Creating a Basic Winsock Application

1. Create a new empty project.

2. Add an empty C++ source file to the project.

3. Ensure that the build environment refers to the Include, Lib, and Src directories of the Microsoft Platform SDK.

4. Ensure that the build environment links to the Winsock Library file WS2_32.lib.

5. Begin programming the Winsock application. Use the Winsock API by including the Winsock 2 header file.

Note Stdio.h is used for standard input and output, specifically the printf() function.

#include <stdio.h>

#include "winsock2.h"

void main() {

 return;

}

Next Step: Initializing Winsock
Initializing Winsock

All Winsock applications must be initialized to ensure that Windows sockets are supported on the system.

[image: image1.png]

To initialize Winsock
1. Create a WSADATA object called wsaData.

2. WSADATA wsaData;

3. Call WSAStartup and return its value as an integer and check for errors.

4. int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

5. if (iResult != NO_ERROR)

6. printf("Error at WSAStartup()\n");

The WSAStartup function is called to initiate use of WS2_32.lib.

The WSADATA structure contains information about the Windows Sockets implementation. The MAKEWORD(2,2) parameter of WSAStartup makes a request for the version of Winsock on the system, and sets the passed version as the highest version of Windows Sockets support that the caller can use.

Next Step: Creating a Socket
Creating a Socket

After initialization, a SOCKET object must be instantiated.

[image: image2.png]

To create a socket
1. Create a SOCKET object called m_socket.

2. SOCKET m_socket;

3. Call the socket function and return its value to the m_socket variable. For this application, use the Internet address family, streaming sockets, and the TCP/IP protocol.

4. m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

5. Check for errors to ensure that the socket is a valid socket.

6. if (m_socket == INVALID_SOCKET) {

7. printf("Error at socket(): %ld\n", WSAGetLastError());

8. WSACleanup();

9. return;

10. }

The parameters passed to the socket function can be changed for different implementations.

Error detection is a key part of successful networking code. If the socket call fails, it returns INVALID_SOCKET. The if statement in the previous code is used to catch any errors that may have occurred while creating the socket. WSAGetLastError returns an error number associated with the last error that occurred.

Note More extensive error checking may be necessary depending on the application.

WSACleanup is used to terminate the use of the WS2_32 DLL.

Server Next Step: Binding a Socket
Client Next Step: Connecting to a Socket
Connecting to a Socket

For a client to communicate on a network, it must connect to a server.

[image: image3.png]

To connect to a socket
1. Create a sockaddr_in object clientService and set its values.

2. sockaddr_in clientService;

3. clientService.sin_family = AF_INET;

4. clientService.sin_addr.s_addr = inet_addr("127.0.0.1");

5. clientService.sin_port = htons(27015);

6. Call the connect function, passing the created socket and the sockaddr_in structure as parameters. Check for general errors.

7. if (connect(m_socket, (SOCKADDR*) &clientService, sizeof(clientService)) == SOCKET_ERROR) {

8. printf("Failed to connect.\n");

9. WSACleanup();

10. return;

11. }

The three lines following the declaration of sockaddr_in clientService are used to set up the sockaddr structure:

· AF_INET is the Internet address family.

· "127.0.0.1" is the remote IP address of the server that the client will connect to.

· 27015 is the port number associated with the server that the client will connect to.

Next Step: Sending and Receiving Data
Sending and Receiving Data

The following code demonstrates the send and recv functions.

Server
int bytesSent;

int bytesRecv = SOCKET_ERROR;

char sendbuf[32] = "Server: Sending Data.";

char recvbuf[32] = "";

bytesRecv = recv(m_socket, recvbuf, 32, 0);

printf("Bytes Recv: %ld\n", bytesRecv);

bytesSent = send(m_socket, sendbuf, strlen(sendbuf), 0);

printf("Bytes Sent: %ld\n", bytesSent);

Client

int bytesSent;

int bytesRecv = SOCKET_ERROR;

char sendbuf[32] = "Client: Sending data.";

char recvbuf[32] = "";

bytesSent = send(m_socket, sendbuf, strlen(sendbuf), 0);

printf("Bytes Sent: %ld\n", bytesSent);

while(bytesRecv == SOCKET_ERROR) {

 bytesRecv = recv(m_socket, recvbuf, 32, 0);

 if (bytesRecv == 0 || bytesRecv == WSAECONNRESET) {

 printf("Connection Closed.\n");

 break;

 }

 if (bytesRecv < 0)

 return;

 printf("Bytes Recv: %ld\n", bytesRecv);

}

In this code, two integers are used to keep track of the number of bytes that are sent and received. The send and recv functions both return an integer value of the number of bytes sent or received, respectively, or an error. Each function also takes the same parameters: the active socket, a char buffer, the number of bytes to send or receive, and any flags to use.

