
-1.1-

Chöông 10: Heä Thoáng File

10.C



2

Chöông 10: Heä Thoáng File

 Beân trong ñóa cöùng

 Caùc giaûi thuaät ñònh thôøi truy caäp ñóa

 Ñònh daïng, phaân vuøng, raw disk

 RAID (Redundant Arrays of Independent Disks)



3

Toå chöùc cuûa ñóa cöùng

 Ñóa cöùng trong heä thoáng PC

Partition 1

Partition 2

Partition 3

Partition 4

Partition

Master Boot Record

(MBR)

Boot Block



4

Disk Anatomy

disk head array

1 – 12 platters

the disk spins – around 7,200 rpm

track



5

Beân trong ñóa cöùng



6

Caùc tham soá cuûa ñóa

 Thôøi gian ñoïc/ghi döõ lieäu treân ñóa bao goàm

 Seek time: thôøi gian di chuyeån ñaàu ñoïc/ghi ñeå ñònh vò ñuùng 

track/cylinder, phuï thuoäc toác ñoä/caùch di chuyeån cuûa ñaàu ñoïc/ghi

 Rotational delay (latency): thôøi gian ñaàu ñoïc chôø ñeán ñuùng 

sector caàn ñoïc, phuï thuoäc toác ñoä quay cuûa ñóa

 Transfer time: thôøi gian chuyeån döõ lieäu töø ñóa vaøo boä nhôù hoaëc 

ngöôïc laïi, phuï thuoäc baêng thoâng keânh truyeàn giöõa ñóa vaø boä nhôù

 Disk I/O time = seek time + rotational delay + transfer 

time



7

Modern disks

 Modern hard drives use zoned bit recording

 Disks are divided into zones with more sectors on the outer 

zones than the inner ones (why?)

Slides from Flynn?



8

Addressing Disks

 What the OS knows about the disk

 Interface type (IDE/SCSI/SATA), unit number, number of sectors

 What happened to sectors, tracks, etc?

 Old disks were addressed by cylinder/head/sector (CHS)

 Modern disks are addressed using a linear addressing scheme

LBA = logical block address

As an example, LBA = 0..586,072,367 for a 300 GB disk

 Who uses sector numbers?

 File system software assign logical blocks to files

 Terminology

To disk people, “block” and “sector” are the same

To file system people, a “block” is some fixed number of 

sectors



9

Disk Addresses vs Scheduling

 Goal of OS disk-scheduling algorithm

 Maintain queue of requests

 When disk finishes one request, give it the “best” request (

performance metric)

e.g., whichever one is closest in terms of disk geometry

 Goal of disk's logical addressing

 Hide messy details of which sectors are located where

 Oh, well

 Older OS's tried to understand disk layout

 Modern OS's just assume nearby sector numbers are close

 Experimental OS's try to understand disk layout again

 Next few slides assume “old” / “experimental”, not “modern”



10

Taêng hieäu suaát truy caäp ñóa

„ Caùc giaûi phaùp

 Giaûm kích thöôùc ñóa 

 Taêng toác ñoä quay cuûa ñóa 

 Ñònh thôøi caùc taùc vuï truy xuaát ñóa (disk scheduling)

 Boá trí ghi döõ lieäu treân ñóa 

 caùc döõ lieäu coù lieân quan naèm treân caùc track gaàn nhau

 interleaving

 Boá trí caùc file thöôøng söû duïng vaøo vò trí thích hôïp

 Choïn kích thöôùc cuûa logical block

 Read ahead

 Speculatively read blocks of data before the application requests 

them



11

Hieäu suaát truy caäp ñóa

 Performance metric

 Throughput

 Disk utilization (the fraction of time the disks are actually 

transferring data)

 Maximum response time



12

Ñònh thôøi truy caäp ñóa

 YÙ töôûng chính

 Saép xeáp laïi traät töï cuûa caùc yeâu caàu ñoïc/ghi ñóa sao cho giaûm 

thieåu thôøi gian di chuyeån ñaàu ñoïc (seek time)

