
1

UNIX Network Programming

Overview of Socket API
Network Programming Basics

HCMC University of Technology – Faculty of Information Technology 2

Client-Server Model

ServerClient Network

Machine BMachine A

• Web browser and server
• FTP client and server
• Telnet client and server

HCMC University of Technology – Faculty of Information Technology 3

Ex: A Daytime client/server using socket API

Application protocol

MAC = media
access control

TCP

MAC driver

Daytime
client

IP

Network

TCP

Daytime
server

IP

MAC driver

TCP protocol

IP protocol

MAC-level protocol

Actual data flow

Socket API Socket API

HCMC University of Technology – Faculty of Information Technology 4

Socket API Location in OS

User
Space

OS
CPU

scheduling
Memory
Mgmt

File system Device
Mgmt

Processes

Network Stack

System Call Interface (Includes Socket API)

HCMC University of Technology – Faculty of Information Technology 5

OSI Model

Application
(FTP, HTTP,

Telnet, SMTP,
POP3…)

TCP UDP

Ipv4, Ipv6

Device driver
and

hardware

Application

Presentation

Session

Transport

Network

Datalink

Physical

User
process

Sockets
API

Kernel

OSI Model Internet protocol
suite

Raw socket

HCMC University of Technology – Faculty of Information Technology 6

Sockets

process sends/receives
messages to/from its
socket

socket analogous to door
sending process shoves
message out door

transport infrastructure
brings message to the door
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

Socket API: (1) choice of transport protocol; (2) ability to fix a
many parameters.

HCMC University of Technology – Faculty of Information Technology 7

Addressing processes

For a process to receive
messages, it must have an
identifier

A host has a unique 32-bit IP
address (IPv4)

Q: does the IP address of the
host on which the process
runs suffice for identifying the
process?

Answer: No, many processes
can be running on same host

Identifier includes both
the IP address and port
numbers associated
with the process on the
host.

Example port numbers:
HTTP server: 80
Mail server: 25

HCMC University of Technology – Faculty of Information Technology 8

IP Address (IPv4)
A unique identifier for each machine
connected to an IP network.

32 bit binary number

Represented as "dotted decimal" notation:
4 decimal values, each representing 8 bits
(octet), in the range 0 to 255.

Example:
Dotted Decimal: 140 .179 .220 .200
Binary: 10001100.10110011.11011100.11001000

HCMC University of Technology – Faculty of Information Technology 9

Ports

Port - A 16-bit number to identify the application
process that is a network endpoint.

Reserved ports or well-known ports (0 to 1023)
Standard ports for well-known applications.

Telnet (23), ftp(21), http (80).
See /etc/services file on any UNIX machine for listing of services on
reserved ports. (Only root accessible).

Ephemeral ports (1024-65535)
For ordinary user-developed programs.

HCMC University of Technology – Faculty of Information Technology 10

Associations

A half-association (or socket address) is the triple:
{protocol, local-IP, local-port}

For example,
{tcp, 130.245.1.44, 23}

An association is the 5-tuple that completely
specifies the two end-points of a connection:

{protocol, local-IP, local-port, remote-IP, remote-port}

For example:
{tcp, 130.245.1.44, 23, 130.245.1.45, 1024}

HCMC University of Technology – Faculty of Information Technology 11

TCP client/server connection sequence
socket()

connect()

bind()

listen()

accept()

socket()

write()

read()

close()

read()

write()

read() close()

3-way handshake

EOF

data

data

Client
Server

HCMC University of Technology – Faculty of Information Technology 12

Simplifying error-handling

- Create some wrappers for Socket functions BY
Check return code from socket function
Use err_sys() to display error mesage

int Socket (int family, int type, int protocol) {
int ret;

if ((ret = socket(family, type, protocol)) < 0)
err_sys("socket error");

return ret;
}

HCMC University of Technology – Faculty of Information Technology 13

The Socket Structure

INET Address

struct in_addr {
in_addr_t s_addr; /* 32-bit IPv4 address */

}

INET Socket

struct sockaddr_in {
uint8_t sin_len; /* length of structure (16) */
sa_family_t sin_family; /* AF_INET, AF_UNIX, etc*/
in_port_t sin_port; /* 16-bit TCP/UDP port number */
struct in_addr sin_addr; /* 32-bit IPv4 address */
char sin_zero[8]; /* unused */

}

HCMC University of Technology – Faculty of Information Technology 14

Network-byte ordering

Two ways to store 16-bit/32-bit integers

Little-endian byte order (e.g. Intel)

Big-endian byte order (E.g. Sparc)

High-order byte Low-order byte

Address A+1 Address A

High-order byte Low-order byte
Address A+1Address A

HCMC University of Technology – Faculty of Information Technology 15

Network-byte ordering (cont.)
How do two machines with different byte-orders
communicate?

