft-
ware), 13
Location response header, 129, 143,
145, 148, 151
LongLivedCookie.java, 192
Long-lived cookies, creating, 191
LotteryNumbers.java, 46-47
 accessing with an unconditional GET
request, 48
 accessing with a conditional GET
request, 49
 output of, 45

M
max-age=xxx value, Cache-Control
response header, 147
MAXLENGTH attribute:
 file upload controls, 412
 password fields, 398
 textfields, 397
MessageImage.java, 171-72
METHOD attribute, 21, 391
Microsoft Excel, 254
 generating Excel spreadsheets, 254-57
MIME types, 99, 123, 132, 148-50,
251-52, 255, 395, 442
Model 2 approach to JSP, 354
MultipartForm.html, 393-94
MULTIPLE attribute, combo boxes,
409
Multisystem search engine front end,
435-38
must-revalidate value, Cache-Con-
trol response header, 147
my-styles.css, 357

N
name element, 316, 321
NAME attribute:
 check boxes, 405
 combo boxes, 409
 file upload controls, 412
 IMAGE element, 415
 jsp:plugin, 276
 password fields, 398
 radio buttons, 408

16 Index
 reset buttons, 404
 submit buttons, 401-2
 TEXTAREA element, 399
 textfields, 396
name parameter, 75
Nested tags, 341-51
 template for, 343
NetworkClient.java, 57-58
NetworkServer.java, 428-31
New Atlanta ServletExec, 13
nextElement, 70
Nobel prize, literature, 215, 225
no-cache value, Cache-Control
response header, 146
no-store value, Cache-Control
response header, 147
nspluginurl attribute, jsp:plugin, 277
numDigits, 155
numPrimes, 155

O
ObjectOutputStream, 442-43
OBJECT tag, HTML, 274
ONDBLDOWN attribute, 397
ONBLUR attribute:
 check boxes, 407
 file upload controls, 413
 JavaScript buttons, 405
 password fields, 398
 radio buttons, 408
 reset buttons, 404
 submit buttons, 402
 text areas, 399-400
 textfields, 397
ONCHANGE attribute:
 file upload controls, 413
 password fields, 398
 TEXTAREA element, 399
 text areas, 399-400
 textfields, 397
ONCLICK attribute:
 check boxes, 407
 JavaScript buttons, 405
 radio buttons, 408
 reset buttons, 404
 submit buttons, 402
ONDBLCLICK attribute:
 JavaScript buttons, 405
 reset buttons, 404
 submit buttons, 402
ONFOCUS attribute:
 check boxes, 407
 file upload controls, 413
 JavaScript buttons, 405
 password fields, 398
 radio buttons, 408
 reset buttons, 404
 submit buttons, 402
 TEXTAREA element, 399
 text areas, 399-400
 textfields, 397
ONKEYDOWN attribute, text areas,
399-400
ONKEYPRESS attribute:
 password fields, 398
 TEXTAREA element, 399
 text areas, 399-400
 textfields, 397
ONKEYUP attribute:
 password fields, 398
 TEXTAREA element, 399
 text areas, 399-400
 textfields, 397
Online store example, 209-27
 building the front end, 210-13
 Catalog.java, 225-27
 CatalogPage.java, 210-13
 handling orders, 215-20

Index 17
 implementing shopping cart/catalog
items, 220-27
 Item.java, 222-23
 ItemOrder.java, 224-25
 KidsBooksPage.java, 213, 214
 OrderPage.java, 216-20
 ShoppingCart.java, 221-22
 TechBooksPage.java, 213, 215
Online travel agent, 75
 BookFlights.jsp, 365
 FrequentFlyerInfo.java, 374
 HotelInfo.java, 375
 RentalCarInfo.java, 374
 TravelCustomer.java, 366-72
 TravelData.java, 372-73
 Travel.java, 363-64
 /travel/quick-search.html, 361-62
ONRESET attribute, FORM element,
395
ONSELECT attribute:
 file upload controls, 41
 password fields, 398
 text areas, 399-400
 textfields, 397
ONSUBMIT attribute:
 FORM element, 395
 TEXTAREA element, 399
openConnection method, 440
OrderPage.java, 216-20
out variable, 235, 238, 244-45

P
Packaging servlets, 15, 27-31
page attribute, 381
Page compression, 104-7
pageContext variable, 245
page directive, 245-64
 autoflush attribute, 260
 buffer attribute, 259-60
 contentType attribute, 251-57
 ContentType.jsp, 252
 generating Excel spreadsheets, 254-
57
 errorPage attribute, 261
 extends attribute, 260
 import attribute, 248-51
 directories for custom classes, 248-
49
 example, 249-51
 ImportAttribute.jsp, 250-51
 info attribute, 260
 isErrorPage attribute, 261-64
 ComputeSpeed.jsp, 261-62, 264
 SpeedErrors.jsp, 262-63
 isThreadSafe attribute, 258-59
 language attribute, 264
 session attribute, 259
ParallelSearches.html, 438
PasswordBuilder.java, 113
Password fields, 397-98
Password-protecting servlets, 89-93
PATH_INFO, 117
PATH_TRANSLATED, 117
PersistentConnection.java, 165-66
PHP, 231
 vs. JavaServer Pages (JSP), 10-11
Poskanzer, Jef, 169
PostForm.html, 388-89
POST requests, 21, 32, 66-67, 69, 70,
71, 74, 77, 78, 93, 95, 101, 244, 386,
390
Pragma request header, 102, 146
Pragma response header, 151
Predefined variables (implicit objects),
244-45
 application, 245
 config, 245
 out, 244-45

18 Index
 page, 245-46
 pageContext, 245
 request, 244
 response, 244
 session, 245
prefix attribute, 313, 318
prepareCall method, 464
PreparedStatements.java, 498-501
Prepared statements (precompiled que-
ries), 497-501
prepareStatement method, Connec-
tion class, 464
PrimeExample.jsp, 323
PrimeList.java, 155, 160-61
PrimeNumbers.html, 158
PrimeNumbers.java, 156-57
Primes.java, 155, 161-62, 315
Printing HTTP request headers, 96-98
println statements, 22, 32, 51, 236
PrintWriter, 22, 26, 105, 124, 144,
168, 235, 238, 244, 259, 315
private value, Cache-Control response
header, 146
ProtectedPage.java, 110-12
Proxy-Authorization request header,
103
public value, Cache-Control response
header, 146
Pure servlets vs. JavaServer Pages
(JSP), 11
Push buttons, 400-408
 JavaScript buttons, 405
 reset buttons, 404
 submit buttons, 401-3
PUT requests, 102
putValue method, 203, 205, 207

Q
QueryCollection.java, 447-48
Query data, See Form data
QueryGenerator.java, 449-50
QUERY_STRING, 66, 117
QueryViewer.java, 491-94
quick-search.html, 361-62

R
Radio buttons, 407-8
 CHECKED attribute, 408
 NAME attribute, 408
 ONBLUR attribute, 408
 ONCLICK attribute, 408
 ONFOCUS attribute, 408
Raise, obtaining, xxiii
Range request header, 103
Raw servlet output, showing, 377-80
Reading HTTP request headers, 76-93
readObject method, 441
Referer request header, 93, 103
Refresh response header, 152, 154, 155
REMOTE_ADDR, 117
REMOTE_HOST, 118
REMOTE_USER, 118
removeAttribute method, 205
removeValue method, 203-4
RentalCarInfo.java, 374
RepeatExample.jsp, 341
RepeatTag.java, 339
replaceIfMissing method, 76
replaceIfMissingOrDefault method,
76
RequestDispatcher class, 354, 355,
357-58, 375, 381
 forward method, 354-7
 include method, 271, 375-7
Request forwarding example, 355
request.getAuthType, 116
request.getContentLength, 100, 116
request.getContentType, 116