 Caùc giaûi thuaät ñònh thôøi truy caäp ñóa

 First Come, First Served (FCFS)

 Shortest-Seek-Time First (SSTF, SSF)

 SCAN

 C-SCAN (Circular SCAN)

 C-LOOK

 Ví duï: ñònh thôøi chuoãi yeâu caàu ñoïc/ghi ñóa taïi

 cylinder 98, 183, 37, 122, 14, 124, 65, 67

 Ñaàu ñoïc ñang ôû cylinder soá 53



13

First Come First Served (FCFS)

Haøng ñôïi: 98, 183, 37, 122, 14, 124, 65, 67

Ñaàu ñoïc ñang ôû cylinder soá 53

14 37 53 6567 98 122124 183 199

Toång soá cylinder

ñaõ duyeät qua: 640 



14

Shortest-Seek-Time First (SSTF)



15

SCAN (elevator algorithm)

and is moving toward cylinder 0



16

C-SCAN (Circular SCAN)

and is servicing on the way to cyl. 199



17

C-LOOK

and is servicing on the way to cyl. 199



18

So saùnh giaûi thuaät ñònh thôøi (1)

Disk utilization from 

FCFS, SSF, and CSCAN

From “Disk Scheduling Revisited” 1990



19

So saùnh giaûi thuaät ñònh thôøi (2)

Maximum response time 

from FCFS, SSF, and 

CSCAN



20

Quaûn lyù ñóa: Ñònh daïng (formatting)

 Ñònh daïng caáp thaáp: ñònh daïng vaät lyù, chia ñóa thaønh 

nhieàu sector

 Moãi sector coù caáu truùc döõ lieäu ñaëc bieät: header ‟ data ‟ trailer

 Header vaø trailer chöùa caùc thoâng tin daønh rieâng cho disk 

controller nhö chæ soá sector vaø error-correcting code (ECC)

 Khi controller ghi döõ lieäu leân moät sector, tröôøng ECC ñöôïc caäp 

nhaät vôùi giaù trò ñöôïc tính döïa treân döõ lieäu ñöôïc ghi

 Khi ñoïc sector, giaù trò ECC cuûa döõ lieäu ñöôïc tính laïi vaø so saùnh 

vôùi trò ECC ñaõ löu ñeå kieåm tra tính ñuùng ñaén cuûa döõ lieäu

Header Data Trailer



21

Quaûn lyù ñóa: Phaân vuøng (partitioning)

 Phaân vuøng: chia ñóa thaønh nhieàu vuøng (partition), moãi 

vuøng goàm nhieàu block lieân tuïc.

 Moãi partition ñöôïc xem nhö moät “ñóa luaän lyù” rieâng bieät.

 Ñònh daïng luaän lyù cho partition: taïo moät heä thoáng file 

(FAT, ext2,…)

 Löu caùc caáu truùc döõ lieäu khôûi ñaàu cuûa heä thoáng file leân partition

 Taïo caáu truùc döõ lieäu quaûn lyù khoâng gian troáng vaø khoâng gian ñaõ 

caáp phaùt (DOS: FAT; UNIX: superblock vaø i-node list)



22

Ví duï ñònh daïng moät partition

MBR



23

Quaûn lyù ñóa: Raw disk

 Raw disk: partition khoâng coù heä thoáng file

 I/O leân raw disk ñöôïc goïi laø raw I/O

 ñoïc hay ghi tröïc tieáp caùc block

 khoâng duøng caùc dòch vuï cuûa file system (buffer cache, file 

locking, prefetching, caáp phaùt khoâng gian troáng, ñònh danh file, 

vaø thö muïc)

 Ví duï

 Moät soá heä thoáng cô sôû döõ lieäu choïn duøng raw disk



24

Quaûn lyù khoâng gian traùo ñoåi (swap space)