Using network byte-order
Network byte-order = big-endian order

Conversion macros (<netinet/in.h>)
uint16_t htons (uint16_t n)
uint32_t htonl (uint32_t n)
uint16_t ntohs (uint16_t n)
uint32_t ntohl (uint32_t n)

16

Example of Client-Server Operation

A Simple Daytime
Client and Server

HCMC University of Technology – Faculty of Information Technology 17

Daytime client

Connects to a daytime server
Retrieves the current date and time

% gettime 130.245.1.44

Thu Sept 05 15:50:00 2002

HCMC University of Technology – Faculty of Information Technology 18

// A DAYTIME CLIENT SAMPLE – UNIX/LINUX VERSION
int main(int argc, char **argv) {

int sockfd, n;
char recvline[MAXLINE + 1];
struct sockaddr_in servaddr;

if(argc != 2)
printf("Usage : gettime <IP address>"); exit(1);

/* Create a TCP socket */
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket"); exit(2);
}

/* Specify server’s IP address and port */
bzero (&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons (13); /* daytime server port */

if (inet_pton (AF_INET, argv[1], &servaddr.sin_addr) <= 0) {
perror("inet_pton"); exit(3);

}

HCMC University of Technology – Faculty of Information Technology 19

/* Connect to the server */
if (connect(sockfd,

(struct sockaddr *) &servaddr,
sizeof(servaddr)) < 0) {

perror("connect"); exit(4);
}

/* Read the date/time from socket */
while ((n = read (sockfd, recvline, MAXLINE)) > 0) {

recvline[n] = ‘\0’; /* null terminate */
printf(“%s”, recvline);

}

if (n < 0) {
perror("read"); exit(5);

}

close (sockfd);
}
// END OF DAYTIME CLIENT SAMPLE

HCMC University of Technology – Faculty of Information Technology 20

Daytime Server

1. Waits for requests from Client

2. Accepts client connections

3. Send the current time

4. Terminates connection and goes back waiting for more
connections.

HCMC University of Technology – Faculty of Information Technology 21

/// A DAYTIME SERVER SAMPLE – UNIX/LINUX VERSION
1. int main (int argc, char **argv) {
2. int listenfd, connfd;
3. struct sockaddr_in servaddr, cliaddr;
4. char buff[MAXLINE];
5. time_t ticks;

6. /* Create a TCP socket */
7. listenfd = socket (AF_INET, SOCK_STREAM, 0);

8. /* Initialize server’s address and well-known port */
9. bzero (&servaddr, sizeof(servaddr));
10. servaddr.sin_family = AF_INET;
11. servaddr.sin_addr.s_addr = htonl (INADDR_ANY);
12. servaddr.sin_port = htons (13); /*daytime server*/

13. /* Bind server’s address and port to the socket */
14. bind (listenfd, (struct sockaddr*) &servaddr,
15. sizeof(servaddr));

HCMC University of Technology – Faculty of Information Technology 22

/// A DAYTIME SERVER SAMPLE – UNIX/LINUX VERSION (cont’d)

1. /* Convert socket to a listening socket */
2. listen (listenfd, 100);
3. for (; ;) {
4. /* Wait for client connections and accept them */
5. clilen = sizeof(cliaddr);
6. connfd = accept(listenfd,
7. (struct sockaddr *)&cliaddr, &clilen);

8. /* Retrieve system time */
9. ticks = time(NULL);
10. snprintf(buff, sizeof(buff),"%.24s\r\n",ctime(&ticks));

11. /* Write to socket */
12. write(connfd, buff, strlen(buff));

13. /* Close the connection */
14. close(connfd);
15. }
16. }

HCMC University of Technology – Faculty of Information Technology 23

Tài liệu tham khảo

UNIX Network Programming, Volume 2,
Second Edition: Interprocess
Communications, Prentice Hall, 1999,
ISBN 0-13-081081-9.

	UNIX Network Programming
	Client-Server Model
	Ex: A Daytime client/server using socket API
	Socket API Location in OS
	OSI Model
	Sockets
	Addressing processes
	IP Address (IPv4)
	Ports
	Associations
	TCP client/server connection sequence
	Simplifying error-handling
	The Socket Structure
	Network-byte ordering
	Network-byte ordering (cont.)
	Example of Client-Server Operation
	Daytime client
	Daytime Server
	Tài liệu tham khảo