Index 19
request.getHeader, 99
request.getIntHeader, 100
request.getMethod, 118
request.getPathInfo, 117
request.getPathTranslated, 117
request.getProtocol, 119
request.getQueryString, 117
request.getRemoteAddr, 117
request.getRemoteAddress, 115
request.getRemoteHost, 115, 118
request.getRemoteUser, 118
request.getServerName, 118
request.getServerPort, 118
request.getServletPath, 118
Request headers, See HTTP request
headers
REQUEST_METHOD CGI variable,
118
Request response header, 152
request variable, 234, 238, 244
required attribute, attribute element,
321
Reset buttons, 404
response.sendRedirect, 129
response.setContentLength, 164
response.setStatus, 125
response variable, 234, 238, 244
Restricting access to Web pages, 107-
13
ResultSetMetaData class, 466
Resume posting service example, 74-86
Retry-After response header, 152
rollback method, 464
ROWS attribute, TEXTAREA ele-
ment, 399
rtexprvalue element, 321, 340

S
SaleEntry1.jsp, 296-97
SaleEntry2.jsp, 299
SaleEntry3.jsp, 301-2
SaleEntry.java, 295-96
scope attribute, 289, 302, 356
Scripting elements, JSP, 233
Scriptlets, 233, 238-42, 353
 BGColor.jsp, 239-41
 purpose of, 238
 special syntax for, 242
 using to make parts of JSP file condi-
tional, 241-42
SCRIPT_NAME CGI variable, 118
SearchAppletFrame.html, 438
SearchApplet.java, 436
Search engines, front end to, 135-41
SearchEnginesFrontEnd.java, 194-96
SearchEngines.html, 141
SearchEngines.java, 136-37, 139-40
SearchSpec class, 135, 435
SearchSpec.java, 136
SecretServlet, 90
Secure Sockets Layer (SSL), 108
SELECTED attribute, combo boxes,
410-11
sendError method, 50, 125, 135
SendPost.java, 454-58
sendRedirect method, 125, 129, 135,
145, 206, 357
SERVER_NAME CGI variable, 118
SERVER_PORT CGI variable, 118
SERVER_PROTOCOL CGI vari-
able, 119
Server response header, 152
Server-side image maps, 414-18
 alternative, 417
 IMAGE, 414-16
 ISMAP element, 417-18
Server-Side Includes (SSI) vs. JavaSer-
ver Pages (JSP), 11

20 Index
SERVER_SOFTWARE CGI variable,
119
service method, 36-37, 71, 154, 232,
238, 241, 302, 329-30
servletc.bat, 30, 31
ServletConfig, 245
ServletContext, 245, 303, 354-56, 358,
375
ServletExec (New Atlanta), 13
servlet.jar, 29
Servlet life cycle, 34-39
 destroy method, 38-39
 doGet method, 37
 doPost method, 37
 init method, 34-36
 service method, 36-37
 SingleThreadModel interface, 38
ServletRequest, 244, 304, 329
Servlets, 5-7, 50-52
 advantages over “traditional” CGI, 7-
9
 API documentation, 14
 basic structure, 21-22
 chaining, 376
 compiling in packages, 29-30
 convenience of, 7
 cost of, 9
 creating in packages, 28-29
 efficiency of, 7
 and HTML generation, 26-27
 initialization, example using, 44-49
 initialization parameters, 39-44
 integrating JavaServer Pages (JSP)
and, 352-81
 invoking in packages, 30-31
 life cycle, 34-39
 packaging, 15, 27-31
 page modification dates, example
using, 44-49
 portability of, 8
 power of, 8
 reading form data from, 66-67
 role of, 5-6
 security of, 8-9
 session tracking in, 201
 setting HTTP response headers from,
143-45
 simple HTML-building utilities, 31-
34
 simple servlet generating plain text,
23-25
 compiling/installing, 24-25
 invoking, 25
 and status line, 123-24
 using to generate GIF images, 168-77
servlets.properties, 43
ServletTemplate.java, 22
ServletUtilities.java, 33, 88-89, 163,
190-91
session attribute, page directive, 245,
259
Session tracking, 180, 198-237, 353
 API, 201-5
 associating information with a ses-
sion, 205
 and cookies, 199-200
 encoding URLs sent to the client, 206-
7
 and hidden form fields, 201
 looking up the HttpSession object
associated with the current request, 202
 looking up information associated
with a session, 202
 need for, 199-201
 online store example, 209-27
 building the front end, 210-13
 Catalog.java, 225-27
 CatalogPage.java, 210-13

Index 21
 handling orders, 215-20
 implementing shopping cart/catalog
items, 220-27
 Item.java, 222-23
 ItemOrder.java, 224-25
 KidsBooksPage.java, 213, 214
 OrderPage.java, 216-20
 ShoppingCart.java, 221-22
 TechBooksPage.java, 213, 215
 in servlets, 201
 ShowSession.java, 207-9
 terminating sessions, 206
 and URL-rewriting, 199, 200-201
session variable, 235, 238, 245
setAttribute method, 155, 203, 205,
245, 356
setAttributeName method, 319-20,
324
setBufferSize method, 26, 124
setContentLength, 145
setContentType, 26, 145, 148, 168,
169
Set-Cookie response header, 22, 144,
153, 186
SetCookies.java, 186, 187-88
setDateHeader method, 144, 150
setFirstName method, 235
setFoo method, 290
setHeader method, 90, 143-44
setIntHeader method, 144
setLeased method, 288
setMessage method, 292
setNumPassengers method, 288
setQueryTimeout method, 465
setSpeed method, 287
setStatus method, 109, 124-25
ShadowedTextApplet.java, 281-82
ShadowedTextApplet.jsp, 279-80
ShadowedTextFrame.java, 176-77
ShadowedText.html, 173
ShadowedText.java, 170-71
SharedCounts1.jsp, 306-7
ShoppingCart.java, 221-22
ShowCGIVariables.java, 119-20
ShowCookies.java, 188-89
showDocument method, 434-35
ShowMessage.java, 40-41
ShowPage.java, 378-80
ShowParameters.java, 71-72
 output of, 74
ShowParametersPostForm.html, 72-
73
ShowQueries.java, 444-46
ShowRequestHeaders.java, 96-97
ShowSession.java, 207-9
SimpleExample.jsp, 314
Simple HTML-building utilities, 31-34
SimplePrimeExample.jsp, 318
SimplePrimeTag.java, 316-17
Simple servlet generating plain text, 23-
25
 compiling/installing, 24-25
 invoking, 25
SingleThreadModel interface, 38, 242,
258-59
SIZE attribute:
 combo boxes, 409
 file upload controls, 412
 password fields, 398
 textfields, 397
size method, 164
skills parameter, 75, 77
SKIP_BODY, 315, 324, 338
SKIP_PAGE, 324
Slywczak, Rich, xix
s-max-age=xxx value, Cache-Control
response header, 147
SocketUtil.java, 59, 431

22 Index
SomeRandomPage.jsp, 269-70
SpeedErrors.jsp, 261, 262-63
SRC attribute, IMAGE element, 415
startserver.bat, 16
startup.bat, 16
Static/dynamic content, including, 375-
77
Static HTML vs., JavaServer Pages
(JSP), 12
Status code 100 (Continue), 127
Status code 101 (Switching Protocols),
127, 153
Status code 200 (OK), 127
Status code 201 (Created), 127
Status code 202 (Accepted), 127
Status code 203 (Non-authoritative
Information), 127
Status code 204 (No Content), 127-28
Status code 205 (Reset Content), 128
Status code 206 (Partial Content), 128
Status code 300 (Multiple Choices),
128
Status code 301 (Moved Permanently),
128-29
Status code 302 (Found), 129-30
Status code 303 (See Other), 130
Status code 304 (Not Modified), 130
Status code 305 (Use Proxy), 130
Status code 307 (Temporary Redirect),
131
Status code 400 (Bad Request), 131
Status code 401 (Unauthorized), 131
Status code 403 (Forbidden), 131
Status code 404 (Not Found), 131-
32131
Status code 405 (Method Not Allowed),
132
Status code 406 (Not Acceptable), 132
Status code 407 (Proxy Authentication
Required), 132
Status code 408 (Request Timeout), 133
Status code 409 (Conflict), 133
Status code 410 (Gone), 133
Status code 411 (Length Required), 133
Status code 412 (Precondition Failed),
133
Status code 413 (Request Entity Too
Large), 133
Status code 414 (Request URI Too
Long), 133
Status code 415 (Unsupported Media
Type), 134
Status code 416 (Requested Range Not
Satisfiable), 134
Status code 417 (Expectation Failed),
134
Status code 500 (Internal Server Error),
134
Status code 501 (Not Implemented),
134
Status code 502 (Bad Gateway), 135
Status code 503 (Service Unavailable),
135
Status code 504 (Gateway Timeout),
135
Status code 505 (HTTP Version Not
Supported), 135
StringBean.java, 292
StringBean.jsp, 293-94
StringBuffer, 88
String.valueOf, 116, 118
Style sheets, 76
Submit buttons, 401-3
 ButtonElement.html, 403
 NAME attribute, 401-2
 ONBLUR attribute, 402
 ONCLICK attribute, 402
 ONDBLCLICK attribute, 402