 Swap space

 khoâng gian ñóa ñöôïc söû duïng ñeå môû roäng khoâng gian nhôù trong 

kyõ thuaät boä nhôù aûo

 Muïc tieâu quaûn lyù: hieäu suaát cao cho heä thoáng quaûn lyù boä nhôù aûo

 Hieän thöïc

chieám partition rieâng, vd swap partition cuûa Linux

hoaëc qua moät file system, vd file pagefile.sys cuûa MS 

Windows

Thöôøng keøm theo caching hoaëc duøng phöông phaùp caáp phaùt 

lieân tuïc



25

RAID Introduction

 Disks act as bottlenecks for both system performance 

and storage reliability

 A disk array consists of several disks which are 

organized to increase performance and improve 

reliability

 Performance is improved through data striping

 Reliability is improved through redundancy

 Disk arrays that combine data striping and redundancy 

are called Redundant Arrays of Independent Disks, or 

RAID

 There are several RAID schemes or levels

„ Slide cua CMPT 354

„ http://sleepy.cs.surrey.sfu.ca/cmpt/courses/archive/fall2005spring2006/cmpt354/notes



26

Data Striping

 A disk array gives the user the abstraction of a single, 

large, disk

 When an I/O request is issued, the physical disk blocks to be 

retrieved have to be identified

 How the data is distributed over the disks in the array affects how 

many disks are involved in an I/O request

 Data is divided into equal size partitions called striping 

units

 The size of the striping unit varies by the RAID level

 The striping units are distributed over the disks using a 

round robin algorithm

KEY POINT – disks can be 

read in parallel, increasing 

the transfer rate



27

Striping Units ‟ Block Striping

 Assume that a file is to be distributed across a 4 disk 

RAID system and that

 Purely for the sake of illustration, blocks are only one byte! [here 

striping-unit size = block size]

25 26 27 28 29 30 31 32 57 58 59 60 61 62 63 64 89 90 91 92 93 94 95 96 …

9 10 11 12 13 14 15 16 41 42 43 44 45 46 47 48 73 74 75 76 77 78 79 80 …

1 2 3 4 5 6 7 8 33 34 35 36 37 38 39 40 65 66 67 68 69 70 71 72 …

17 18 19 20 21 22 23 24 49 50 51 52 53 54 55 56 81 82 83 84 85 86 87 88 …

1 2 3 4 5 6 7 8 9 10 11 12 13 12 15 16 17 18 19 20 21 22 23 24 …

Notional File – a series of bits, numbered so that we can distinguish them

Now distribute these bits across the 4 RAID disks using BLOCK striping:



28

Striping Units ‟ Bit Striping

 Now here is the same file, and 4 disk RAID using bit 

striping, and again:

 Purely for the sake of illustration, blocks are only one byte!

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 …

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 …

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 …

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 …

1 2 3 4 5 6 7 8 9 10 11 12 13 12 15 16 17 18 19 20 21 22 23 24 …

Notional File – a series of bits, numbered so that we can distinguish them

Now distribute these bits across the 4 RAID disks using BIT striping:



29

Striping Units Performance

 A RAID system with D disks can read data up to D times 

faster than a single disk system

 As the D disks can be read in parallel

 For large reads* there is no difference between bit striping and 

block striping

 *where some multiple of D blocks are to be read

 Block striping is more efficient for many unrelated requests

With bit striping all D disks have to be read to recreate a 

single block of the data file

 In block striping each disk can satisfy one of the requests, 

assuming that the blocks to be read are on different disks

 Write performance is similar but is also affected by the 

parity scheme



30

Reliability of Disk Arrays

 The mean-time-to-failure (MTTF) of a hard disk is around 

50,000 hours, or 5.7 years

 In a disk array the MTTF (of a single disk in the array) 

increases

 Because the number of disks is greater

 The MTTF of a disk array containing 100 disks is 21 days 

(= 50,000/100 hours)