Complete Source Code
· Complete Server Code

· Complete Client Code

Complete Server Code

The following is the complete source code for the TCP/IP Server application.

Server Source Code
#include <stdio.h>

#include "winsock2.h"

void main() {

 // Initialize Winsock.

 WSADATA wsaData;

 int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

 if (iResult != NO_ERROR)

 printf("Error at WSAStartup()\n");

 // Create a socket.

 SOCKET m_socket;

 m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (m_socket == INVALID_SOCKET) {

 printf("Error at socket(): %ld\n", WSAGetLastError());

 WSACleanup();

 return;

 }

 // Bind the socket.

 sockaddr_in service;

 service.sin_family = AF_INET;

 service.sin_addr.s_addr = inet_addr("127.0.0.1");

 service.sin_port = htons(27015);

 if (bind(m_socket, (SOCKADDR*) &service, sizeof(service)) == SOCKET_ERROR) {

 printf("bind() failed.\n");

 closesocket(m_socket);

 return;

 }

 // Listen on the socket.

 if (listen(m_socket, 1) == SOCKET_ERROR)

 printf("Error listening on socket.\n");

 // Accept connections.

 SOCKET AcceptSocket;

 printf("Waiting for a client to connect...\n");

 while (1) {

 AcceptSocket = SOCKET_ERROR;

 while (AcceptSocket == SOCKET_ERROR) {

 AcceptSocket = accept(m_socket, NULL, NULL);

 }

 printf("Client Connected.\n");

 m_socket = AcceptSocket;

 break;

 }

 // Send and receive data.

 int bytesSent;

 int bytesRecv = SOCKET_ERROR;

 char sendbuf[32] = "Server: Sending Data.";

 char recvbuf[32] = "";

 bytesRecv = recv(m_socket, recvbuf, 32, 0);

 printf("Bytes Recv: %ld\n", bytesRecv);

 bytesSent = send(m_socket, sendbuf, strlen(sendbuf), 0);

 printf("Bytes Sent: %ld\n", bytesSent);

 return;

}

Complete Client Code

The following is the complete source code for the TCP/IP Client Application.

Client Source Code
#include <stdio.h>

#include "winsock2.h"

void main() {

 // Initialize Winsock.

 WSADATA wsaData;

 int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

 if (iResult != NO_ERROR)

 printf("Error at WSAStartup()\n");

 // Create a socket.

 SOCKET m_socket;

 m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (m_socket == INVALID_SOCKET) {

 printf("Error at socket(): %ld\n", WSAGetLastError());

 WSACleanup();

 return;

 }

 // Connect to a server.

 sockaddr_in clientService;

 clientService.sin_family = AF_INET;

 clientService.sin_addr.s_addr = inet_addr("127.0.0.1");

 clientService.sin_port = htons(27015);

 if (connect(m_socket, (SOCKADDR*) &clientService, sizeof(clientService)) == SOCKET_ERROR) {

 printf("Failed to connect.\n");

 WSACleanup();

 return;

 }

 // Send and receive data.

 int bytesSent;

 int bytesRecv = SOCKET_ERROR;

 char sendbuf[32] = "Client: Sending data.";

 char recvbuf[32] = "";

 bytesSent = send(m_socket, sendbuf, strlen(sendbuf), 0);

 printf("Bytes Sent: %ld\n", bytesSent);

 while(bytesRecv == SOCKET_ERROR) {

 bytesRecv = recv(m_socket, recvbuf, 32, 0);

 if (bytesRecv == 0 || bytesRecv == WSAECONNRESET) {

 printf("Connection Closed.\n");

 break;

 }

 if (bytesRecv < 0)

 return;

 printf("Bytes Recv: %ld\n", bytesRecv);

 }

 return;

}