Index 23
 ONFOCUS attribute, 402
 VALUE attribute, 401-2
SubmitResume.html, 77-78
SubmitResume.java, 78-86
sun.misc.BASE64Decoder class, 108

T
Tabindex.html, 422-23
Tab order, controlling, 422-23
tagclass element, 317
tag element, 316-17
Tag handler class, 310-11, 315-16
 attribute support, 319-20
 inclusion of tag body, 324-26
 manipulating the tag body, 334-35
 multiple inclusion of tag body, 338-39
 nested tags, 342-48
 optional inclusion of tag body, 329-30
taglib directive, 247, 313, 316, 318,
322
Tag libraries, See Custom JSP tag
libraries
Tag library descriptor file, 311-12, 316-
18
 attribute support, 321-22
 inclusion of tag body, 326-28
 manipulating the tag body, 335-36
 multiple inclusion of tag body, 340
 nested tags, 348-50
 optional inclusion of tag body, 331
TagSupport class, 310, 319, 334, 342
TARGET attribute, FORM element,
395
TechBooksPage.java, 213, 215
Template for nested tags, 343
Template text, 234
TEXTAREA element, 377, 398-400
Text areas, 398-400
Text controls, 395-400
 password fields, 397-98
 text areas, 398-400
 textfields, 395-97
text/css, 150
Textfields, 395-97
 MAXLENGTH attribute, 397
 NAME attribute, 396
 ONBLDOWN attribute, 397
 ONBLUR attribute, 397
 ONCHANGE attribute, 397
 ONFOCUS attribute, 397
 ONKEYPRESS attribute, 397
 ONKEYUP attribute, 397
 ONSELECT attribute, 397
 SIZE attribute, 397
 VALUE attribute, 396-97
text/html, 26, 150, 252
text/plain, 149-50, 252
ThreadedEchoServer.java, 427-28
Thread-safe servlet, 258
ThreeParamsForm.html, 69-70
ThreeParams.java, 68
ThreeParams servlet, 67
title attribute, jsp:plugin, 277
title parameter, 75
Tomcat, See Apache Tomcat
Topley, Kim, xix
Trailer response header, 153
Transfer-Encoding response header,
153
TravelCustomer.java, 366-72
TravelData.java, 372-73
Travel.java, 363-64
/travel/quick-search.html, 361-62
try/catch block, 441
type attribute, jsp:plugin, 275

U
Unix (C shell), setting environment

24 Index
variables in, 15
Upgrade request header, 103
Upgrade response header, 153
uri attribute, taglib directive, 313
URLConnection class, 439, 441-42,
444, 450
URLEncoder class, 434
URL-rewriting, and session tracking,
199, 200-201
User-Agent request header, 93

V
VALUE attribute:
 check boxes, 406
 combo boxes, 410
 file upload controls, 412
 password fields, 398
 reset buttons, 404
 submit buttons, 401-2
 textfields, 396-97
Vary response header, 153
Via request header, 104
Via response header, 153
video/mpeg, 150
video/quicktime, 150
vspace attribute, jsp:plugin, 276

W

Warning request header, 87
Warning response header, 153
WebClient.java, 51, 52-55
Web Design Group, 32
Web pages:
 building on the fly, 6
 restricting access to, 107-13
WebLogic (BEA), 24
Web site, for book, xxvii
WebSphere (IBM), 24
web.xml file, 42, 313
WhatsNew.jsp, 271-73
width attribute, jsp:plugin, 275
Windows, setting environment variable
in, 15
WindowUtilities.java, 496-97
Winning, big, 1-556
workDirIsPersistent attribute, 232
World Wide Web (WWW) Consortium,
32
WRAP attribute, TEXTAREA ele-
ment, 399
WWW-Authenticate response header,
143, 154
www.coreservlets.com, xxvii

Index 25

26 Index

Index 27

28 Index

Index 29

30 Index

Index 31

32 Index

	Table of Contents
	Servlets 2.1�and�2.2 �2
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	JavaServer Pages �228
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Supporting Technologies �382
	Chapter 16
	Chapter 17
	Chapter 18
	Appendix
	About the Author
	Real Code for Real Programmers
	How This Book Is Organized
	Part I: Servlets
	Part II: JavaServer Pages
	Part III: Supporting Technologies

	Conventions
	About the Web Site
	1

	Servlets 2.1�and�2.2
	Overview of Servlets and Java�Server�Pages
	1
	1.1 Servlets
	1. Read any data sent by the user. This data is usually entered in a form on a Web page, but coul...
	2. Look up any other information about the request that is embedded in the HTTP request. This inf...
	3. Generate the results. This process may require talking to a database, executing an RMI or CORB...
	4. Format the results inside a document. In most cases, this involves embedding the information i...
	5. Set the appropriate HTTP response parameters. This means telling the browser what type of docu...
	6. Send the document back to the client. This document may be sent in text format (HTML), binary ...

	1.2 The Advantages of Servlets Over “Traditional” CGI
	Efficient
	Convenient
	Powerful
	Portable
	Secure
	Inexpensive

	1.3 Java�Server Pages
	1.4 The Advantages of JSP
	Versus Active Server Pages (ASP)
	Versus PHP
	Versus Pure Servlets
	Versus Server-Side Includes (SSI)
	Versus Java�Script
	Versus Static HTML

	1.5 Installation and Setup
	Obtain Servlet and JSP Software
	Bookmark or Install the Servlet and JSP API Documentation
	Identify the Classes to the Java Compiler
	Unix (C Shell)
	Windows
	Package the Classes
	Configure the Server

	Port Number
	JAVA_HOME Setting
	DOS Memory Setting
	Tomcat 3.0 CR/LF Settings
	Start the Server
	Compile and Install Your Servlets

	Tomcat
	Tomcat 3.1
	The JSWDK
	Java Web Server 2.0

	First Servlets

	2
	2.1 Basic Servlet Structure
	2.2 A Simple Servlet Generating Plain Text
	Figure 2–1 Result of Listing 2.2 (HelloWorld.java).
	Compiling and Installing the Servlet
	1. A directory for frequently changing servlet classes. Servlets in this directory are automatica...
	2. A directory for infrequently changing servlet classes. Servlets placed in this location are sl...
	3. A directory for infrequently changing servlets in JAR files. With the second option above, the...

	Invoking the Servlet

	2.3 A Servlet That Generates HTML
	1. Tell the browser that you’re sending back HTML, and
	2. Modify the println statements to build a legal Web page.
	Figure 2–2 Result of Listing 2.3 (HelloWWW.java).

	2.4 Packaging Servlets
	Creating Servlets in Packages
	1. Move the files to a subdirectory that matches the intended package name. For example, I’ll use...
	2. Insert a package statement in the class file. For example, to place a class file in a package ...

	Compiling Servlets in Packages
	Invoking Servlets in Packages
	Figure 2–3 Invoking a servlet in a package via http://hostname/servlet/packagename.servletName.

	2.5 Simple HTML-Building Utilities
	Figure 2–4 Result of the HelloWWW3 servlet.

	2.6 The Servlet Life Cycle
	The init Method
	The service Method
	1. You can add support for other services later by adding doPut, doTrace, etc., perhaps in a subc...
	2. You can add support for modification dates by adding a getLastModified method. If you use doGe...
	3. You get automatic support for HEAD requests. The system just returns whatever headers and stat...
	4. You get automatic support for OPTIONS requests. If a doGet method exists, the standard service...
	5. You get automatic support for TRACE requests. TRACE is a request method used for client debugg...