 Assuming that failures occur independently and

 The failure probability does not change over time

 Pretty implausible assumptions 

 Reliability is improved by storing redundant data



31

Redundancy

 Reliability of a disk array can be improved by storing 

redundant data

 If a disk fails, the redundant data can be used to 

reconstruct the data lost on the failed disk

 The data can either be stored on a separate check disk or

 Distributed uniformly over all the disks

 Redundant data is typically stored using a parity scheme

 There are other redundancy schemes that provide greater 

reliability



32

Parity Scheme

 For each bit on the data disks there is a related parity bit

on a check disk

 If the sum of the bits on the data disks is even the parity bit is set 

to zero

 If the sum of the bits is odd the parity bit is set to one

 The data on any one failed disk can be recreated bit by 

bit



33

0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 …

1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 …

0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 …

0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 …

1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 …

Here is a fifth CHECK DISK with the parity data

Here is the 4 disk RAID system showing the actual bit values



34

Parity Scheme and Reliability

 In RAID systems the disk array is partitioned into 

reliability groups

 A reliability group consists of a set of data disks and a set of 

check disks

 The number of check disks depends on the reliability level that is 

selected

 Given a RAID system with 100 disks and an additional 

10 check disks the MTTF can be increased from 21 days 

to 250 years!



35

RAID Level 0: Nonredundant

 Uses data striping to increase the transfer rate

 Good read performance

Up to D times the speed of a single disk

 No redundant data is recorded

 The best write performance as redundant data does not have to 

be recorded

 The lowest cost RAID level but

 Reliability is a problem, as the MTTF increases linearly with the 

number of disks in the array

 With 5 data disks, only 5 disks are required



36

Block 1

Block 21

Block 6

Block 16

Block 11

Block 2

Block 22

Block 7

Block 17

Block 12

Block 3

Block 23

Block 8

Block 18

Block 13

Block 4

Block 24

Block 9

Block 19

Block 14

Block 5

Block 25

Block 10

Block 20

Block 15

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4



37

RAID Level 1: Mirrored

 For each disk in the system an identical copy is kept, 

hence the term mirroring

 No data striping, but parallel reads of the duplicate disks can be 

made, otherwise read performance is similar to a single disk

 Very reliable but the most expensive RAID level

 Poor write performance as the duplicate disk has to be written to

These writes should not be performed simultaneously in case 

there is a global system failure

 With 4 data disks, 8 disks are required



38

Block 1

Block 5

Block 2

Block 4

Block 3

Block 1

Block 5

Block 2

Block 4

Block 3

Disk 0 Disk 1



39

RAID Level 2: Memory-Style ECC

 Not common because redundancy schemes such as bit-

interleaved parity provide similar reliability at better 

performance and cost.



40

RAID Level 3: Bit-Interleaved Parity

 Uses bit striping

 Good read performance for large requests

Up to D times the speed of a single disk

Poor read performance for multiple small requests

 Uses a single check disk with parity information

 Disk controllers can easily determine which disk has failed, so 

the check disks are not required to perform this task

 Writing requires a read-modify-write cycle

Read D blocks, modify in main memory, write D + C blocks



41

Bit 1

Bit 129

Bit 33

Bit 97

Bit 65

Bit 2

Bit 130

Bit 34

Bit 98

Bit 66

Bit 3

Bit 131

Bit 35

Bit 99

Bit 67

P 1-32

P 129-160

P 33-64

P 97-128

P 65-96

Disk 0 Disk 1 Disk 2 Parity disk

…



42

RAID Level 4: Block-Interleaved Parity

 Block-interleaved, parity disk array is similar to the bit-

interleaved, parity disk array except that data is 

interleaved across disks in blocks of arbitrary size rather 

than in bits



43

RAID Level 5: Block-Interleaved Distributed Parity

 Uses block striping

 Good read performance for large requests

Up to D times the speed of a single disk

Good read performance for multiple small requests that can 

involve all disks in the scheme

 Distributes parity information over all of the disks

 Writing requires a read-modify-write cycle

But several write requests can be processed in parallel as the 

bottleneck of a single check disk has been removed

 Best performance for small and large reads and large 

writes

 With 4 disks of data, 5 disks are required with the parity 

information distributed across all disks



44

 Each square corresponds to a stripe unit. Each column of squares 

corresponds to a disk.

 P0 computes the parity over stripe units 0, 1, 2 and 3; P1 computes 

parity over stripe units 4, 5, 6 and 7; etc.

Disk 0 … Disk 4


