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UNIX Network Programming

Overview of Socket API
Network Programming Basics
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Client-Server Model

ServerClient Network

Machine BMachine A

• Web browser and server
• FTP client and server
• Telnet client and server
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Ex: A Daytime client/server using socket API
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Socket API Location in OS
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Sockets

process sends/receives 
messages to/from its 
socket

socket analogous to door
sending process shoves 
message out door

transport infrastructure 
brings message to the door 
at receiving process

process

TCP with
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variables

socket

host or
server

process

TCP with
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socket

host or
server

Internet

controlled
by OS
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Socket API: (1) choice of transport protocol; (2) ability to fix a 
many parameters.
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Addressing processes

For a process to receive 
messages, it must have an 
identifier

A host has a unique 32-bit IP 
address (IPv4)

Q: does the IP address of the 
host on which the  process 
runs suffice for identifying the 
process?

Answer: No, many processes 
can be running on same host

Identifier includes both 
the IP address and port 
numbers associated 
with the process on the 
host.

Example port numbers:
HTTP server: 80
Mail server: 25
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IP Address (IPv4)
A unique identifier for each machine 
connected to an IP network.

32 bit binary number 

Represented as "dotted decimal" notation: 
4 decimal values, each representing 8 bits 
(octet), in the range 0 to 255. 

Example:
Dotted Decimal:   140 .179 .220 .200
Binary: 10001100.10110011.11011100.11001000
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Ports

Port - A 16-bit number to identify the application 
process that is a network endpoint.

Reserved ports or well-known ports (0 to 1023)
Standard ports for well-known applications. 

Telnet (23), ftp(21), http (80). 
See /etc/services file on any UNIX machine for listing of services on 
reserved ports. (Only root accessible).

Ephemeral ports (1024-65535) 
For ordinary user-developed programs.
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Associations

A half-association (or socket address) is the triple: 
{protocol, local-IP, local-port}

For example,
{tcp, 130.245.1.44, 23}

An association is the 5-tuple that completely 
specifies the two end-points of a connection: 

{protocol, local-IP, local-port, remote-IP, remote-port}

For example: 
{tcp, 130.245.1.44, 23, 130.245.1.45, 1024} 
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TCP client/server connection sequence
socket()

connect()

bind()

listen()

accept()

socket()

write()

read()

close()

read()

write()

read() close()

3-way handshake

EOF

data

data

Client
Server
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Simplifying error-handling

- Create some wrappers for Socket functions BY
Check return code from socket function
Use err_sys() to display error mesage

int Socket (int family, int type, int protocol) {
int ret;

if ( (ret = socket(family, type, protocol)) < 0)
err_sys("socket error");

return ret;
}
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The Socket Structure

INET Address

struct in_addr {
in_addr_t s_addr;  /* 32-bit IPv4 address */

}

INET Socket 

struct sockaddr_in {
uint8_t sin_len; /* length of structure (16) */
sa_family_t sin_family; /* AF_INET, AF_UNIX, etc*/
in_port_t sin_port; /* 16-bit TCP/UDP port number */
struct in_addr sin_addr; /* 32-bit IPv4 address */
char sin_zero[8]; /* unused */

}
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Network-byte ordering

Two ways to store 16-bit/32-bit integers

Little-endian byte order (e.g. Intel)

Big-endian byte order (E.g. Sparc)

High-order byte              Low-order byte

Address A+1 Address A

High-order byte              Low-order byte
Address A+1Address A
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Network-byte ordering (cont.)
How do two machines with different byte-orders 
communicate?

Using network byte-order
Network byte-order = big-endian order

Conversion macros (<netinet/in.h>)
uint16_t htons (uint16_t n) 
uint32_t htonl (uint32_t n)
uint16_t ntohs (uint16_t n) 
uint32_t ntohl (uint32_t n)
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Example of Client-Server Operation

A Simple Daytime 
Client and Server
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Daytime client

Connects to a daytime server
Retrieves the current date and time

% gettime 130.245.1.44   

Thu Sept 05 15:50:00 2002
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// A DAYTIME CLIENT SAMPLE – UNIX/LINUX VERSION
int main(int argc, char **argv) {

int sockfd, n; 
char recvline[MAXLINE + 1];
struct sockaddr_in servaddr;

if( argc != 2 ) 
printf("Usage : gettime <IP address>"); exit(1);        

/* Create a TCP socket */
if ( (sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket"); exit(2);
}

/* Specify server’s IP address and port */
bzero (&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons ( 13 ); /* daytime server port */

if (inet_pton (AF_INET, argv[1], &servaddr.sin_addr) <= 0) {
perror("inet_pton"); exit(3);

}
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/* Connect to the server */
if (  connect(  sockfd, 

(struct sockaddr *) &servaddr, 
sizeof(servaddr)) < 0 ) {

perror("connect"); exit(4);
}

/* Read the date/time from socket */
while ( (n = read ( sockfd, recvline, MAXLINE)) > 0) {

recvline[n] = ‘\0’;        /* null terminate */
printf(“%s”, recvline); 

}               

if (n < 0) {
perror("read"); exit(5);

}

close ( sockfd );
} 
// END OF DAYTIME CLIENT SAMPLE
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Daytime Server

1. Waits for requests from Client

2. Accepts client connections

3. Send the current time

4. Terminates connection and goes back waiting for more 
connections.
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/// A DAYTIME SERVER SAMPLE – UNIX/LINUX VERSION
1. int main (int argc, char **argv) {
2. int listenfd, connfd;
3. struct sockaddr_in servaddr, cliaddr;
4. char buff[MAXLINE];
5. time_t ticks;

6. /* Create a TCP socket */
7. listenfd = socket (AF_INET, SOCK_STREAM, 0);

8. /* Initialize server’s address and well-known port */
9. bzero (&servaddr, sizeof(servaddr));
10. servaddr.sin_family = AF_INET;
11. servaddr.sin_addr.s_addr = htonl (INADDR_ANY);
12. servaddr.sin_port = htons (13); /*daytime server*/

13. /* Bind server’s address and port to the socket */
14. bind (listenfd, (struct sockaddr*) &servaddr, 
15. sizeof( servaddr) );
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/// A DAYTIME SERVER SAMPLE – UNIX/LINUX VERSION (cont’d)

1. /* Convert socket to a listening socket */
2. listen (listenfd, 100); 
3. for ( ; ; ) {
4. /* Wait for client connections and accept them */
5. clilen = sizeof(cliaddr);
6. connfd = accept( listenfd, 
7. (struct sockaddr *)&cliaddr, &clilen);

8. /* Retrieve system time */
9. ticks = time(NULL);
10. snprintf( buff, sizeof(buff),"%.24s\r\n",ctime(&ticks));

11. /* Write to socket */
12. write( connfd, buff, strlen(buff) );

13. /* Close the connection */
14. close( connfd );
15. }
16. }
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