	The doGet, doPost, and doXxx Methods
	The SingleThreadModel Interface
	The destroy Method

	2.7 An Example Using Initialization Parameters
	Figure 2–5 The ShowMessage servlet with server-specific initialization parameters.
	Figure 2–6 Registering a name for a servlet with the Java Web Server. Servlets that use initializ...
	Figure 2–7 Specifying initialization parameters for a named servlet with the Java Web Server.

	2.8 An Example Using Servlet Initialization and Page Modification Dates
	Figure 2–8 Output of LotteryNumbers servlet.
	Figure 2–9 Accessing the LotteryNumbers servlet with an unconditional GET request or with a condi...
	Figure 2–10 Accessing the LotteryNumbers servlet with a conditional GET request specifying a date...

	2.9 Debugging Servlets
	1. Look at the HTML source. If the result you see in the browser looks funny, choose “View Source...
	2. Return error pages to the client. Sometimes certain classes of errors can be anticipated by th...
	3. Start the server from the command line. Most Web servers execute from a background process, an...
	4. Use the log file. The HttpServlet class has a method called log that lets you write informatio...
	5. Look at the request data separately. Servlets read data from the HTTP request, construct a res...
	6. Look at the response data separately. Once you look at the request data separately, you’ll wan...
	7. Stop and restart the server. Most full-blown Web servers that support servlets have a designat...

	2.10 WebClient: Talking to Web Servers Interactively
	WebClient
	HttpClient
	NetworkClient
	SocketUtil
	CloseableFrame
	LabeledTextField
	Interruptible

	Handling the Client Request: Form�Data

	3
	3.1 The Role of Form Data
	3.2 Reading Form Data from Servlets
	3.3 Example: Reading Three Explicit Parameters
	Figure 3–1 HTML front end resulting from ThreeParamsForm.html.
	Figure 3–2 Output of ThreeParams servlet.

	3.4 Example: Reading All Parameters
	Figure 3–3 HTML front end that collects data for ShowParameters servlet.
	Figure 3–4 Output of ShowParameters servlet.

	3.5 A Resumé Posting Service
	Figure 3–5 Front end to SubmitResume servlet.
	Figure 3–6 SubmitResume servlet after “Preview” button is pressed in Figure 3–5.
	Figure 3–7 Another possible result of SubmitResume servlet.
	Figure 3–8 SubmitResume servlet when “Submit” button is pressed.

	3.6 Filtering Strings for HTML-Specific Characters
	Code for Filtering
	Example
	Figure 3–9 Result of BadCodeServlet: much of the code fragment is lost, and the text following th...
	Figure 3–10 Result of FilteredCodeServlet: use of the filter method solves problems with strings ...

	Handling the Client Request: HTTP�Request Headers

	4
	4.1� Reading Request Headers from Servlets
	4.2� Printing All Headers
	Figure 4–1 Request headers sent by Netscape 4.7 on Windows 98.
	Figure 4–2 Request headers sent by Internet Explorer 5 on Windows 98.

	4.3� HTTP 1.1 Request Headers
	Accept
	Accept-Charset
	Accept-Encoding
	Accept-Language
	Authorization
	Cache-Control
	Connection
	Content-Length
	Content-Type
	Cookie
	Expect
	From
	Host
	If-Match
	If-Modified-Since
	If-None-Match
	If-Range
	If-Unmodified-Since
	Pragma
	Proxy-Authorization
	Range
	Referer
	Upgrade
	User-Agent
	Via
	Warning

	4.4� Sending Compressed Web Pages
	Figure 4–3 Since the Windows version of Internet Explorer 5.0 supports gzip, this page was sent g...

	4.5� Restricting Access to Web Pages
	1. Check whether there is an Authorization header. If there is no such header, go to Step 2. If t...
	2. Return a 401 (Unauthorized) response code and a header of the following form: WWW-Authenticate...
	Figure 4–4 Initial result when accessing SecretServlet (the registered name for the ProtectedPage...
	Figure 4–5 Result after entering incorrect name or password.
	Figure 4–6 Result after entering known name and password.

	Accessing the Standard CGI Variables

	5
	5.1� Servlet Equivalent of CGI Variables
	AUTH_TYPE
	CONTENT_LENGTH
	CONTENT_TYPE
	DOCUMENT_ROOT
	HTTP_XXX_YYY
	PATH_INFO
	PATH_TRANSLATED
	QUERY_STRING
	REMOTE_ADDR
	REMOTE_HOST
	REMOTE_USER
	REQUEST_METHOD
	SCRIPT_NAME
	SERVER_NAME
	SERVER_PORT
	SERVER_PROTOCOL
	SERVER_SOFTWARE

	5.2� A Servlet That Shows the CGI Variables
	Figure 5–1 The standard CGI variables for a typical request.

	Generating the Server Response: HTTP�Status Codes

	6
	6.1� Specifying Status Codes
	6.2� HTTP 1.1 Status Codes and Their Purpose
	100 (Continue)
	101 (Switching Protocols)
	200 (OK)
	201 (Created)
	202 (Accepted)
	203 (Non-Authoritative Information)
	204 (No Content)
	205 (Reset Content)
	206 (Partial Content)
	300 (Multiple Choices)
	301 (Moved Permanently)
	302 (Found)
	303 (See Other)
	304 (Not Modified)
	305 (Use Proxy)
	307 (Temporary Redirect)
	400 (Bad Request)
	401 (Unauthorized)
	403 (Forbidden)
	404 (Not Found)
	405 (Method Not Allowed)
	406 (Not Acceptable)
	407 (Proxy Authentication Required)
	408 (Request Timeout)
	409 (Conflict)
	410 (Gone)
	411 (Length Required)
	412 (Precondition Failed)
	413 (Request Entity Too Large)
	414 (Request URI Too Long)
	415 (Unsupported Media Type)
	416 (Requested Range Not Satisfiable)
	417 (Expectation Failed)
	500 (Internal Server Error)
	501 (Not Implemented)
	502 (Bad Gateway)
	503 (Service Unavailable)
	504 (Gateway Timeout)
	505 (HTTP Version Not Supported)

	6.3� A Front End to Various Search Engines
	Figure 6–1 Front end to the SearchEngines servlet. See Listing 6.3 for the HTML source code.
	Figure 6–2 Result of the SearchEngines servlet when the form of Figure 6–1 is submitted.
	Figure 6–3 Result of SearchEngines servlet when no search string was specified. Internet Explorer...
	Figure 6–4 Result of SearchEngines servlet when no search string was specified. Netscape correctl...

	Generating the Server Response: HTTP Response Headers

	7
	7.1 Setting Response Headers from Servlets
	7.2 HTTP�1.1 Response Headers and Their Meaning
	Accept-Ranges
	Age
	Allow
	Cache-Control
	Connection
	Content-Encoding
	Content-Language
	Content-Length
	Content-Location
	Content-MD5
	Content-Range
	Content-Type
	Date
	ETag
	Expires
	Last-Modified
	Location
	Pragma
	Refresh
	Retry-After
	Server
	Set-Cookie
	Trailer
	Transfer-Encoding
	Upgrade
	Vary
	Via
	Warning
	WWW-Authenticate

	7.3 Persistent Servlet State and Auto-Reloading Pages
	Figure 7–1 Result of PrimeNumbers.html, used as a front end to the PrimeNumbers servlet.
	Figure 7–2 Intermediate result of a request to the PrimeNumbers servlet. This result can be obtai...
	Figure 7–3 Final result of a request to the PrimeNumbers servlet. This result can be obtained whe...

	7.4 Using Persistent HTTP Connections
	Figure 7–4 Result of the PersistentConnection servlet.

	7.5 Using Servlets to Generate GIF Images
	1. Create an Image. You create an Image object by using the createImage method of the Component c...
	2. Draw into the Image. You accomplish this task by calling the Image’s getGraphics method and th...
	3. Set the Content-Type response header. As already discussed, you use the setContentType method ...
	4. Get an output stream. As discussed previously, if you are sending binary data, you should call...
	5. Send the Image in GIF format to the output stream. Accomplishing this task yourself requires q...
	Figure 7–5 Front end to ShadowedText servlet.
	Figure 7–6 Using the GIF-generation servlet to build the logo for a children’s books Web site. (R...
	Figure 7–7 Using the GIF-generation servlet to build the title image for a site describing a loca...
	Figure 7–8 Using the GIF-generation servlet to build an image for a page advertising a local carn...
	Figure 7–9 ShadowedTextFrame application when invoked with “java coreservlets.ShadowedTextFrame "...

