Airline Fleet Assignment Problem

Tran, Van Hoai

Faculty of Computer Science & Engineering
HCMC University of Technology

E-mail: hoai@cse.hcmut.edu.vn
Homepage: http://www.cse.hcmut.edu.vn/~hoai

Reference
Handbook of Optimization - Optimization Applications in the Airline Industry

2012-2013
Problem definition

Definition

Assign aircraft types to flight legs such that *contribution* is maximized.

Factors influence fleet assignment:
- Passenger demand
- Seat capacity
- Operational costs
- Availability of maintenance

Diagram:

- **Schedule Design**
 - **Fleet Assignment**
 - **Aircraft Routing**
 - **Crew Scheduling**

Notes:
- Select optimal set of *flight legs* in a schedule
- A flight specifies origin, destination, and departure time
- Contribution = Revenue - Costs
- Assign crew (pilots and/or flight attendants) to flight legs

Tran, Van Hoai

Airline Fleet Assignment Problem
Problem definition

Definition
Assign aircraft types to flight legs such that *contribution* is maximized

Factors influence fleet assignment
- passenger demand
- seat capacity
- operational costs
- availability of maintenance

- Select optimal set of *flight legs* in a schedule
- A flight specifies origin, destination, and departure time
- Contribution = Revenue - Costs
- Assign crew (pilots and/or flight attendants) to flight legs
Aircraft must circulate in the network of flights
⇒ A network built on flight schedule for every fleet type
Aircraft must circulate in the network of flights
⇒ A network built on flight schedule for every fleet type

- Time span is 24 hours or any schedule horizon
- In this lecture, we consider repeating daily schedule
 - Everyday looks exactly the same
 - Schedule repeat itself every 24 hours
Space-time network

Aircraft must circulate in the network of flights

⇒ A network built on flight schedule for every fleet type

- Time span is 24 hours or any schedule horizon
- In this lecture, we consider repeating daily schedule
 - Everyday looks exactly the same
 - Schedule repeat itself every 24 hours

A network for each fleet type

- Node: arrival station (of a flight) at ready time, departure station at departure time
- Arc:
 - from departure to arrival of each flight
 - each node to adjacent node on time line at same station (ground arc)
Balanced space-time network
Unbalanced network
Basic fleet assignment problem

Given

- Flight schedule
- Number of aircraft by equipment type
- Turn time by fleet type at each station
- Operating costs and potential revenue of flights, by fleet type

Find

Maximize profit when assigning aircraft types to scheduled flights, such that:

- Every flight is covered by exactly one fleet type
- Conservation of flow of aircraft is achieved
- The number of aircraft used does not exceed the number available (in each aircraft type)
Basic fleet assignment problem

Given
- Flight schedule
- Number of aircraft by equipment type
- Turn time by fleet type at each station
- Operating costs and potential revenue of flights, by fleet type

Find
Maximize profit when assigning aircraft types to scheduled flights, such that
- every flight is covered by exactly one fleet type
- conservation of flow of aircraft is achieved
- the number of aircraft used does not exceed the number available (in each aircraft type)
Fleet assignment model

Formulation in English

- **Max**: Leg-based contribution
Formulation in English

- **Max:** Leg-based contribution
- **Subject to:**
 - Each flight is covered by an aircraft type
 - Aircraft flow in the network is conserved
 - Number of aircraft used does not exceed the number available
Inbound flights at Atlanta

<table>
<thead>
<tr>
<th>Time</th>
<th>Flight Time</th>
<th>City</th>
<th>Flight #</th>
<th>Aircraft type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00am</td>
<td>8:05am</td>
<td>Boston</td>
<td>709</td>
<td>???</td>
</tr>
<tr>
<td>6:30am</td>
<td>8:39am</td>
<td>JFK</td>
<td>538</td>
<td>???</td>
</tr>
<tr>
<td>12:25pm</td>
<td>4:27pm</td>
<td>DC</td>
<td>746</td>
<td>???</td>
</tr>
<tr>
<td>2:25pm</td>
<td>6:13pm</td>
<td>Philly</td>
<td>646</td>
<td>???</td>
</tr>
</tbody>
</table>