	Handling Cookies

	8
	8.1 Benefits of Cookies
	Identifying a User During an E-commerce Session
	Avoiding Username and Password
	Customizing a Site
	Focusing Advertising

	8.2 Some Problems with Cookies
	8.3 The Servlet Cookie API
	Creating Cookies
	Cookie Attributes
	public String getComment() public void setComment(String comment)
	public String getDomain() public void setDomain(String domainPattern)
	public int getMaxAge() public void setMaxAge(int lifetime)
	public String getName() public void setName(String cookieName)
	public String getPath() public void setPath(String path)
	public boolean getSecure() public void setSecure(boolean secureFlag)
	public String getValue() public void setValue(String cookieValue)
	public int getVersion() public void setVersion(int version)
	Placing Cookies in the Response Headers
	Reading Cookies from the Client

	8.4 Examples of Setting and Reading Cookies
	Figure 8–1 Result of SetCookies servlet.
	Figure 8–2 Result of visiting the ShowCookies servlet within an hour of visiting SetCookies in th...
	Figure 8–3 Result of visiting the ShowCookies servlet within an hour of visiting SetCookies in a ...

	8.5 Basic Cookie Utilities
	Finding Cookies with Specified Names
	Creating Long-Lived Cookies

	8.6 A Customized Search Engine Interface
	Figure 8–4 Result of SearchEnginesFrontEnd servlet. Whatever options you specify will be the init...
	Figure 8–5 Result of CustomizedSearchEngines servlet.

	Session �Tracking

	9
	9.1 The Need for Session Tracking
	Cookies
	URL-Rewriting
	Hidden Form Fields
	Session Tracking in Servlets

	9.2 The Session Tracking API
	Looking Up the HttpSession Object Associated with the Current Request
	Looking Up Information Associated with a Session
	public Object getValue(String name) public Object getAttribute(String name)
	public void putValue(String name, Object value) public void setAttribute(String name, Object value)
	public void removeValue(String name) public void removeAttribute(String name)
	public String[] getValueNames() public Enumeration getAttributeNames()
	public String getId()
	public boolean isNew()
	public long getCreationTime()
	public long getLastAccessedTime()
	public int getMaxInactiveInterval() public void setMaxInactiveInterval(int seconds)
	public void invalidate()
	Associating Information with a Session
	Terminating Sessions
	Encoding URLs Sent to the Client

	9.3 A Servlet Showing Per-Client Access Counts
	Figure 9–1 First visit to ShowSession servlet.
	Figure 9–2 Eleventh visit to ShowSession servlet.

	9.4 An On-Line Store Using a Shopping Cart and Session Tracking
	Building the Front End
	Figure 9–3 Result of the KidsBooksPage servlet.
	Figure 9–4 Result of the TechBooksPage servlet.

	Handling the Orders
	Figure 9–5 Result of OrderPage servlet after user clicks on “Add to Shopping Cart” in KidsBooksPage.
	Figure 9–6 Result of OrderPage servlet after several additions and changes to the order.

	Behind the Scenes: Implementing the Shopping Cart and Catalog Items
	2

	JavaServer Pages
	JSP Scripting Elements
	10
	10.1� Scripting Elements
	1. Expressions of the form <%= expression %>, which are evaluated and inserted into the servlet’s...
	2. Scriptlets of the form <% code %>, which are inserted into the servlet’s _jspService method (c...
	3. Declarations of the form <%! code %>, which are inserted into the body of the servlet class, o...
	Template Text

	10.2� JSP Expressions
	Predefined Variables
	XML Syntax for Expressions
	Using Expressions as Attribute Values
	Example
	Figure 10–1 Typical result of Expressions.jsp.

	10.3� JSP Scriptlets
	Figure 10–2 Default result of BGColor.jsp.
	Figure 10–3 Result of BGColor.jsp when accessed with a bgColor parameter having the RGB value C0C...
	Figure 10–4 Result of BGColor.jsp when accessed with a bgColor parameter having the X11 color val...
	Using Scriptlets to Make Parts of the JSP File Conditional
	Special Scriptlet Syntax

	10.4� JSP Declarations
	Figure 10–5 Visiting AccessCounts.jsp after it has been requested 15 times by the same or differe...
	Special Declaration Syntax

	10.5� Predefined Variables
	request
	response
	out
	session
	application
	config
	pageContext
	page

	The JSP page Directive: Structuring Generated �Servlets

	11
	11.1� The import Attribute
	Directories for Custom Classes
	Example
	Figure 11–1 ImportAttribute.jsp when first accessed.
	Figure 11–2 ImportAttribute.jsp when accessed in a subsequent visit.

	11.2� The contentType Attribute
	Generating Plain Text Documents
	Figure 11–3 For plain text documents, Netscape does not try to interpret HTML tags.
	Figure 11–4 Internet Explorer interprets HTML tags in plain text documents.

	Generating Excel Spreadsheets
	Figure 11–5 With the default browser settings, Netscape prompts you before allowing Excel content.
	Figure 11–6 Result of Excel.jsp on system that has Excel installed.
	Figure 11–7 The default result of ApplesAndOranges.jsp is HTML content.
	Figure 11–8 Specifying format=excel for ApplesAndOranges.jsp results in Excel content.

	11.3� The isThreadSafe Attribute
	11.4� The session Attribute
	11.5� The buffer Attribute
	11.6� The autoflush Attribute
	11.7� The extends Attribute
	11.8� The info Attribute
	11.9� The errorPage Attribute
	11.10� The isErrorPage Attribute
	Figure 11–9 ComputeSpeed.jsp when it receives legal values.
	Figure 11–10 �ComputeSpeed.jsp when it receives illegal values.

	11.11� The language Attribute
	11.12� XML Syntax for Directives
	Including Files and Applets in JSP Documents

	12
	12.1 Including Files at Page Translation Time
	Figure 12–1 Result of SomeRandomPage.jsp.

	12.2 Including Files at Request Time
	Figure 12–2 Result of WhatsNew.jsp.

	12.3 Including Applets for the Java Plug-In
	The jsp:plugin Element
	The jsp:param and jsp:params Elements
	The jsp:fallback Element
	Example: Building Shadowed Text
	Figure 12–3 Initial result of ShadowedTextApplet.jsp in a browser that has the JDK 1.2 plug-in in...
	Figure 12–4 ShadowedTextApplet.jsp after changing the message, font, and size entries.
	Figure 12–5 Result of pressing the “Open Frame” button in Figure 12–4.
	Figure 12–6 Another possible frame built by ShadowedTextApplet.jsp.

	Using JavaBeans with JSP

	13
	1. A bean class must have a zero-argument (empty) constructor. You can satisfy this requirement e...
	2. A bean class should have no public instance variables (fields). I hope you already follow this...
	3. Persistent values should be accessed through methods called getXxx and setXxx. For example, if...
	13.1� Basic Bean Use
	Accessing Bean Properties
	Setting Bean Properties: Simple Case
	Installing Bean Classes

	13.2� Example: StringBean
	Figure 13–1 Result of StringBean.jsp.

	13.3� Setting Bean Properties
	Figure 13–2 Result of SaleEntry1.jsp.
	Associating Individual Properties with Input Parameters
	Automatic Type Conversions
	Associating All Properties with Input Parameters

	13.4� Sharing Beans
	Conditional Bean Creation
	Figure 13–3 Result of a user visiting SharedCounts3.jsp. The first page visited by any user was S...

	Creating �Custom JSP Tag Libraries

	14
	14.1 The Components That Make Up a Tag Library
	The Tag Handler Class
	The Tag Library Descriptor File
	The JSP File
	Figure 14–1 Result of SimpleExample.jsp.

	14.2 Defining a Basic Tag
	The Tag Handler Class
	The Tag Library Descriptor File
	1. name, whose body defines the base tag name to which the prefix of the taglib directive will be...
	2. tagclass, which gives the fully qualified class name of the tag handler. In this case, I use <...
	3. info, which gives a short description. Here, I use <info>Outputs a random 50-digit prime.</info>
	4. bodycontent, which should have the value EMPTY for tags without bodies. Tags with normal bodie...

	The JSP File
	Figure 14–2 Result of SimplePrimeExample.jsp.

	14.3 Assigning Attributes to Tags
	The Tag Handler Class
	The Tag Library Descriptor File
	1. name, a required element that defines the case-sensitive attribute name. In this case, I use <...
	2. required, a required element that stipulates whether the attribute must always be supplied (tr...
	3. rtexprvalue, an optional attribute that indicates whether the attribute value can be a JSP exp...

	The JSP File
	Figure 14–3 Result of PrimeExample.jsp.

	14.4 Including the Tag Body
	The Tag Handler Class
	The Tag Library Descriptor File
	The JSP File
	Figure 14–4 The custom csajsp:heading element gives you much more control over heading format tha...

	14.5 Optionally Including the Tag Body
	The Tag Handler Class
	The Tag Library Descriptor File
	The JSP File
	Figure 14–5 The body of the csajsp:debug element is normally ignored.
	Figure 14–6 The body of the csajsp:debug element is included when a debug request parameter is su...

	14.6 Manipulating the Tag Body
	The Tag Handler Class
	1. doAfterBody, a method that you should override to handle the manipulation of the tag body. Thi...
	2. getBodyContent, a method that returns an object of type BodyContent that encapsulates informat...
	1. getEnclosingWriter, a method that returns the JspWriter being used by doStartTag and doEndTag.
	2. getReader, a method that returns a Reader that can read the tag’s body.
	3. getString, a method that returns a String containing the entire tag body.

	The Tag Library Descriptor File
	The JSP File
	Figure 14–7 The csajsp:filter element lets you insert text without worrying about it containing s...

	14.7 Including or Manipulating the Tag Body Multiple Times
	The Tag Handler Class
	The Tag Library Descriptor File
	The JSP File
	Figure 14–8 Result of RepeatExample.jsp when accessed with a repeats parameter of 20.

	14.8 Using Nested Tags
	The Tag Handler Classes
	The Tag Library Descriptor File
	The JSP File
	Figure 14–9 Result of IfExample.jsp.

	Integrating Servlets and JSP

	15
	15.1 Forwarding Requests
	Using Static Resources
	Supplying Information to the Destination Pages
	Interpreting Relative URLs in the Destination Page
	Alternative Means of Getting a RequestDispatcher

	15.2 Example: An On-Line Travel Agent
	Figure 15–1 Front end to travel servlet (see Listing 15.2).
	Figure 15–2 Result of travel servlet (Listing 15.3) dispatching request to BookFlights.jsp (Listi...

	15.3 Including Static or Dynamic Content
	15.4 Example: Showing Raw Servlet and JSP Output
	Figure 15–3 Front end to ShowPage servlet. See Listing 15.11 for the HTML source.
	Figure 15–4 Result of ShowPage servlet when given a URL referring to Expressions.jsp (see Listing...

	15.5 Forwarding Requests From JSP Pages
	3

	Supporting Technologies
	Using HTML Forms
	16
	16.1� How HTML Forms Transmit Data
	Figure 16–1 Initial result of GetForm.html.
	Figure 16–2 HTTP request sent by Netscape 4.7 when submitting GetForm.html.
	Figure 16–3 Initial result of PostForm.html.
	Figure 16–4 HTTP request sent by Netscape 4.7 when submitting PostForm.html.

	16.2� The FORM Element
	HTML Element: <FORM ACTION="URL" ...> ... </FORM>
	Attributes: ACTION (required), METHOD, ENCTYPE, TARGET, ONSUBMIT, ONRESET, ACCEPT, ACCEPT-CHARSET
	ACTION
	METHOD
	ENCTYPE
	Figure 16–5 Customized result of GetForm.html.
	Figure 16–6 HTTP request sent by Internet Explorer 5.0 when submitting GetForm.html with the data...
	Figure 16–7 Initial result of MultipartForm.html.
	Figure 16–8 HTTP request sent by Netscape 4.7 when submitting MultipartForm.html.

	TARGET
	ONSUBMIT and ONRESET
	ACCEPT and ACCEPT-CHARSET

	16.3� Text Controls
	Textfields
	HTML Element: <INPUT TYPE="TEXT" NAME="..." ...> (No�End Tag)
	Attributes: NAME (required), VALUE, SIZE, MAXLENGTH, ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDO...
	NAME
	VALUE
	SIZE
	MAXLENGTH
	ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, �ONDBLDOWN, ONKEYPRESS, and ONKEYUP
	Password Fields
	HTML Element: <INPUT TYPE="PASSWORD" NAME="..." ...> (No End Tag)
	Attributes: NAME (required), VALUE, SIZE, MAXLENGTH, ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDO...

	NAME, VALUE, SIZE, MAXLENGTH, ONCHANGE, �ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN, ONKEYPRESS, and ON...
	Figure 16–9 A password field created by means of <INPUT TYPE="PASSWORD" ...>.
	Text Areas
	HTML Element: <TEXTAREA NAME="..." ������ROWS=xxx COLS=yyy> ... </TEXTAREA>
	Attributes: NAME (required), ROWS (required), COLS (required), WRAP (nonstandard), ONCHANGE, ONSE...

	NAME
	ROWS
	COLS
	WRAP
	ONCHANGE, ONSELECT, ONFOCUS, ONBLUR, ONKEYDOWN, ONKEYPRESS, and ONKEYUP
	Figure 16–10 �A text area.

	16.4� Push Buttons
	Submit Buttons
	HTML Element: <INPUT TYPE="SUBMIT" ...> (No End Tag)
	Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
	Figure 16–11 �A submit button with the default label.

	NAME and VALUE
	Figure 16–12 �Submit buttons with user-defined labels.

	ONCLICK, ONDBLCLICK, ONFOCUS, and ONBLUR
	HTML Element: <BUTTON TYPE="SUBMIT" ...> HTML Markup </BUTTON>
	Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

	NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, and ONBLUR
	Figure 16–13 �Submit buttons created with the BUTTON element.
	Reset Buttons
	HTML Element: <INPUT TYPE="RESET" ...> (No End Tag)
	Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

	VALUE
	NAME
	ONCLICK, ONDBLCLICK, ONFOCUS, and ONBLUR
	HTML Element: <BUTTON TYPE="RESET" ...> HTML Markup </BUTTON>
	Attributes: VALUE, NAME, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
	JavaScript Buttons
	HTML Element: <INPUT TYPE="BUTTON" ...> (No End Tag)

	Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR
	HTML Element: <BUTTON TYPE="BUTTON" ...> HTML Markup </BUTTON>

	Attributes: NAME, VALUE, ONCLICK, ONDBLCLICK, ONFOCUS, ONBLUR

	16.5� Check Boxes and Radio Buttons
	Check boxes
	HTML Element: <INPUT TYPE="CHECKBOX" NAME="..." ...> (No End Tag)
	Attributes: NAME (required), VALUE, CHECKED, ONCLICK, ONFOCUS, ONBLUR
	Figure 16–14 An HTML check box.

	NAME
	VALUE
	CHECKED
	ONCLICK, ONFOCUS, and ONBLUR
	Radio Buttons
	HTML Element: <INPUT TYPE="RADIO" NAME="..." ������VALUE="..." ...> (No End Tag)
	Attributes: NAME (required), VALUE (required), CHECKED, ONCLICK, ONFOCUS, ONBLUR
	Figure 16–15 �Radio buttons in HTML.

	NAME
	VALUE
	CHECKED
	ONCLICK, ONFOCUS, and ONBLUR

	16.6� Combo Boxes and List Boxes
	HTML Element: <SELECT NAME="..." ...> ... </SELECT>
	Attributes: NAME (required), SIZE, MULTIPLE, ONCLICK, ONFOCUS, ONBLUR, ONCHANGE
	NAME
	SIZE
	MULTIPLE
	ONCLICK, ONFOCUS, ONBLUR, and ONCHANGE
	HTML Element: <OPTION ...> (End Tag Optional)
	Attributes: SELECTED, VALUE

	VALUE
	SELECTED
	Figure 16–16 �A SELECT element displayed as a combo box (drop-down menu).
	Figure 16–17 �Choosing options from a SELECT menu.
	Figure 16–18 �A SELECT element that specifies MULTIPLE or SIZE results in a list box.