Outbound flights at Atlanta

<table>
<thead>
<tr>
<th>Time</th>
<th>Flight Time</th>
<th>City</th>
<th>Flight #</th>
<th>Aircraft type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00am</td>
<td>8:05am</td>
<td>Boston</td>
<td>657</td>
<td>???</td>
</tr>
<tr>
<td>6:30am</td>
<td>8:39am</td>
<td>Austin</td>
<td>987</td>
<td>???</td>
</tr>
<tr>
<td>12:25pm</td>
<td>4:27pm</td>
<td>Dallas</td>
<td>564</td>
<td>???</td>
</tr>
<tr>
<td>2:25pm</td>
<td>6:13pm</td>
<td>Phoenix</td>
<td>367</td>
<td>???</td>
</tr>
<tr>
<td>Time</td>
<td>Flight #</td>
<td>City</td>
<td>Aircraft type</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>6:00am</td>
<td>709</td>
<td>Boston</td>
<td>M80</td>
<td></td>
</tr>
<tr>
<td>6:30am</td>
<td>538</td>
<td>JFK</td>
<td>757</td>
<td></td>
</tr>
<tr>
<td>12:25pm</td>
<td>746</td>
<td>DC</td>
<td>M80</td>
<td></td>
</tr>
<tr>
<td>2:25pm</td>
<td>646</td>
<td>Philly</td>
<td>757</td>
<td></td>
</tr>
</tbody>
</table>

Outbound flights at Atlanta

<table>
<thead>
<tr>
<th>Time</th>
<th>Flight #</th>
<th>City</th>
<th>Aircraft type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00am</td>
<td>657</td>
<td>Boston</td>
<td>757</td>
</tr>
<tr>
<td>6:30am</td>
<td>987</td>
<td>Austin</td>
<td>M80</td>
</tr>
<tr>
<td>12:25pm</td>
<td>564</td>
<td>Dallas</td>
<td>757</td>
</tr>
<tr>
<td>2:25pm</td>
<td>367</td>
<td>Phoenix</td>
<td>M80</td>
</tr>
</tbody>
</table>
Example: single flight
Example: single flight

Max \[C_{B747,1} \cdot f_{B747,1} + C_{B777,1} \cdot f_{B777,1} + C_{B767,1} \cdot f_{B767,1} + C_{B757,1} \cdot f_{B757,1} \]
Constraints 1: coverage

\[
\text{max} \quad C_{B747,1} \cdot f_{B747,1} + C_{B777,1} \cdot f_{B777,1} + \\
C_{B767,1} \cdot f_{B767,1} + C_{B757,1} \cdot f_{B757,1} \\
\text{s.t.} \quad f_{B747,1} + f_{B777,1} + f_{B767,1} + f_{B757,1} = 1 \\
f_{B747,1}, f_{B777,1}, f_{B767,1}, f_{B757,1} \in \{0, 1\}
\]
Airline network is a “network”, it needs conservation of flow
Airline network is a “network”, it needs conservation of flow.

\[y_{B777, SYD, 1600^-} + f_{B777, 2} - y_{B777, SYD, 1600^+} = 0 \]
Airline network is a “network”, it needs conservation of flow

\[y(B777, SYD, 1600^-) + f_{B777,2} - y(B777, SYD, 1600^+) = 0 \]

At any event node \((k, o, t)\)

\[y(k, o, t^-) + \sum_{i \in \text{In}(k, o, t)} f_{k,i} - y(k, o, t^+) - \sum_{i \in \text{Out}(k, o, t)} f_{k,i} = 0 \]
Question: “How do we count aircraft in the network (using given variables)?”
Question: “How do we count aircraft in the network (using given variables)?”

Flow conservation
Constraints 3: count

Question: “How do we count aircraft in the network (using given variables)?”

Flow conservation

Practice

Take a snapshot a few hours after midnight because most aircraft is on the ground

\[
\sum_{o \in O} y(k,o,t_n) + \sum_{i \in CL(k)} f_{k,i} \leq N_k, \forall k \in K
\]
FAM formulation

\[
\begin{align*}
\text{max} & \quad \sum_{i \in L} \sum_{k \in K} C_{k,i} \cdot f_{k,i} \\
\text{s.t.} & \quad \sum_{k \in K} f_{k,i} = 1 \\
& \quad y_{k,o,t}^- + \sum_{i \in \text{ln}(k,o,t)} f_{k,i} - y_{k,o,t}^+ - \sum_{i \in \text{Out}(k,o,t)} f_{k,i} = 0, \forall k, o, t \\
& \quad \sum_{o \in O} y_{k,o,t_n} + \sum_{i \in \text{CL}(k)} f_{k,i} = N_k, \forall k \in K \\
& \quad f_{k,i} \in \{0, 1\}, y_{k,o,t} \in \mathbb{Z}^+ \end{align*}
\]
A major US airline
- 2000 daily flights, 12 fleets, 400 aircraft, 300 cities
lead to constraint matrix with
- \(~ 72000\) columns (variables)
- \(~ 50000\) rows (constraints)
Pros & Cons

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Compact formulation</td>
<td>- Assume deterministic demand</td>
</tr>
<tr>
<td>- Superb solvability</td>
<td>- Ignore network effect</td>
</tr>
<tr>
<td>- Reasonable approximation of reality</td>
<td></td>
</tr>
</tbody>
</table>
Other approaches

- ILP cannot handle complex constraints
- Use other (meta-)heuristics to find good solution (from initial FAM solution)