	16.7� File Upload Controls
	HTML Element: <INPUT TYPE="FILE" ...> (No End Tag)
	Attributes: NAME (required), VALUE (ignored), SIZE, MAXLENGTH, ACCEPT, ONCHANGE, ONSELECT, ONFOCU...
	NAME
	VALUE
	SIZE and MAXLENGTH
	ACCEPT
	ONCHANGE, ONSELECT, ONFOCUS, and ONBLUR
	Figure 16–19 �Initial look of a file upload control.
	Figure 16–20 �A file chooser resulting from the user clicking on Browse in a file upload control.

	16.8� Server-Side Image Maps
	IMAGE—Standard Server-Side Image Maps
	HTML Element: <INPUT TYPE="IMAGE" ...> (No End Tag)
	Attributes: NAME (required), SRC, ALIGN
	NAME
	SRC
	ALIGN
	Figure 16–21 An IMAGE input control with NAME="map".
	Figure 16–22 �Clicking on the image at (305, 280) submits the form and adds map.x=305&map.y=280 t...
	ISMAP—Alternative Server-Side Image Maps
	Figure 16–23 �Setting the ISMAP attribute of an IMG element inside a hypertext link changes what ...
	Figure 16–24 �When an ISMAP image is selected, the coordinates of the selection are transmitted w...

	16.9� Hidden Fields
	HTML Element: <INPUT TYPE="HIDDEN" NAME="..." VALUE="..."> (No End Tag)
	Attributes: NAME (required), VALUE

	16.10� Grouping Controls
	HTML Element: <FIELDSET>
	Attributes: None.
	Figure 16–25 �The FIELDSET element lets you visually group related controls.
	HTML Element: <LEGEND>

	Attributes: ALIGN
	ALIGN

	16.11� Controlling Tab Order
	Figure 16–26 �In Internet Explorer, repeatedly pressing the TAB key cycles the input focus among ...

	16.12� A Debugging Web Server
	EchoServer
	ThreadedEchoServer
	NetworkServer

	Using Applets As Servlet Front Ends

	17
	17.1� Sending Data with GET and Displaying the Resultant Page
	17.2� A Multisystem Search Engine Front End
	Figure 17–1 SearchApplet allows the user to enter a search string.
	Figure 17–2 Submitting the query yields side-by-side results from three different search engines.

	17.3� Sending Data with GET and Processing the Results Directly
	(HTTP Tunneling)
	Reading Binary or ASCII Data
	1. Create a URL object referring to applet’s home host. You can pass an absolute URL string to th...
	2. Create a URLConnection object. The openConnection method of URL returns a URLConnection object...
	3. Instruct the browser not to cache the URL data. The first thing you do with the URLConnection ...
	4. Set any desired HTTP headers. If you want to set HTTP request headers (see Chapter 4), you can...
	5. Create an input stream. There are a variety of appropriate streams, but a common one is Buffer...
	6. Read each line of the document. The HTTP specification stipulates that the server closes the c...
	7. Close the input stream.

	Reading Serialized Data Structures
	The Client Side
	1. Create a URL object referring to the applet’s home host. As before, since the URL must refer t...
	2. Create a URLConnection object. The openConnection method of URL returns a URLConnection object...
	3. Instruct the browser not to cache the URL data. The first thing you do with the URLConnection ...
	4. Set any desired HTTP headers. If you want to set HTTP request headers (see Chapter 4), you can...
	5. Create an ObjectInputStream. The constructor for this class simply takes the raw input stream ...
	6. Read the data structure with readObject. The return type of readObject is Object, so you need ...
	7. Close the input stream.

	The Server Side
	1. Specify that binary content is being sent. This task is accomplished by designating
	2. Create an ObjectOutputStream.
	3. Write the data structure by using writeObject. Most built-in data structures can be sent this ...
	4. Flush the stream to be sure all content has been sent to the client.

	17.4� A Query Viewer That Uses Object Serialization and HTTP Tunneling
	Figure 17–3 The ShowQueries applet in action.

	17.5� Sending Data by POST and Processing the Results Directly
	(HTTP Tunneling)
	1. Create a URL object referring to the applet’s home host. As before, since the URL must refer t...
	2. Create a URLConnection object. This object will be used to obtain input and output streams tha...
	3. Instruct the browser not to cache the results.
	4. Tell the system to permit you to send data, not just read it.
	5. Create a ByteArrayOutputStream to buffer the data that will be sent to the server. The purpose...
	6. Attach an output stream to the ByteArrayOutputStream. Use a PrintWriter to send normal form da...
	7. Put the data into the buffer. For form data, use print. For high-level serialized objects, use...
	8. Set the Content-Length header. This header is required for POST data, even though it is unused...
	9. Set the Content-Type header. Netscape uses multipart/form-data by default, but regular form da...
	10. Send the real data.
	11. Open an input stream. You typically use a BufferedReader for ASCII or binary data and an Obje...
	12. Read the result. The specific details will depend on what type of data the server sends. Here...
	13. Pat yourself on the back. Yes, the procedure for handling POST is long and tedious. Fortunate...

	17.6� An Applet That Sends POST Data
	Figure 17–4 Result of using SendPost to send POST data to the ShowParameters servlet, which is pr...
	Figure 17–5 Result of using SendPost to send POST data to the EchoServer HTTP server, which is pr...

	17.7� Bypassing the HTTP Server
	JDBC and �Database �Connection Pooling

	18
	18.1� Basic Steps in Using JDBC
	1. Load the JDBC driver.
	2. Define the connection URL.
	3. Establish the connection.
	4. Create a statement object.
	5. Execute a query or update.
	6. Process the results.
	7. Close the connection.
	Load the Driver
	Define the Connection URL
	Establish the Connection
	Create a Statement
	Execute a Query
	Process the Results
	Close the Connection

	18.2� Basic JDBC Example
	18.3� Some JDBC Utilities
	1. getQueryResults This method connects to a database, executes a query, retrieves all the rows a...
	2. createTable Given a table name, a string denoting the column formats, and an array of strings ...
	3. printTable Given a table name, this method connects to the specified database, retrieves all t...
	4. printTableData Given a DBResults object from a previous query, this method prints it on the st...

	18.4� Applying the Database Utilities
	18.5� An Interactive Query Viewer
	Figure 18–1 Initial appearance of the query viewer.
	Figure 18–2 Query viewer after a request for the complete employees table from an Oracle database.
	Figure 18–3 Query viewer after a request for part of the employees table from an Oracle database.
	Figure 18–4 Query viewer after a request for the complete fruits table from a Sybase database.
	Figure 18–5 Query viewer after a request for part of the fruits table from a Sybase database.
	Query Viewer Code

	18.6� Prepared Statements (Precompiled Queries)
	18.7� Connection Pooling
	1. Preallocate the connections.
	2. Manage available connections.
	3. Allocate new connections.
	4. Wait for a connection to become available.
	5. Close connections when required.
	1. Preallocate the connections. Perform this task in the class constructor. Allocating more conne...
	2. Manage available connections. If a connection is required and an idle connection is available,...
	3. Allocate new connections. If a connection is required, there is no idle connection available, ...
	4. Wait for a connection to become available. This situation occurs when there is no idle connect...
	5. Close connections when required. Note that connections are closed when they are garbage collec...

	18.8� Connection Pooling: A Case Study
	Slow modem connection to database, 10 initial connections, 50 max connections (ConnectionPoolServ...
	11 seconds
	Slow modem connection to database, recycling a single connection (ConnectionPoolServlet2)
	22 seconds
	Slow modem connection to database, no connection pooling (ConnectionPoolServlet3)
	82 seconds
	Fast LAN connection to database, 10 initial connections, 50 max connections (ConnectionPoolServlet)
	1.8 seconds
	Fast LAN connection to database, recycling a single connection (ConnectionPoolServlet2)
	2.0 seconds
	Fast LAN connection to database, no connection pooling (ConnectionPoolServlet3)
	2.8 seconds
	Figure 18–6 A framed document that forces 25 nearly simultaneous requests for the same servlet.
	18.9� Sharing Connection Pools
	Using the Servlet Context to Share Connection Pools
	Using Singleton Classes to Share Connection Pools

	Servlet and JSP Quick �Reference

	A.1 Overview of Servlets and Java�Server�Pages
	Advantages of Servlets
	Advantages of JSP
	Free Servlet and JSP Software
	Documentation
	Servlet Compilation: CLASSPATH Entries
	Tomcat 3.0 Standard Directories
	Tomcat 3.1 Standard Directories
	JSWDK 1.0.1 Standard Directories
	Java Web Server 2.0 Standard Directories

	A.2 First Servlets
	Simple Servlet
	Installing Servlets
	Invoking Servlets
	Servlet Life Cycle

	A.3 Handling the Client Request: Form�Data
	Reading Parameters
	Example Servlet
	Example Form
	Filtering HTML-Specific Characters

	A.4 Handling the Client Request: HTTP�Request Headers
	Methods That Read Request Headers
	Other Request Information
	Common HTTP 1.1 Request Headers

	A.5 Accessing the Standard CGI Variables
	Capabilities Not Discussed Elsewhere
	Servlet Equivalent of CGI Variables

	A.6 Generating the Server Response: HTTP�Status Codes
	Format of an HTTP Response
	Methods That Set Status Codes
	Status Code Categories
	Common HTTP 1.1 Status Codes

	A.7 Generating the Server Response: HTTP Response Headers
	Setting Arbitrary Headers
	Setting Common Headers
	Common HTTP 1.1 Response Headers
	Generating GIF Images from Servlets

	A.8 Handling Cookies
	Typical Uses of Cookies
	Problems with Cookies
	General Usage
	Cookie Methods

	A.9 Session �Tracking
	Looking Up Session Information: getValue
	Associating Information with a Session: putValue
	HttpSession Methods
	Encoding URLs

	A.10 JSP Scripting Elements
	Types of Scripting Elements
	Template Text
	Predefined Variables

	A.11 The JSP page Directive: Structuring Generated �Servlets
	The import Attribute
	The contentType Attribute
	Example of Using contentType
	Example of Using setContentType
	The isThreadSafe Attribute
	The session Attribute
	The buffer Attribute
	The autoflush Attribute
	The extends Attribute
	The info Attribute
	The errorPage Attribute
	The isErrorPage Attribute
	The language Attribute
	XML Syntax

	A.12 Including Files and Applets in JSP Documents
	Including Files at Page Translation Time
	Including Files at Request Time
	Applets for the Java Plug-In: Simple Case
	Attributes of jsp:plugin
	Parameters in HTML: jsp:param
	Alternative Text

	A.13 Using JavaBeans with JSP
	Basic Requirements for Class to be a Bean
	1. Have a zero-argument (empty) constructor.
	2. Have no public instance variables (fields).
	3. Access persistent values through methods called getXxx (or isXxx) and setXxx.

	Basic Bean Use
	Associating Properties with Request Parameters
	Sharing Beans: The scope Attribute of jsp:useBean
	Conditional Bean Creation

	A.14 Creating �Custom JSP Tag Libraries
	The Tag Handler Class
	The Tag Library Descriptor File
	The JSP File
	Assigning Attributes to Tags
	Including the Tag Body
	Optionally Including the Tag Body
	Manipulating the Tag Body
	Including or Manipulating the Tag Body Multiple Times
	Using Nested Tags

	A.15 Integrating Servlets and JSP
	Big Picture
	Request Forwarding Syntax
	Forwarding to Regular HTML Pages
	Setting Up Globally Shared Beans
	Setting Up Session Beans
	Interpreting Relative URLs in the Destination Page
	Getting a RequestDispatcher by Alternative Means (2.2 Only)
	Including Static or Dynamic Content
	Forwarding Requests from JSP Pages

	A.16 Using HTML Forms
	The FORM Element
	Textfields
	Password Fields
	Text Areas
	Submit Buttons
	Alternative Push Buttons
	Reset Buttons
	Alternative Reset Buttons
	JavaScript Buttons
	Alternative JavaScript Buttons
	Check Boxes
	Radio Buttons
	Combo Boxes
	File Upload Controls
	Server-Side Image Maps
	Hidden Fields
	Internet Explorer Features

	A.17 Using Applets As Servlet Front Ends
	Sending Data with GET and Displaying the Resultant Page
	Sending Data with GET and Processing the Results Directly (HTTP Tunneling)
	1. Create a URL object referring to applet’s home host. You usually build a URL based upon the ho...
	2. Create a URLConnection object. The openConnection method of URL returns a URLConnection object...
	3. Instruct the browser not to cache the URL data.
	4. Set any desired HTTP headers. If you want to set HTTP request headers (see Chapter 4), you can...
	5. Create an input stream. There are several appropriate streams, but a common one is BufferedRea...
	6. Read each line of the document. Simply read until you get null.
	7. Close the input stream.

	Sending Serialized Data: The Applet Code
	1. Create a URL object referring to the applet’s home host. It is best to specify a URL suffix an...
	2. Create a URLConnection object. The openConnection method of URL returns a URLConnection object...
	3. Instruct the browser not to cache the URL data.
	4. Set any desired HTTP headers.
	5. Create an ObjectInputStream. The constructor for this class simply takes the raw input stream ...
	6. Read the data structure with readObject. The return type of readObject is Object, so you need ...
	7. Close the input stream.

	Sending Serialized Data: The Servlet Code
	1. Specify that binary content is being sent. To do so, designate application/x-java-serialized-o...
	2. Create an ObjectOutputStream.
	3. Write the data structure by using writeObject. Most built-in data structures can be sent this ...
	4. Flush the stream to be sure all content has been sent to the client.

	Sending Data by POST and Processing the Results Directly (HTTP Tunneling)
	1. Create a URL object referring to the applet’s home host. It is best to specify a URL suffix an...
	2. Create a URLConnection object.
	3. Instruct the browser not to cache the results.
	4. Tell the system to permit you to send data, not just read it.
	5. Create a ByteArrayOutputStream to buffer the data that will be sent to the server. The purpose...
	6. Attach an output stream to the ByteArrayOutputStream. Use a PrintWriter to send normal form da...
	7. Put the data into the buffer. For form data, use print. For high-level serialized objects, use...
	8. Set the Content-Length header. This header is required for POST data, even though it is unused...
	9. Set the Content-Type header. Netscape uses multipart/form-data by default, but regular form da...
	10. Send the real data.
	11. Open an input stream. You typically use a BufferedReader for ASCII or binary data and an Obje...
	12. Read the result. The specific details will depend on what type of data the server sends. Here...

	Bypassing the HTTP Server

	A.18 JDBC and �Database �Connection Pooling
	Basic Steps in Using JDBC
	1. Load the JDBC driver. See http://java.sun.com/products/jdbc/drivers.html for available drivers...
	2. Define the connection URL. The exact format will be defined in the documentation that comes wi...
	3. Establish the connection.
	4. Create a statement object.
	5. Execute a query or update.
	6. Process the results. Use next to get a new row. Use getXxx(index) or getXxx(columnName) to ext...
	7. Close the connection.

	Database Utilities
	Prepared Statements (Precompiled Queries)
	Steps in Implementing Connection Pooling
	1. Preallocate the connections. Perform this task in the class constructor. Call the constructor ...
	2. Manage available connections. If a connection is required and an idle connection is available,...
	3. Allocate new connections. If a connection is required, there is no idle connection available, ...
	4. Wait for a connection to become available. This situation occurs when there is no idle connect...
	5. Close connections when required. Note that connections are closed when they are garbage collec...

	Slow modem connection to database, 10 �initial connections, 50 max connections (ConnectionPoolSer...
	11 seconds
	Slow modem connection to database, recycling a single connection (ConnectionPoolServlet2)
	22 seconds
	Slow modem connection to database, no connection pooling (ConnectionPoolServlet3)
	82 seconds
	Fast LAN connection to database, 10 initial connections, 50 max connections (ConnectionPoolServlet)
	1.8 seconds
	Fast LAN connection to database, recycling a single connection (ConnectionPoolServlet2)
	2.0 seconds
	Fast LAN connection to database, no connection pooling (ConnectionPoolServlet3)
	2.8 seconds

	Index
	REQUEST_METHOD CGI variable, 118

